Аксиоматический метод: описание, этапы становления и примеры.

способ построения теории, при котором в ее основу кладутся некоторые исходные положения - аксиомы или постулаты, из которых все остальные утверждения этой теории должны выводиться чисто логическим путем.

Отличное определение

Неполное определение ↓

Аксиоматический метод

от греч. axioma – принятое положение) – способ построения научной теории, в качестве ее основы априори принимающий положения, из которых все остальные утверждения теории выводятся логическим путем. Полная аксиоматизация теорий невозможна (К.Гедель, 1931).

Отличное определение

Неполное определение ↓

Аксиоматический метод

от греч. axi?ma - принятое положение) - способ построения теории, основанный на принятых (или доказанных ранее) исходных положениях (аксиомах и постулатах), из которых логическим путем, посредством доказательств выводятся остальные знания. Философскую интерпретацию аксиоматический метод как применение дедукции получил в учении Р. Декарта. В той или иной степени аксиоматический метод был использован в различных науках - в философии (Б. Спиноза), социологии (Дж. Вико), биологии (Дж. Вуджер) и др. Однако основной сферой его применения остаются математика и символическая логика, а также ряд областей физики (механика, термодинамика, электродинамика и др.).

Отличное определение

Неполное определение ↓

АКСИОМАТИЧЕСКИЙ МЕТОД

способ построения научной теории, при котором в ее основу кладутся некоторые исходные положения (аксиомы), или постулаты, из которых все остальные утверждения этой теории должны выводиться чисто логическим путем посредством доказательства. Построение науки на основе аксиоматического метода обычно называют дедуктивным. Этот метод начали использовать при построении геометрии в Древней Греции. Наиболее успешно он реализуется для организации математического знания, где огромный вес в познании принадлежит конструктивно-созидательной деятельности разума. В естествознании, социально-гуманитарных и инженерно-технических науках этот метод занимает подчиненное положение по сравнению с другими когнитивными методами.

Отличное определение

Неполное определение ↓

АКСИОМАТИЧЕСКИЙ МЕТОД

способ организации научного (в особенности, теоретического) знания, сущность которого состоит в выделении среди всего множества истинных высказываний об определенной предметной области такого его подмножества (аксиом), из которого логически следовали бы все остальные истинные высказывания (теоремы и единичные истинные высказывания). Идеал аксиоматического построения научного знания, начало реализации которого было положено построением геометрии в Древней Греции (VII - IV вв. до н. э.), оказался наиболее подходящим для организации систем математического знания, где огромный вес в познании принадлежит не только эмпирически-абстрагирующей деятельности рассудка, но и конструктивно-созидательной деятельности разума. В естествознании, социально-гуманитарных и инженерно-технических науках аксиоматический метод организации знания занимает подчиненное положение по сравнению с другими формами когнитивной организации. (См. доказательство, дедукция, теория, метод).

Отличное определение

Неполное определение ↓

АКСИОМАТИЧЕСКИЙ МЕТОД

способ построения науч. теории, при к-ром в ее основе лежат нек-рые исходные положения (суждения) - аксиомы, или постулаты, из к-рых все остальные утверждения этой науки (теоремы) должны выводиться логич. путем, посредством доказательства. Назначение А.м. состоит в ограничении произвола при принятии науч. суждений в кач-ве истин данной теории. Построение науки на основе А.м. обычно называется дедуктивным (см. Дедукция). Все понятия дедуктивной теории (кроме фиксированного числа первоначальных) вводятся посредством определений, выражающих (или разъясняющих) их через ранее введенные понятия. В той или иной мере дедуктивные доказательства, характерные для А.м., применяются во мн. науках. Но несмотря на попытки систематич. применения А.м. в философии (Спиноза), социологии (Вико), политэкономии (Родбертус-Ягецов), биологии (Вуджер) и др. науках, гл. обл. его приложения остаются математика и символич. логика, а также нек-рые разделы физики (механика, термодинамика, электродинамика и др.). Одним из первых примеров применения А.м. явл. «Начала» Евклида (около 300 г. до н.э.). Б.Н.Махутов

Отличное определение

Неполное определение ↓

АКСИОМАТИЧЕСКИЙ МЕТОД

Способ построения научной теории, при котором какие-то положения теории избираются в качестве исходных, а все остальные ее положения выводятся из них чисто логическим путем, посредством доказательств. Положения, доказываемые на основе аксиом, называются теоремами.

А. м. - особый способ определения объектов и отношений между ними (см.: Аксиоматическое определение). А. м. используется в математике, логике, а также в отдельных разделах физики, биологии и др.

