§5. Построения с помощью других инструментов

Известная с античных времён.

В задачах на построение возможны следующие операции:

  • Выбрать произвольную точку на плоскости, точку на одной из построенных линий или точку пересечения двух построенных линий.
  • С помощью циркуля провести окружность с центром в построенной точке с радиусом, равным расстоянию между двух построенных точек.
  • С помощью линейки провести прямую, проходящую через две построенные точки.

Простой пример

Задача. С помощью циркуля и линейки разбить данный отрезок AB на две равные части. Одно из решений показано на рисунке:

  • Циркулем проводим окружность с центром в точке A радиусом AB .
  • Проводим окружность с центром в точке B радиусом AB .
  • Находим точки пересечения P и Q двух построенных окружностей.
  • Линейкой проводим отрезок, соединяющий точки P и Q .
  • Находим точку пересечения AB и PQ . Это - искомая середина отрезка AB .

Правильные многоугольники

Античным геометрам были известны способы построения правильных для n=2^k\,\! , 3\cdot 2^k , 5\cdot 2^k и 3\cdot5\cdot2^k .

Неразрешимые задачи

Следующие три задачи на построение были поставлены ещё в античности:

  • - разбить произвольный угол на три равные части.
  • - построить отрезок, являющийся ребром куба в два раза большего объёма, чем куб с данным ребром.
  • - построить квадрат, равный по площади данному кругу.

Построения одним циркулем и одной линейкой

По теореме Мора-Маскерони (Mohr–Mascheroni theorem) с помощью одного циркуля можно построить любую фигуру, которую можно построить циркулем и линейкой. При этом прямая считается построенной, если на ней заданы две точки.

Легко заметить, что с помощью одной линейки можно проводить только проективно-инвариантные построения (см., например, в теории поверхностей ).

В частности, невозможно даже разбить отрезок на две равные части. Но при наличии на плоскости заранее проведённой окружности с отмеченным центром с помощью линейки можно провести те же построения, что и циркулем и линейкой (теорема Понселе-Штейнера (Poncelet-Steiner theorem), .

См.также

  • - программа, позволяющая делать построения с помощью циркуля и линейки.

Литература

Муниципальное бюджетное общеобразовательное учреждение

средняя общеобразовательная школа №34 с углубленным изучением отдельных предметов

МАН, физико-математическая секция

«Геометрические построения с помощью циркуля и линейки»

Выполнила: ученица 7 «А» класса

Батищева Виктория

Руководитель: Колтовская В.В.

Воронеж, 2013

3. Построение угла равного данному.

Проведем произвольную окружность с центром в вершине А данного угла (рис.3). Пусть В и С - точки пересечения окружности со сторонами угла. Радиусом АВ проведем окружность с центром в точке О-начальной точке данной полупрямой. Точку пересечения этой окружности с данной полупрямой обозначим С 1 . Опишем окружность с центром С 1 и Рис.3

радиусом ВС. Точка В 1 пересечения построенных окружностей в указанной полуплоскости лежит на стороне искомого угла.

6. Построение перпендикулярных прямых.

Проводим окружность с произвольным радиусом r с центром в точке O рис.6. Окружность пересекает прямую в точках A и B. Из точек A и B проводим окружности с радиусом AB. Пусть тоска С – точка пересечения этих окружностей. Точки А и В мы получили на первом шаге, при построении окружности с произвольным радиусом.

Искомая прямая проходит через точки С и О.


Рис.6

Известные задачи

1. Задача Брахмагупты

Построить вписанный четырехугольник по четырем его сторонам. Одно из решений использует окружность Аполлония. Решим задачу Аполлония, используя аналогию между трехокружником и треугольником. Как мы находим окружность, вписанную в треугольник: строим точку пересечения биссектрис, опускаем из нее перпендикуляры на стороны треугольника, основания перпендикуляров (точки пересечения перпендикуляра со стороной, на которую он опущен) и дают нам три точки, лежащие на искомой окружности. Проводим окружность через эти три точки – решение готово. Точно также мы поступим с задачей Аполлония.

2. Задача Аполлония

Построить с помощью циркуля и линейки окружность, касающуюся трех данных окружностей. По легенде, задача сформулирована Аполлонием Пергским примерно в 220 г. до н. э. в книге «Касания», которая была потеряна, но была восстановлена в 1600 г. Франсуа Виетом, «галльским Аполлонием», как его называли современники.

