Плоские и двугранные углы трехгранного угла. Трехгранный и многогранный углы

2.4. Многогранные углы

В соответствии с тематическим планированием, на данный параграф отводится один час учебного времени (один урок).

1. Проверка домашнего задания (5 мин.)

2. Выполняем этап работы с информацией (20 –25 мин.)

Технологически этап ориентирован на преимущественное формирование познавательных универсальных учебных действий (умения формулировать вопросы к тексту, самостоятельно формулировать ответы с опорой на текст).

В этом параграфе находит дальнейшее развитие понятие трёхгранного угла. Появляется многогранный угол, и в связи с этим появляется возможность уточнить понятие многоугольника.

В связи с многогранными углами ещё раз обсуждается проблема выпуклости фигур. На примере многогранных углов мы дополнительно уточняем представления учащихся о выпуклых и невыпуклых фигурах (многоугольники, многогранные углы, произвольные фигуры).

Для многогранных углов полезно сформулировать свойства их плоских углов , аналогичные соответственным свойствам плоских углов трёхгранного угла (без доказательства):

1. Каждый плоский угол многогранного угла меньше суммы остальных плоских углов.

2. Сумма всех плоских углов многогранного угла меньше 360º.

3. Выполняем этап развития умений (15 20 мин.)

Этап ориентирован на выработку

познавательных УУД – формирование умений:

– по использованию математических знаний для решения различных математических задач и оценки полученных результатов;

– по использованию доказательной математической речи;

– по работе с информацией, в том числе и с различными математическими текстами;

Регулятивных УУД – формирование умений ставить личные цели деятельности, планировать свою работу, действовать по плану, оценивать полученные результаты;

коммуникативных УУД – формирование умений совместно с другими детьми в группе находить решение задачи и оценивать полученные результаты.

Обсуждаем, что это этап разъяснения всего непонятного, а также тренинга. Устанавливаем цели работы на данном этапе, добиваясь при этом от детей личного целеполагания: разъяснить для себя всё, что недостаточно хорошо понятно, потренироваться в решении тех задач, которые вызывают затруднения.

Здесь можно поработать с заданиями 34, 35 на стр. 29–30.

Предлагаем также несколько дополнительных задач.

1) Многогранный угол имеет n граней. Сколько у него рёбер?

Ответ: n рёбер.

2) Можно ли изготовить модель четырёхгранного угла с плоскими углами: 1) 80°, 130°, 70°, 100°; 2) 45°, 60°, 120°, 90°; 3) 80°, 80°, 80°, 80°? Если модель получилась, то какого угла: выпуклого или невыпуклого?

Ответ: 1) можно; 2) можно как выпуклого, так и невыпуклого; 3) можно, только выпуклого.

3) Опираясь на известное вам свойство плоских углов трёхгранного угла, докажите, что каждый плоский угол четырёхгранного угла меньше суммы трёх остальных его плоских углов.

Указание: Через два противолежащих ребра нужно провести плоскость и рассмотреть получившиеся трёхгранные углы. Доказательство справедливо только для выпуклых углов.

4) В четырёхгранном угле все плоские углы равны. Докажите, что они острые.

Решение: 1. Пусть α – градусная мера плоского угла.

2. Тогда 4α < 360° (по свойству суммы плоских углов выпуклого многогранного угла).

3. Следовательно, α < 90°, т. е. α – острый угол.

5) В выпуклом многогранном угле каждый из плоских углов равен а) 30°; б) 45°; в) 80°; г) 150°. Сколько граней может иметь такой многогранный угол?

Ответ: а) 3 ≤ n < 12; б) 3 ≤ n < 8; в) 3 ≤ n < 4,5; г) 3 ≤ n < 2,4 (такого многогранного угла не существует). При подсчетах нужно учитывать, что n – число целое.

6) В выпуклом многогранном угле все плоские углы равны между собой. Многогранный угол имеет а) 6; б) 8; в) 10 граней. Чему могут быть равны плоские углы данного многогранного угла?

Рассуждаем так же, как и при решении задачи 5, n α < 360°, где n – количество граней многогранного угла, α– градусная мера плоского угла; 0 ≤ α < 360°/ n .

Ответ: а) 0 ≤ α< 60°; б) 0 ≤ α< 45°; в) 0 ≤ α< 36°.