А. м. зародился еще в античности и приобрел большую известность благодаря "Началам" Евклида, появившимся около 330 - 320 гг. до н. э. Евклиду не удалось, однако, описать в его "аксиомах и постулатах" все свойства геометрических объектов, используемые им в действительности; его доказательства сопровождались многочисленными чертежами. "Скрытые" допущения геометрии Евклида были выявлены только в новейшее время Д. Гильбертом (1862-1943), рассматривавшим аксиоматическую теорию как формальную теорию, устанавливающую соотношения между ее элементами (знаками) и описывающую любые множества объектов, удовлетворяющих ей. Сейчас аксиоматические теории нередко формулируются как формализованные системы, содержащие точное описание логических средств вывода теорем из аксиом. Доказательство в такой теории представляет собой последовательность формул, каждая из которых либо является аксиомой, либо получается из предыдущих формул последовательности по одному из принятых правил вывода.

К аксиоматической формальной системе предъявляются требования непротиворечивости, полноты, независимости системы аксиом и т. д.

A.M. является лишь одним из методов построения научного знания. Он имеет ограниченное применение, поскольку требует высокого уровня развития аксиоматизируемой содержательной теории.

Как показал известный математик и логик К. Гедель, достаточно богатые научные теории (напр., арифметика натуральных чисел) не допускают полной аксиоматизации. Это свидетельствует об ограниченности A.M. и невозможности полной формализации научного знания (см.: Геделя теорема).

Отличное определение

Неполное определение ↓

АКСИОМАТИЧЕСКИЙ МЕТОД

способ построения науч. теории, при к-ром в ее основу кладутся нек-рые исходные положения (суждения) - аксиомы, или постулаты, из к-рых все остальные утверждения этой теории должны выводиться чисто логич. путем, посредством доказательств. Построение науки на основе А. м. обычно наз. дедуктивным (см. Дедукция). Все понятия дедуктивной теории (кроме фиксированного числа первоначальных) вводятся посредством определений, выражающих их через ранее введенные понятия. В той или иной мере дедуктивные доказательства, характерные для А. м., применяются во мн. науках, однако гл. область его приложения - математика, логика, а также нек-рые разделы физики.

Идея А. м. впервые была высказана в связи с построением геометрии в Др. Греции (Пифагор, Платон, Аристотель, Евклид). Для совр. стадии развития А. м. характерна выдвинутая Гильбертом концепция формального А. м., к-рая ставит задачу точного описания логич. средств вывода теорем из аксиом. Осн. идея Гильберта - полная формализация языка науки, при к-рой ее суждения рассматриваются как последовательности знаков (формулы), приобретающие смысл лишь при нек-рой конкретной интерпретации. Для вывода теорем из аксиом (и вообще одних формул из других) формулируются спец. правила вывода. Доказательство в такой теории (исчислении, или формальной системе) - это нек-рая последовательность формул, каждая из к-рых либо есть аксиома, либо получается из предыдущих формул последовательности по к.-л. правилу вывода. В отличие от таких формальных доказательств, свойства самой формальной системы в целом изучаются содержат. средствами метатеории. Осн. требования, предъявляемые к аксиоматич. формальным системам - непротиворечивость, полнота, независимость аксиом. Гильбертовская программа, предполагавшая возможность доказать непротиворечивость и полноту всей классич. математики, в целом оказалась невыполнимой. В 1931 Геделъ доказал невозможность полной аксиоматизации достаточно развитых науч. теорий (напр., арифметики натуральных чисел), что свидетельствовало об ограниченности А. м. Осн. принципы А. м. были подвергнуты критике сторонниками интуиционизма и конструктивного направления. См. также Формализм в математике и логике, Теория.