Если ни одна из заданных окружностей не лежит внутри другой, то эта задача имеет 8 существенно различных решений.


Построение правильных многоугольников.

П

равильный
(или равносторонний ) треугольник - это правильный многоугольник с тремя сторонами, первый из правильных многоугольников. Все стороны правильного треугольника равны между собой, а все углы равны 60°. Чтобы построить равносторонний треугольник нужно разделить окружность на 3 равные части. Для этого необходимо провести дугу радиусом R этой окружности лишь из одного конца диаметра, получим первое и второе деление. Третье деление находится на противоположном конце диаметра. Соединив эти точки, получим равносторонний треугольник.

Правильный шестиугольник можно построить с помощью циркуля и линейки. Ниже приведён метод построения через деление окружности на 6 частей. Используем равенство сторон правильного шестиугольника радиусу описанной окружности. Из противоположных концов одного из диаметров окружности описываем дуги радиусом R. Точки пересечения этих дуг с заданной окружностью разделят её на 6 равных частей. Последовательно соединив найденные точки, получают правильный шестиугольник.

Построение правильного пятиугольника.

П
равильный пятиугольник может быть построен с помощью циркуля и линейки, или вписыванием его в заданную окружность, или построением на основе заданной стороны. Этот процесс описан Евклидом в его «Началах» около 300 года до н. э.

Вот один из методов построения правильного пятиугольника в заданной окружности:

    Постройте окружность, в которую будет вписан пятиугольник и обозначьте её центр как O . (Это зелёная окружность на схеме справа).

    Выберите на окружности точку A , которая будет одной из вершин пятиугольника. Постройте прямую через O и A .

    Постройте прямую перпендикулярно прямой OA , проходящую через точку O . Обозначьте одно её пересечение с окружностью, как точку B .

    Постройте точку C посередине между O и B .

    C через точку A . Обозначьте её пересечение с прямой OB (внутри первоначальной окружности) как точку D .

    Проведите окружность с центром в A через точку D, пересечение данной окружности с оригинальной (зелёной окружностью) обозначьте как точки E и F .

    Проведите окружность с центром в E через точку A G .

    Проведите окружность с центром в F через точку A . Обозначьте её другое пересечение с первоначальной окружностью как точку H .

    Постройте правильный пятиугольник AEGHF .

Неразрешимые задачи

Следующие три задачи на построение были поставлены ещё в античности:

    Трисекция угла - разбить произвольный угол на три равные части.

Иначе говоря, необходимо построить трисектрисы угла - лучи, делящие угол на три равные части. П. Л. Ванцель доказал в 1837 году, что задача разрешима только тогда, когда например, трисекция осуществима для углов α = 360°/n при условии, что целое число n не делится на 3. Тем не менее, в прессе время от времени публикуются (неверные) способы осуществления трисекции угла циркулем и линейкой.

    Удвоение куба - классическая античная задача на построение циркулем и линейкой ребра куба, объём которого вдвое больше объёма заданного куба.

В современных обозначениях, задача сводится к решению уравнения . Всё сводится к проблеме построения отрезка длиной . П. Ванцель доказал в 1837 году, что эта задача не может быть решена с помощью циркуля и линейки.

    Квадратура круга - задача, заключающаяся в нахождении построения с помощью циркуля и линейки квадрата, равновеликого по площади данному кругу .

Как известно, с помощью циркуля и линейки можно выполнить все 4 арифметических действия и извлечение квадратного корня; отсюда следует, что квадратура круга возможна в том и только в том случае, если с помощью конечного числа таких действий можно построить отрезок длины π. Таким образом, неразрешимость этой задачи следует из неалгебраичности (трансцендентности) числа π, которая была доказана в 1882 году Линдеманом.

Другая известная неразрешимая с помощью циркуля и линейки задача - построение треугольника по трём заданным длинам биссектрис .

Причём эта задача остаётся неразрешимой даже при наличии трисектора.

Только в XIX веке было доказано, что все три задачи неразрешимы при использовании только циркуля и линейки. Вопрос возможности построения полностью решён алгебраическими методами, основанными на теории Галуа.

А ЗНАЕТЕ ЛИ ВЫ, ЧТО...

(из истории геометрических построений)


Когда-то в построение правильных многоугольников вкладывали мистический смысл.

Так, пифагорейцы, последователи религиозно-философского учения, основанного Пифагором, и жившие в древней Греции (V I-I V вв. до н. э.), приняли в качестве знака своего союза звездчатый многоугольник, образованный диагоналями правильного пятиугольника.