По истечении времени, отведённого для выполнения заданий, результаты работы выносятся педагогом на доску и обсуждаются учащимися. Подводится итог работы, происходит самооценка, связанная с определением того, что ясно и получается и того, что не ясно и не получается.

4. Формулируем домашнее задание по различным уровням сложности – в зависимости от результатов работы на предыдущем этапе.

МНОГОГРАННЫЕ УГЛЫ

Многогранный угол является пространственным аналогом многоугольника. Напомним, что многоугольником на плоскости называется фигура, образованная простой замкнутой ломаной и ограниченной ею внутренней областью. Будем считать аналогом точки на плоскости луч в пространстве и аналогом отрезка на плоскости плоский угол в пространстве. Тогда аналогом простой замкнутой ломаной на плоскости является поверхность, образованная конечным набором плоских углов A 1 SA 2 , A 2 SA 3 , …, A n -1 SA n , A n SA 1 с общей вершиной S (рис. 1), в которых соседние углы не имеют общий точек, кроме точек общего луча, а несоседние углы не имеют общих точек, кроме общей вершины. Фигура, образованная указанной поверхностью и одной из двух частей пространства, ею ограниченных, называется многогранным углом . Общая вершина S называется вершиной многогранного угла. Лучи SA 1 , …, SA n называются ребрами многогранного угла, а сами плоские углы A 1 SA 2 , A 2 SA 3 , …, A n -1 SA n , A n SA 1 гранями многогранного угла. Многогранный угол обозначается буквами SA 1 … A n , указывающими вершину и точки на его ребрах. В зависимости от числа граней многогранные углы называются трехгранными, четырехгранными, пятигранными (рис. 2) и т. д.

Многогранный угол называется выпуклым , если он является выпуклой фигурой, т.е. вместе с любыми двумя своими точками содержит и соединяющий их отрезок. На рисунке 2 трехгранный и четырехгранный углы выпуклые, а пятигранный угол – нет.
Рассмотрим некоторые свойства треугольников и аналогичные им свойства трехгранных углов.
Свойство 1 (Неравенство треугольника). Каждая сторона треугольника меньше суммы двух других его сторон.
Аналогичным свойством для трехгранных углов является следующее свойство.
Свойство 1 ". Каждый плоский угол трехгранного угла меньше суммы двух других его плоских углов.
Доказательство. Рассмотрим трехгранный угол SABC . Пусть наибольший из его плоских углов есть угол ASC . Тогда выполняются неравенства

ASB ASC < ASC + BSC ;BSC ASC < ASC + ASB .

Таким образом, остается доказать неравенство ASС < ASB + BSC .
Отложим на грани ASC угол ASD , равный ASB , и точку B выберем так, чтобы SB = SD (рис. 3). Тогда треугольники ASB и ASD равны (по двум сторонам и углу между ними) и, следовательно, AB = AD . Воспользуемся неравенством треугольника AC < AB + BC . Вычитая из обеих его частей AD = AB , получим неравенство DC < BC. В треугольниках DSC и BSC одна сторона общая (SC ), SD = SB и DC < BC. В этом случае против большей стороны лежит больший угол и, следовательно, DSC < BSC . Прибавляя к обеим частям этого неравенства угол ASD , равный ASB , получим требуемое неравенство ASС < ASB + BSC .

Следствие 1. Сумма плоских углов трехгранного угла меньше 360 ° .
Доказательство. Пусть SABC – данный трехгранный угол. Рассмотрим трехгранный угол с вершиной A , образованный гранями ABS, ACS и углом BAC . В силу доказанного свойства, имеет место неравенство BAС < BAS + CAS . Аналогично, для трехгранных углов с вершинами B и С имеют место неравенства: ABС < ABS + CBS , ACB < ACS + BCS . Складывая эти неравенства и учитывая, что сумма углов треугольника ABC равна 180 ° , получаем 180 ° < BAS +CAS + ABS + CBS +BCS + ACS = 180 ° - ASB + 180 ° - BSC + 180 ° - ASC . Следовательно, ASB + BSC + ASC < 360 ° .
Следствие 2. Сумма плоских углов выпуклого многогранного угла меньше 360.
Доказательство аналогично предыдущему.
Следствие 3. Сумма двугранных углов трехгранного угла больше 180 ° .
Доказательство. Пусть SABC – трехгранный угол. Выберем какую-нибудь точку P внутри него и опустим из нее перпендикуляры PA 1 , PB 1 , PC 1 на грани (рис. 4).

Плоские углы B 1 PC 1 , A 1 PC 1 , A 1 PB 1 дополняют соответствующие двугранные углы с ребрами SA, SB, SC до 180 ° . Следовательно, сумма этих двугранных углов равна 540 ° - (B 1 PC 1 +A 1 PC 1 + A 1 PB 1 ). Учитывая, что сумма плоских углов трехгранного с вершиной P угла меньше 360 ° , получаем, что сумма двугранных углов исходного трехгранного угла больше 180 ° .
Свойство 2. Биссектрисы треугольника пересекаются в одной точке.
Свойство 2". Биссектральные плоскости двугранных углов трехгранного угла пересекаются по одной прямой.
Доказательство аналогично плоскому случаю. А именно, пусть SABC – трехгранный угол. Биссектральная плоскость двугранного угла SA является ГМТ угла, равноудаленных от его граней ASC и ASB . Аналогично, биссектральная плоскость двугранного угла SB является ГМТ угла, равноудаленных от его граней BSA и BSC . Линия их пересечения SO будет равноудалена от всех граней трехгранного угла и, следовательно, через нее будет проходить биссектральная плоскость двугранного угла SC .
Свойство 3. Серединные перпендикуляры к сторонам треугольника пересекаются в одной точке.
Свойство 3". Плоскости, проходящие через биссектрисы граней трехгранного угла и перпендикулярные этим граням, пересекаются по одной прямой.
Доказательство аналогично доказательству предыдущего свойства.
Свойство 4. Медианы треугольника пересекаются в одной точке.
Свойство 4". Плоскости, проходящие через ребра трехгранного угла и биссектрисы противоположных граней пересекаются по одной прямой.
Доказательство. Рассмотрим трехгранный угол SABC, SA = SB = SC (рис. 5). Тогда биссектрисы SA 1 , SB 1 , SC 1 углов BSC, ASC, ASB являются медианами соответствующих треугольников. Поэтому AA 1 , BB 1 , CC 1 – медианы треугольника ABC . Пусть O – точка их пересечения. Прямая SO содержится во всех трех рассматриваемых плоскостях и, следовательно, является линией их пересечения.

Свойство 5. Высоты треугольника пересекаются в одной точке.
Свойство 5 ". Плоскости, проходящие через ребра трехгранного угла и перпендикулярные противоположным граням, пересекаются по одной прямой.
Доказательство. Рассмотрим трехгранный угол с вершиной S и ребрами a, b, c. Обозначим a 1 , b 1 , c 1 – линии пересечения граней с плоскостями, проходящими через соответствующие ребра и перпендикулярные этим граням (рис. 6). Зафиксируем точку C на ребре c и опустим из нее перпендикуляры CA 1 и CB 1 на прямые a 1 и b 1 . Обозначим A и B пересечения прямых CA 1 и CB 1 с прямыми a и b . Тогда SA 1 является проекцией AA 1 на грань BSC . Так как BC перпендикулярна SA 1 , то она перпендикулярна и AA 1 . Аналогично, AC перпендикулярна BB 1 . Таким образом, AA 1 и BB 1 являются высотами треугольника ABC . Пусть O – точка их пересечения. Плоскости, проходящие через прямые a и a 1 , b и b 1 перпендикулярны плоскости ABC и, следовательно, линия их пересечения SO перпендикулярна ABC . Значит, SO перпендикулярна AB . С другой стороны, CO перпендикулярна AB . Поэтому плоскость, проходящая через ребро c и SO будет перпендикулярна противоположной грани.
Свойство 6 (теорема синусов). В треугольнике ABC со сторонами a, b, c соответственно, имеют место равенства a : sin A = b : sin B = c : sin C.
Свойство 6". Пусть a , b , g - плоские углы трехгранного угла, a, b, c – противолежащие им двугранные углы. Тогда sin a : sin a = sin b : sin b = sin g : sin c .
Доказательство. Пусть SABC – трехгранный угол. Опустим из точки C перпендикуляр CC 1 на плоскость ASB и перпендикуляр CA 1 на ребро SA (рис. 7). Тогда угол CA 1 C 1 будет линейным углом двугранного угла a . Поэтому CC 1 = CA 1 sin a = SC sin b sin a. Аналогично показывается, что CC 1 = CB 1 sin b = SC sin a sin b. Следовательно, имеет место равенство sin b sin a = sin a sin b и, значит, равенство sin a : sin a = sin b : sin b . Аналогичным образом доказывается, что имеет место равенство sin b : sin b = sin g : sin c .