Правила строгого геометрического построения некоторых правильных многоугольников изложены в книге «Начала» древнегреческого математика Евклида, жившего в III в. до н.э. Для выполнения этих построений Евклид предлагал пользоваться только линейкой и циркулем, который в то время был без шарнирного устройства соединения ножек (такое ограничение в инструментах было непреложным требованием античной математики).

Правильные многоугольники нашли широкое применение и в античной астрономии. Если Евклида построение этих фигур интересовало с точки зрения математики, то для древнегреческого астронома Клавдия Птолемея (около 90 - 160 г. н. э.) оно оказалось необходимым как вспомогательное средство при решении астрономических задач. Так, в 1-й книге «Альмагесты» вся десятая глава посвящена построению правильных пяти- и десятиугольников.

Однако помимо чисто научных трудов, построение правильных многоугольников было неотъемлемой частью книг для строителей, ремесленников, художников. Умение изображать эти фигуры издавна требовалось и в архитектуре, и в ювелирном деле, и в изобразительном искусстве.

В «Десяти книгах о зодчестве» римского архитектора Витрувия (жившего примерно в 63 -14 гг. до н. э.) говорится, что городские стены должны иметь в плане вид правильного многоугольника, а башни крепости «следует делать круглыми или многоугольными, ибо четырехугольник скорее разрушается осадными орудиями».

Планировка городов очень интересовала Витрувия, который считал, что нужно спланировать улицы так, чтобы вдоль них не дули основные ветры. Предполагалось, что таких ветров восемь и что они дуют в определенных направлениях.

В эпоху Возрождения построение правильных многоугольников, и в частности пятиугольника, представляло не простую математическую игру, а являлось необходимой предпосылкой для построения крепостей.

Правильный шестиугольник явился предметом специального исследования великого немецкого астронома и математика Иоганна Кеплера (1571-1630), о котором он рассказывает в своей книге «Новогодний подарок, или о шестиугольных снежинках». Рассуждал о причинах того, почему снежинки имеют шестиугольную форму, он отмечает, в частности, следующее: «...плоскость можно покрыть без зазоров лишь следующими фигурами: равносторонними треугольниками, квадратами и правильными шестиугольниками. Среди этих фигур правильный шестиугольник покрывает наибольшую площадь»

0дним из наиболее известных ученых, занимавшихся геометрическими построениями, был великий немецкий художник и математик Альбрехт Дюрер (1471 -1528), который посвятил им значительную часть своей книги «Руководства...». Он предложил правила построения правильных многоугольников с 3. 4, 5... 16-ю сторонами. Методы деления окружности, предложенные Дюрером, не универсальны, в каждом конкретном случае используется индивидуальный прием.

Дюрер применял методы построения правильных многоугольников в художественной практике, например, при создании разного рода орнаментов и узоров для паркета. Наброски таких узоров были сделаны им во время поездки в Нидерланды, где паркетные полы встречались во многих домах.

Дюрер составлял орнаменты из правильных многоугольников, которые соединены в кольца (кольца из шести равносторонних треугольников, четырех четырехугольников, трех или шести шестиугольников, четырнадцати семиугольников, четырех восьмиугольников).

Заключение

Итак, геометрические построения - это способ решения задачи, при котором ответ получают графическим путем. Построения выполняют чертежными инструментами при максимальной точности и аккуратности работы, так как от этого зависит правильность решения.

Благодаря этой работе я познакомилась с историей возникновения циркуля, подробнее познакомилась с правилами выполнения геометрических построений, получила новые знания и применила их на практике.
Решение задач на построение циркулем и линейкой – полезное времяпровождение, позволяющее по-новому посмотреть на известные свойства геометрических фигур и их элементов. В данной работе рассмотрены наиболее актуальные задачи, связанные с геометрическими построениями с помощью циркуля и линейки. Рассмотрены основные задачи и даны их решения. Приведенные задачи имеют значительный практический интерес, закрепляют полученные знания по геометрии и могут использоваться для практических работ.
Таким образом, цель работы достигнута, поставленные задачи выполнены.

В задачах на построение будем рассматривать построение геометрической фигуры, которое можно выполнить с помощью линейки и циркуля.

С помощью линейки можно провести:

    произвольную прямую;

    произвольную прямую, проходящую через данную точку;

    прямую, проходящую через две данные точки.

С помощью циркуля можно описать из данного центра окружность данного радиуса.

Циркулем можно отложить отрезок на данной прямой от данной точки.

Рассмотрим основные задачи на построение.

Задача 1. Построить треугольник с данными сторонами а, b, с (рис.1).

Решение. С помощью линейки проведем произвольную прямую и возьмем на ней произвольную точку В. Раствором циркуля, равным а, описываем окружность с центром В и радиусом а. Пусть С - точка ее пересечения с прямой. Раствором циркуля, равным с, описываем окружность из центра В, а раствором циркуля, равным b - окружность из центра С. Пусть А - точка пересечения этих окружностей. Треугольник ABC имеет стороны, равные a, b, c.

Замечание. Чтобы три отрезка прямой могли служить сторонами треугольника, необходимо, чтобы больший из них был меньше суммы двух остальных (а < b + с).

Задача 2.

Решение. Данный угол с вершиной А и луч ОМ изображены на рисунке 2.

Проведем произвольную окружность с центром в вершине А данного угла. Пусть В и С - точки пересечения окружности со сторонами угла (рис.3, а). Радиусом АВ проведем окружность с центром в точке О - начальной точке данного луча (рис.3, б). Точку пересечения этой окружности с данным лучом обозначим С 1 . Опишем окружность с центром С 1 и радиусом ВС. Точка В 1 пересечения двух окружностей лежит на стороне искомого угла. Это следует из равенства Δ ABC = Δ ОВ 1 С 1 (третий признак равенства треугольников).

Задача 3. Построить биссектрису данного угла (рис.4).

Решение. Из вершины А данного угла, как из центра, проводим окружность произвольного радиуса. Пусть В и С - точки ее пересечения со сторонами угла. Из точек В и С тем же радиусом описываем окружности. Пусть D - точка их пересечения, отличная от А. Луч AD делит угол А пополам. Это следует из равенства Δ ABD = Δ ACD (третий признак равенства треугольников).

Задача 4. Провести серединный перпендикуляр к данному отрезку (рис.5).

Решение. Произвольным, но одинаковым раствором циркуля (большим 1/2 АВ) описываем две дуги с центрами в точках А и В, которые пересекутся между собой в некоторых точках С и D. Прямая CD будет искомым перпендикуляром. Действительно, как видно из построения, каждая из точек С и D одинаково удалена от А и В; следовательно, эти точки должны лежать на серединном перпендикуляре к отрезку АВ.

Задача 5. Разделить данный отрезок пополам. Решается так же, как и задача 4 (см. рис.5).

Задача 6. Через данную точку провести прямую, перпендикулярную данной прямой.

Решение. Возможны два случая:

1) данная точка О лежит на данной прямой а (рис. 6).

Из точки О проводим произвольным радиусом окружность, пересекающую прямую а в точках А и В. Из точек А и В тем же радиусом проводим окружности. Пусть О 1 - точка их пересечения, отличная от О. Получаем ОО 1 ⊥ AB. В самом деле, точки О и О 1 равноудалены от концов отрезка АВ и, следовательно, лежат на серединном перпендикуляре к этому отрезку.

Геометрические задачи на построение

С помощью циркуля и линейки

учащаяся 8-А класса

Руководитель: Москаева В.Н.,

учитель математики

Нижний Новгород

Введение

Наглядность, воображение принадлежат больше искусству, строгая логика – привилегия науки. Сухость точного вывода и живость наглядной картины – «лёд и пламень не столь различны меж собой». Геометрия соединяет в себе эти две противоположности.

А. Д. Александров

Собираясь в школу, мы не забываем положить в портфель циркуль, линейку и транспортир. Эти инструменты помогают выполнить грамотно чертежи и красиво нарисовать. Данные инструменты используют инженеры, архитекторы, рабочие, конструкторы одежды, обуви, строители, ландшафтные дизайнеры. Хотя существуют компьютеры, но на стройке, в саду их пока не используешь.

Машина рисует мгновенно в течение нескольких секунд. Математик должен потратить довольно много времени, чтобы на языке, понятном машине объяснить ей то, что она должна сделать - написать программу и ввести её в машину, поэтому конструкторы нередко предпочитают работать с простейшими и древнейшими инструментами – циркулем и линейкой.

Что может быть проще? Гладкая дощечка с ровным краем - линейка, две заостренные палочки, связанные на одном конце - циркуль. С помощью линейки через две заданные точки проводят прямую. С помощью циркуля проводят окружности с данным центром и данного радиуса, отложить отрезок, равный данному.