Свойство 7. Если в выпуклый четырехугольник можно вписать окружность, то суммы противоположных сторон равны.
Свойство 7". Если в выпуклый четырехгранный угол можно вписать сферу, то суммы противоположных плоских углов равны.

Литература
1. Адамар Ж. Элементарная геометрия. Часть II. Стереометрия. – М.: Учпедгиз, 1938.
2. Перепелкин Д.И. Курс элементарной геометрии. Часть II. Геометрия в пространстве. – М.-Л.: Гостехиздат, 1949.
3. Энциклопедия элементарной математики. Книга IV. Геометрия. - М.; 1963.
4. Смирнова И.М. В мире многогранников. – М.: Просвещение, 1995.

Двугранным углом называется фигура, образованная двумя полуплоскостями с общей ограничивающей их прямой. Полуплоскости называются гранями, а ограничивающая их прямая - ребром двугранного угла.

На рисунке 142 изображен двугранный угол с ребром а и гранями а и (3.

Плоскость, перпендикулярная ребру двугранного угла, пересекает его грани по двум полупрямым. Угол, образованный этими полупрямыми, называется линейным углом двугранного угла. За меру двугранного угла принимается мера соответствующего ему линейного угла. Если через точку А ребра а двугранного угла провести плоскость у, перпендикулярную этому ребру, то она пересечет плоскости а и (3 по полупрямым (рис. 142); линейный угол данного двугранного угла. Градусная мера этого линейного угла является градусной мерой двугранного угла. Мера двугранного угла не зависит от выбора линейного угла.

Трехгранным углом называется фигура, составленная из трех плоских углов (рис. 143). Эти углы называются гранями трехгранного угла, а их стороны - ребрами. Общая вершина плоских углов называется вершиной трехгранного угла. Двугранные углы, образуемые гранями и их продолжениями, называются двугранными углами трехгранного угла.

Аналогично определяется понятие многогранного угла как фигуры, составленной из плоских углов (рис. 144). Для многогранного угла определяются понятия граней, ребер и двугранных углов так же, как и для трехгранного угла.

Многогранником называют тело, поверхность которого состоит из конечного числа плоских многоугольников (рис. 145).

Многогранник называется выпуклым, если он расположен по одну сторону плоскости каждого многоугольника на его поверхности (рис. 145, а, б). Общая часть такой плоскости и поверхности выпуклого многогранника называется гранью. Грани выпуклого многогранника - выпуклые многоугольники. Стороны граней называются ребрами многогранника, а вершины - вершинами многогранника.

Фигура, образованная тремя лучами, исходящими из одной точки О и не лежащими в одной плоскости, и тремя частями плоскостей, заключенных между этими лучами, называется трехгранным углом (рис. 352).

Точка О называется вершиной угла, лучи а, b, с - его ребрами, части плоскостей . Грани суть плоские углы, называемые также плоскими углами данного трехгранного угла. Углы между плоскими гранями называются двугранными углами данного трехгранного угла.

Теорема 1. В трехгранном угле каждый плоский угол меньше суммы двух других.

Доказательство. Достаточно доказать теорему для наибольшего из плоских углов. Пусть наибольший плоский угол трехгранного угла на рис. 353. Построим в плоскости угол , равный углу его сторона b пройдет внутри угла угол наибольший из плоских углов!).

Отложим на прямых с и b какие-либо равные отрезки Проведем через точки произвольную плоскость, пересекающую лучи а и b в точках N и М соответственно.

Треугольники равны, как имеющие равные углы, заключенные между равными сторонами. Покажем, что угол с вершиной О в больше угла с той же вершиной в . Действительно, эти углы заключены между парами равных сторон, третья же сторона больше в треугольнике

Отсюда видно, что сумма двух плоских углов больше третьего плоского угла что и требовалось доказать.

Теорема 2. Сумма плоских углов трехгранного угла меньше четыре прямых.

Доказательство. Возьмем три точки А, В и С на ребрах трехгранного угла и проведем через них секущую плоскость, как показано на рис. 354. Сумма углов треугольника ABC равна Следовательно, сумма шести углов ОАС, ОАВ, ОСА, ОСВ, ОВС, ОВА больше, чем как по предыдуще теореме . Но сумма углов трех треугольников ОАВ, ОВС, ОСА в гранях трехгранного угла равна . Таким образом, на долю плоских углов трехгранного угла остается меньше четырех прямых: . Эта сумма может быть сколь угодно малой («трехгранный шпиль») или сколь угодно близкой к если уменьшать высоту пирамиды SABC на рис. 355, сохраняя ее основание, то сумма плоских углов при вершине S будет стремиться к

Сумма двугранных углов трехгранного угла также имеет границы. Ясно, что каждый из двугранных углов и потому сумма их менее . Для той же пирамиды на рис. 355 эта сумма по мере уменьшения высоты пирамиды приближается к своей границе Можно также показать, что сумма эта всегда хотя может отличаться от сколь угодно мало.

Таким образом, для плоских и двугранных углов трехгранного угла имеют место неравенства

Имеется существенное сходство между геометрией треугольника на плоскости и геометрией трехгранного угла. При этом можно проводить аналогию между углами треугольника и двугранными углами трехгранного угла, с одной стороны, и между сторонами треугольника и плоскими углами трехгранного угла - с другой. Например, при указанной замене понятий сохраняют силу теоремы о равенстве треугольников. Приведем соответствующие формулировки параллельно:

Однако два трехгранных угла, у которых равны соответственные двугранные углы, равны между собой. Между тем два треугольника, углы которых соответственно равны, подобны, но не обязательно равны. Для трехгранных углов, как и для треугольников, ставится задача решения трехгранного угла, т. е. задача отыскания одних его элементов по другим заданным. Приведем пример подобной задачи.

Задача. Даны плоские углы трехгранного угла. Найти его двугранные углы.

Решение. Отложим на ребре а отрезок и проведем нормальное сечение ABC двугранного угла а. Из прямоугольного треугольника ОАВ находим Также имеем

Для ВС находим по теореме косинусов примененной к треугольнику ВАС (для краткости плоские углы обозначаем просто ab, ас, bс, двугранные - а, b, с)

Теперь применим теорему косинусов к треугольнику ВОС:

Отсюда находим

и аналогично

По этим формулам можно найти двугранные углы, зная плоские углы. Отметим еще без доказательства замечательное соотношение

называемое теоремой синусов.

Объяснение глубокой аналогии между геометрией трехгранного угла и геометрией треугольника нетрудно получить, если провести следующее построение. Поместим в вершину трехгранного угла О центр сферы единичного радиуса (рис. 357).

Тогда ребра пересекут поверхность сферы втрехточках А, В, С, грани угла высекут на сфере дуги больших кругов АС, АВ, ВС. На сфере образуется фигура ABC, называемая сферическим треугольником. Дуги («стороны» треугольника) измеряются плоскими углами трехгранного угла, углы при вершинах суть плоские углы двугранных углов. Поэтому решение трехгранных углов есть не что иное, как решение сферических треугольников, которое составляет предмет сферической тригонометрии. Соотношения (243.1) и (243.2) относятся к числу основных соотношений сферической тригонометрии. Сферическая тригонометрия имеет важное значение для астрономии. Таким образом, теория трехгранных углов есть теория сферических треугольников и потому во многом сходна с теорией треугольника на плоскости. Различие этих теорий состоит в том, что: 1) у сферического треугольника и углы и стороны измеряются в угловой мере, поэтому, напрнмер, в теореме синусов фигурируют не стороны, а синусы сторон АВ, АС, ВС;

№1 Дата05.09.14

Предмет Геометрия

Класс 11

Тема урока: Понятие о многогранном угле. Трехгранный угол.

Цели урока:

    ввести понятия: “трехгранные углы”, “многогранные углы”, “многогранник”;

    ознакомить учащихся с элементами трехгранного и многогранного углов, многогранника, а также определениями выпуклого многогранного угла и свойствами плоских углов многогранного угла;

    продолжить работу по развитию пространственных представлений и пространственного воображения, а также логического мышления учащихся.

Тип урока: изучения нового материала

ХОД УРОКА

1. Организационный момент.

Приветствие учащихся, проверка готовности класса к уроку, организация внимания учащихся, раскрытие общих целей урока и плана его проведения.