Циркуль и линейка известны более 3 тысячи лет были уже известны, 200-300 лет назад их украшали орнаментами и узорами. Но, несмотря на это они и сейчас исправно служат нам. Простейших инструментов достаточно для огромного количества построений. Древние греки думали, что возможно любое разумное построение выполнить этими инструментами, пока не обнаружили три знаменательные задачи древности: «квадратуру круга», «трисекцию угла», «удвоение куба».

Поэтому считаю тему моей работы современной и важной для деятельности человека во многих сферах деятельности человека.

Все прекрасно знают, что математика используется в самых разных профессиях и жизненных ситуациях. Математика – предмет непростой. И геометрию большинство учащихся называет «трудной». Задачи на построение отличаются от традиционных геометрических задач.

Решение задач на построение развивает геометрическое мышление гораздо полнее и острее, чем решение задач на вычисление, и способно вызвать увлечение работой, которое приводит к усилению любознательности и к желанию расширить и углубить изучение геометрии.

Несмотря на богатое историческое прошлое, проблема решения задач на построение остается актуальной и в 21-м веке. В наше время бурно развиваются компьютерные технологии с применением графических редакторов для рисования геометрических объектов. Средства создания геометрических объектов изменились в связи с появлением новых компьютерных технологий. Однако, как и в глубокой древности, основными элементами при построении геометрических объектов остаются окружность и прямая, другими словами циркуль и линейка. С появлением новых компьютерных технологий возникли новые проблемы построения с использованием тех же объектов - прямой и окружности. Вот почему проблема решения задач на построение становится ещё более актуальной.

Программа по геометрии предполагает изучение лишь простейших приемов и методов построений. Но применение этих приемов часто вызывает затруднения. Поэтому, объектом моего исследования являются геометрические фигуры, построенные с помощью циркуля и линейки.

Цель моей работы: рассмотреть различные способы построения геометрических фигур с помощью циркуля и линейки.

Методы исследования:

ü Анализ уже существующих способов построений

ü Поиск новых способов, простых в применении (ГМТ и построения Штейнера)

Задачи:

ü получить более полное представление о различных способах построений

ü проследить за развитием этого фрагмента геометрии в истории математики

ü продолжить развитие исследовательских умений.

Из истории геометрического построения циркулем и линейкой.

Традиционное ограничение орудий геометрических построений восходит к глубокой древности. В своей книге "Начала" Евклид (III век до н. э.) строго придерживается геометрических построений, выполняемых циркулем и линейкой, хотя названий инструментов он нигде не упоминает. Ограничения, по-видимому, были связаны с тем, что эти инструменты заменили собой веревку, первоначально служившую как для проведения прямых, так и для описания окружностей. Но многие историки-математики объясняют произведенный Евклидом отбор материала тем, что он, следуя Платону и пифагорейцам, считал только прямую и круг "совершенными" линиями.

Искусство построения геометрических фигур было в высокой степени развито в Древней Греции. Древнегреческие математики еще 3000 лет назад проводили свои построения с помощью двух приборов: гладкой дощечки с ровным краем – линейки и двух заостренных палок, связанных на одном конце – циркуля. Однако этих простейших инструментов оказалось достаточно для выполнения огромного множества различных построений. Древним грекам даже казалось, что любое разумное построение можно совершить этими инструментами, пока они не столкнулись с тремя знаменитыми впоследствии задачами.

Они издавна преобразовывали любую прямолинейную фигуру с помощью циркуля и линейки в произвольную прямолинейную фигуру, равновеликую ей. В частности, всякая прямолинейная фигура преобразовывалась в равновеликий ей квадрат. Поэтому понятно, что появилась мысль обобщить эту задачу: построить с помощью циркуля и линейки такой квадрат, площадь которого была бы равна площади данного круга. Это задача получила название квадратуры круга. Следы этой задачи можно усмотреть еще в древнегреческих и вавилонских памятниках второго тысячелетия до н.э. Однако ее непосредственная постановка встречается в греческих сочинениях V века до н.э.

Еще две задачи древности привлекали внимание выдающихся ученых на протяжении многих веков. Это задача об удвоении куба. Она состоит в построении циркулем и линейкой куба, имеющего объем вдвое больший, чем объем данного куба. Ее появление связывают с легендой, что на острове Делос в Эгейском море оракул, чтобы избавить жителей от эпидемии чумы, повелел удвоить алтарь, имевший форму куба. И третья задача трисекции угла о делении угла на три равные части с помощью циркуля и линейки .

Эти три задачи, так называемые 3 знаменитые классические задачи древности, привлекали внимание выдающихся математиков на протяжении двух тысячелетий. И лишь в середине XIX века была доказана их неразрешимость, то есть невозможность указанных построений лишь с использованием только циркуля и линейки. В математике это были первые результаты о неразрешимости задач, когда средства решения указаны. Они были получены средствами не геометрии, а алгебры (с помощью перевода этих задач на язык уравнений), что еще раз подчеркнуло единство математики. Не поддаваясь решению, эти проблемы обогатили математику значительными результатами, привели к созданию новых направлений математической мысли.

Еще одной интереснейшей задачей на построение с помощью циркуля и линейки является задача построения правильного многоугольника с заданным числом сторон. Древние греки умели строить правильный треугольник, квадрат, правильные пятиугольник и 15-угольник, а также все многоугольники, которые получаются из них путем удвоения сторон, и только их. Лишь в 1796 году великий немецкий математик К.Ф.Гаусс открыл способ построения правильного 17-угольника при помощи циркуля и линейки и указал все значения N, при которых возможно построение правильного N-угольника указанными средствами. Первокурсник Геттингенского университета Карл Гаусс решил задачу, перед которой математическая наука пасовала более 2 с лишним тысяч лет. Таким образом, была доказана невозможность построения с помощью циркуля и линейки правильных 7, 9, 11, 13, 18, 21, 22, 23 и т.д. угольников.

Теория построения при помощи циркуля и линейки получила свое дальнейшее развитие. Был получен ответ на вопрос: можно ли решить задачу с помощью только одного из двух рассматриваемых инструментов, и достаточно неожиданный. Независимо друг от друга, датчанин Г.Мор в 1672 году и итальянец Л.Маскерони в 1797 году доказали, что любая задача на построение, разрешаемая циркулем и линейкой, может быть точно решена с помощью только одного циркуля. Это кажется невероятным, но это так. А в XIX веке было доказано, что любое построение, выполняемое с помощью циркуля и линейки можно провести лишь с помощью одной линейки, при условии, что в плоскости построения задана некоторая окружность и указан ее центр.

3. Простейшие задачи на построение геометрических фигур с помощью циркуля и линейки

Рассмотрим основные (элементарные) построения, которые наиболее часто встречаются в практике решения задач на построение. Задачи такого рода рассматриваются уже в первых главах школьного курса.

Построение 1. Построение отрезка, равного данному.

Дано: отрезок длины а.

Построить: отрезок АВ длины а.

Построение:

Построение 2. Построение угла, равного данному.

Дано: ∟AOB.

Построить: ∟ KMN, равный ∟ АОВ.

Построение:

Построение 3. Деление отрезка пополам (построение середины отрезка).

Дано: отрезок АВ.

Построить: точку О – середину АВ.

Построение:

Построение 4. Деление угла пополам (построение биссектрисы угла).

Дано: ∟ АВС.

Построить: ВD – биссектрису ∟АВС.

Построение:

Построение 5. Построение перпендикуляра к данной прямой, проходящей через данную точку.

а) Дано: прямая а, точка A а.

Построить:

прямой а.

Построение :

б) Дано: прямая а, точка A a.

Построить: прямую, проходящую через точку А, перпендикулярно к

прямой а.

Построение:

Построение 6 . Построение прямой, параллельной данной прямой и проходящей через данную точку.

Дано: прямая а, точка A a.

Построить: прямую, проходящую через точку А, параллельно прямой а.

I способ (через два перпендикуляра).

Построение:

II способ (через параллелограмм).

Построение:

Построение 7. Построение треугольника по трем сторонам.

Дано: отрезки длины a, b, c.

Построить: Δ ABC.

Построение:

Построение 8. Построение треугольника по двум сторонам и углу между ними.

Дано: отрезки длины b, c, угол α.

Построить: треугольник ABC.

Построение:

Построение 9. Построение треугольника по стороне и двум прилежащим углам.

Дано: отрезок длины c, углы α и β.

Построить: ΔABC.

Построение:

Построение 10. Построение касательной к данной окружности, проходящей через данную точку.

Дано: окружность (О), точка А вне ее.