2. Формирование новых понятий и способов действия.

Задачи: Обеспечить восприятие, осмысление и запоминание учащимися изучаемого материала. Обеспечить усвоение учащимися методики воспроизведения изученного материала, содействовать философскому осмыслению усваиваемых понятий, законов, правил, формул. Установить правильность и осознанность учащимися изученного материала, выявить пробелы первичного осмысления, провести коррекцию. Обеспечить соотнесение учащимися своего субъективного опыта с признаками научного знания.

Пусть даны три луча а, b и с с общим началом точкой О (рис. 1.1). Эти три луча не обязательно лежат в одной плоскости. На рисунке 1.2 лучи b и с лежат в плоскости р, а луч а не лежит в этой плоскости.

Лучи а, b и с попарно задают три выделенных дугами плоских угла (рис. 1.3).

Рассмотрим фигуру, состоящую из трех указанных выше углов и части пространства, ограниченной этими плоскими углами. Эту пространственную фигуру называют трехгранным углом (рис. 2).

Лучи а, b и с называются ребрами трехгранного угла, а углы: = AOC, = AOB,

= BOC , ограничивающие трехгранный угол, - его гранями. Эти углы-грани образуют поверхность трехгранного угла. Точка О называется вершиной трехгранного угла. Трехгранный угол можно обозначать так: OABC

Рассмотрев внимательно все многогранные углы, изображенные на рисунке 3, мы можем заключить, что у каждого из многогранных углов одинаковое число ребер и граней:

4 грани и одна вершина;

    у пятигранного угла - 5 ребер, 5 граней и одна вершина;


  • у шестигранного угла - 6 ребер, 6 граней и одна вершина и т. д.

Многогранные углы бывают выпуклыми и невыпуклыми.

Представьте себе, что мы взяли четыре луча с общим началом, как на рисунке 4. В этом случае мы получили невыпуклый многогранный угол.

Определение 1. Многогранный угол называется выпуклым, если он лежит по одну сторону от плоскости каждой его грани.

Другими словами, выпуклый многогранный угол всегда можно положить любой его гранью на некоторую плоскость. Вы видите, что в случае, изображенном на рисунке 4, так поступить не всегда удается. Четырехгранный угол, изображенный на рисунке 4, является невыпуклым.

Отметим, что в нашем учебнике, если мы говорим “многогранный угол”, то имеем в виду, что он выпуклый. Если рассматриваемый многогранный угол невыпуклый, об этом будет сказано отдельно.

    Свойства плоских углов многогранного угла

Теорема 1. Каждый плоский угол трехгранного угла меньше суммы двух других плоских углов.

Теорема 2. Сумма величин всех плоских углов выпуклого многогранного угла меньше 360°.

3. Применение. Формирование умений и навыков.

Задачи: Обеспечить применение учащимися знаний и способов действий, которые им необходимы для СР, создать условия для выявления школьниками индивидуальных способов применения изученного.

6.Этап информации о домашнем задании.

Задачи: Обеспечить понимание учащимися цели, содержания и способов выполнения домашнего задания.

§1(1.1, 1.2) стр. 4, № 9.

7.Подведение итогов урока.

Задача: Дать качественную оценку работы класса и отдельных учащихся.

8.Этап рефлексии.

Задачи: Инициировать рефлексию учащихся на самооценку своей деятельности. Обеспечить усвоение учащимися принципов само регуляции и сотрудничества.

Беседа по вопросам:

Что тебе на уроке было интересно?

Что не понятно?

На что обратить внимание учителю на следующем уроке?

Как ты оценишь свою работу на уроке?



Последние материалы раздела:

Урок
Урок "теорема- обратная теореме пифагора"

Теорема Пифагора — одна из основополагающих теорем евклидовой геометрии, устанавливающая соотношение между сторонами прямоугольного треугольника...

Презентация на тему
Презентация на тему "смещение химического равновесия"

«Биологическое окисление» - Окислительное фосфорилирование. Концентрация АТФ. Энергия. АТФ. Катализаторы. «Энергетическая валюта» клетки. ПВК....

Известные учёные Беларуси
Известные учёные Беларуси

От новой диагностики болезней стероидных гормонов до материалов для аккумуляторов, транзисторов и электроники. Национальная академия наук назвала...