Построить: касательную к окружности ω(О), проходящую через точку А.

Построение:

Рассмотренные задачи входят в качестве составных частей в решение более сложных задач, поэтому в дальнейшем, этапы основных построений не описываются.

Решение задач на построение состоит из четырех частей:

1. Предположив, что задача решена, делаем от руки приблизительный чертеж искомой фигуры и затем, внимательно рассматриваем начерченную фигуру, стремясь найти такие зависимости между данными задачи и искомыми, которые позволили бы свести задачу на другие, известные ранее. Эта самая важная часть решения задачи, имеющая целью составить план решения, носит название анализа.

2. Когда таким образом план решения найден, выполняют сообразно ему построение.

3. Доказательство - для проверки правильности плана на основании известных теорем доказывают, что полученная фигура удовлетворяет всем требованиям задачи.

4. Исследование - задаются двумя вопросами:

1) При всяких ли данных возможно решение?

2) Сколько существует решений?

Рассмотрим применение данных этапов на примере решения следующей задачи.

Задача: Построить треугольник, зная его основание b, угол A, прилежащий к основанию, и сумму s двух боковых сторон.

Анализ: Предположим, что задача решена, т.е. найден такой ΔAВС, у которого основание AС=b, ∟ВАС=A и AВ+ВС=s . Рассмотрим теперь полученный чертеж. Сторону AС, равную b , ∟ВАС=A , мы строить умеем. Значит, остается найти на другой стороне ∟A такую точку В , чтобы сумма AВ+ВС равнялась s . Продолжив , отложим отрезок AD , равный s . Теперь вопрос приводится к тому, чтобы на прямой AD отыскать такую точку В , которая была бы одинаково удалена от С и D . Такая точка как мы знаем, должна лежать на перпендикуляре, проведенном к отрезку СD через его середину. Точка В найдется в пересечении этого перпендикуляра с АD .

Построение:

1. Строим ∟А , равный данному углу

2. На его сторонах откладываем AС=b и AD=s

3. Через середину отрезка прямой СD проводим перпендикуляр ВЕ

4. ВЕ пересекает AD в точке В

5. Соединяем точки В и С

6. ΔAВС - искомый.

Доказательство:

Рассмотрим полученный ΔAВС, в нем ∟А равен данному углу (по пункту №1 построения). Сторона AС=b (пункт №2) и стороны АВ и ВС в сумме составляют s (пункты №2,3,4). Следовательно по 1-му признаку равенства треугольников ΔAВС - искомый.

Исследование:

1. При всяких ли данных возможно решение?

Рассматривая построение, мы замечаем, что задача возможна не при всяких данных. Действительно, если сумма s задана слишком малой сравнительно с b, то перпендикуляр ВЕ может не пересечь отрезка AD (или пересечет его продолжение за точку D), в этом случае задача окажется невозможной.

И, независимо от построения, можно видеть, задача невозможна, если s < b или s =b , потому что не может быть такого треугольника, у которого сумма двух сторон была бы меньше или равна третьей стороне.

2. Сколько существует решений?

В том случае, когда задача возможна, она имеет только одно решение, т.е. существует только один треугольник, удовлетворяющий требованиям задачи, так как пересечение перпендикуляра ВЕ с прямой AD может быть только в одной точке.


©2015-2019 сайт
Все права принадлежать их авторам. Данный сайт не претендует на авторства, а предоставляет бесплатное использование.
Дата создания страницы: 2016-04-27

Src="https://present5.com/presentation/3/178794035_430371946.pdf-img/178794035_430371946.pdf-1.jpg" alt=">Построение с помощью линейки и циркуля Геометрия ">

Src="https://present5.com/presentation/3/178794035_430371946.pdf-img/178794035_430371946.pdf-2.jpg" alt="> Построить отрезок равный данному Ú Задача А В "> Построить отрезок равный данному Ú Задача А В На данном луче от его начала С отложить отрезок, равный данному Ú Решение 1. Изобразим фигуры, данные в D условии задачи: луч ОС и отрезок АВ О 2. Затем циркулем построим окружность радиуса АВ и с центром О. 3. Эта окружность пересечёт луч ОС в некой точке D. Отрезок OD – искомый.

Src="https://present5.com/presentation/3/178794035_430371946.pdf-img/178794035_430371946.pdf-3.jpg" alt="> Построение угла равного данному Рассмотрим треугольники "> Построение угла равного данному Рассмотрим треугольники Ú АВС и ОDE. Задача В Отрезки АВ и АС являются равный Отложить от данного луча угол, данному Ú радиусами окружности с Решение 1. центром А, савершиной А и луч и ОЕ Построим угол отрезки OD ОМ А С 2. – радиусами окружности с Проведем окружность произвольного центром О. Таквершине А данного радиуса с центром в как по угла. 3. построениюпересекает стороны Эта окружность эти окружности имеют равные радиусы, то угла в точках В и С. 4. АВ=OD, AC=OE. Также же Затем проведём окружность того по Е радиуса с центром в начале данного построению ВС=DE. М луча ОМ. О D Следовательно, треугольники 5. Она пересекает луч в точке D. 6. равны по построим окружность с После этого 3 сторонам. Поэтому центром D, радиус которой равен ВС 7. угол DOEс= углу BAC. Т. е. Окружности центрами О и D построенный угол МОЕ равен пересекаются в двух точках. Одну из углу А. буквой Е них назовём 8. Докажем, что угол МОЕ - искомый

Src="https://present5.com/presentation/3/178794035_430371946.pdf-img/178794035_430371946.pdf-4.jpg" alt="> Построение биссектрисы угла Задача Ú"> Построение биссектрисы угла Задача Ú Рассмотрим треугольники Ú АСЕ и АВЕ. биссектрису угла Построить Они равны по Ú трём сторонам. АЕ – общая, Решение Е 1. АС и АВ равны как угол ВАС Изобразим данный радиусы 2. одной и тойокружность Проведём же окружности, В СЕ = ВЕ по построению. произвольного радиуса с С Ú Изцентром А. Она пересечёт равенства треугольников следует, что угол САЕ В и С стороны угла в точках = углу 3. ВАЕ, т. е. луч АЕдве Затем проведём – окружности одинакового биссектриса данного угла. А радиуса ВС с центрами в точках В и С 4. Докажем, что луч АЕ – биссектриса угла ВАС

Src="https://present5.com/presentation/3/178794035_430371946.pdf-img/178794035_430371946.pdf-5.jpg" alt="> Построение перпендикулярных прямых Ú Задача Даны прямая"> Построение перпендикулярных прямых Ú Задача Даны прямая и точка на ней. Построить прямую, проходящую через данную точку Р и перпендикулярную данной прямой. Ú Решение 1. Построим прямую а и точку М, принадлежащую этой прямой. 2. На лучах прямой а, исходящих из точки М, отложим равные отрезки МА и МВ. М а Затем построим две окружности с центрами А и В радиуса АВ. Они пересекутся в двух точках: P и Q. А B 3. Проведём прямую через точку М и одну из этих точек, например прямую МР, и докажем, что эта прямая искомая, т. Е. что она перпендикулярна к данной прямой. 4. В самом деле, так как медиана РМ равнобедренного треугольника РАВ Q является также высотой, то РМ перпендикулярна а.

Src="https://present5.com/presentation/3/178794035_430371946.pdf-img/178794035_430371946.pdf-6.jpg" alt="> Построение середины отрезка Задача Ú Построить середину данного"> Построение середины отрезка Задача Ú Построить середину данного отрезка Ú Решение Р 1. Пусть АВ – данный отрезок. 2. Построим две окружности с 21 центрами А и В радиуса АВ. Они пересекаются в точках Р и Q. О 3. Проведём прямую РQ. Точка О пересечения этой прямой с А B отрезком АВ и есть искомая середина отрезка АВ 4. В самом деле, треугольники АРQ и ВРQ равны по трём сторонам, поэтому угол 1 = Q углу 2 5. Следовательно отрезок РО – биссектриса равнобедренного треугольника АРВ, а значит, и медиана, т. Е. точка О – середина отрезка АВ.



Последние материалы раздела:

Изменение вида звездного неба в течение суток
Изменение вида звездного неба в течение суток

Тема урока «Изменение вида звездного неба в течение года». Цель урока: Изучить видимое годичное движение Солнца. Звёздное небо – великая книга...

Развитие критического мышления: технологии и методики
Развитие критического мышления: технологии и методики

Критическое мышление – это система суждений, способствующая анализу информации, ее собственной интерпретации, а также обоснованности...

Онлайн обучение профессии Программист 1С
Онлайн обучение профессии Программист 1С

В современном мире цифровых технологий профессия программиста остается одной из самых востребованных и перспективных. Особенно высок спрос на...