Отличное определение

Неполное определение ↓

АКСИОМАТИЧЕСКИЙ МЕТОД

один из способов дедуктивного построения научных теорий, при к-ром: 1) выбирается нек-рое множество принимаемых без доказательства предложений определенной теории (аксиом); 2) входящие в них понятия явно не определяются в рамках данной теории; 3) фиксируются правила определения и правила вывода данной теории, позволяющие вводить новые термины (понятия) в теорию и логически выводить одни предложения из других; 4) все остальные предложения данной теории (теоремы) выводятся из (1) на основе (3). Первые представления об А. м. возникли в Древн. Греции (Элеаты, Платон. Аристотель, Евклид). В дальнейшем делались попытки аксиоматического изложения различных разделов философии и науки (Спиноза, Ньютон и др) Для этих исследований было характерно содержательное аксиоматическое построение определенной теории (и только ее одной), при этом осн внимание уделялось определению и выбору интуитивно очевидных аксиом Начиная со второй половины 19 в, в связи с интенсивной разработкой проблем обоснования математики и математической логики, аксиоматическую теорию стали рассматривать как формальную (а с 20-30-х гг. 20 в - как формализованную) систему, устанавливающую соотношения между ее элементами (знаками) и описывающую любые множества объектов, к-рые ей удовлетворяют. При этом осн. внимание стали обращать на установление непротиворечивости системы, ее полноты, независимости системы аксиом и т д В связи с тем что знаковые системы могут рассматриваться или вне зависимости от содержания, к-рое может быть в них представлено, или с его учетом, различаются синтаксические и семантические аксиоматические системы (лишь вторые представляют собой собственно научные знания) Это различение вызвало необходимость формулирования осн. требований, предъявляемых к ним, в двух планах синтаксическом и семантическом (синтаксическая и семантическая непротиворечивость, полнота, независимость аксиом и т д) Анализ формализованных аксиоматических систем привел к установлению их принципиальных ограниченностей, гл из к-рых является доказанная Геделем невозможность полной аксиоматизации достаточно развитых научных теорий (напр, арифметики натуральных чисел), откуда следует невозможность полной формализации научного знания Аксиоматизация является лишь одним из методов построения научного знания, но ее использование в качестве средства научного открытия весьма ограниченно. Аксиоматизация осуществляется обычно после того, как содержательно теория уже в достаточной мере построена, и служит целям более точного ее представления, в частности строгого выведения всех следствий из принятых посылок В последние 30-40 лет большое внимание уделяется аксиоматизации не только математических дисциплин, но и определенных разделов физики, биологии, психологии, экономики, лингвистики и др, включая теории структуры и динамики научного знания. При исследовании естественнонаучного (вообще любого нематематического) знания А. м. выступает в форме гипотетико-дедуктивно-го метода (см. также Формализация)

Отличное определение

Неполное определение ↓

АКСИОМАТИЧЕСКИЙ МЕТОД

греч. axioma - значимое, принятое положение) - способ построения теории, при котором некоторые истинные утверждения избираются в качестве исходных положений (аксиом), из которых затем логическим путем выводятся и доказываются остальные истинные утверждения (теоремы) этой теории. Научная значимость A.M. была обоснована еще Аристотелем, который первым разделил все множество истинных высказываний на основные ("принципы") и требующие доказательства ("доказываемые"). В своем развитии A.M. прошел три этапа. На первом этапе A.M. был содержательным, аксиомы принимались на основании их очевидности. Примером такого дедуктивного построения теории служат "Начала" Евклида. На втором этапе Д. Гильберт внес формальный критерий применения A.M. - требование непротиворечивости, независимости и полноты системы аксиом. На третьем этапе A.M. становится формализованным. Соответственно, изменилось и понятие "аксиома". Если на первом этапе развития A.M. она понималась не только как отправной пункт доказательств, но и как истинное положение, не нуждающееся в силу своей очевидности в доказательстве, то в настоящее время аксиома обосновывается в качестве необходимого элемента теории, когда подтверждение последней рассматривается одновременно как подтверждение ее аксиоматических оснований как исходного пункта построения. Помимо основных и вводимых утверждений в A.M. стал выделяться также уровень специальных правил вывода. Таким образом наравне с аксиомами и теоремами как множеством всех истинных утверждений данной теории формулируются аксиомы и теоремы для правил вывода - метааксиомы и метатеоремы. К. Геделем в 1931 была доказана теорема о принципиальной неполноте любой формальной системы, ибо в ней содержатся неразрешимые предложения, которые одновременно недоказуемы и неопровержимы. Учитывая накладываемые на него ограничения, А. М. рассматривается как один из основных методов построения развитой формализованной (а не только содержательной) теории наряду с гипотетико-дедуктивным методом (который иногда трактуется как "полуаксиоматический") и методом математической гипотезы. Гипотетико-дедуктивный метод, в отличие от A.M., предполагает построение иерархии гипотез, в которой более слабые гипотезы выводятся из более сильных в рамках единой дедуктивной системы, где сила гипотезы увеличивается по мере удаления от эмпирического базиса науки. Это позволяет ослабить силу ограничений A.M.: преодолеть замкнутость аксиоматической системы за счет возможности введения дополнительных гипотез, жестко не связанных исходными положениями теории; вводить абстрактные объекты разных уровней организации реальности, т.е. снять ограничение на справедливость аксиоматики "во всех мирах"; снять требование равноправности аксиом. С другой стороны, A.M., в отличие от метода математической гипотезы, акцентирующего внимание на самих правилах построения математических гипотез, относящихся к неисследованным явлениям, позволяет апеллировать к определенным содержательным предметным областям.

Отличное определение

Неполное определение ↓

АКСИОМАТИЧЕСКИЙ МЕТОД

метод построения теорий, в соответствии с которым разрешается пользоваться в доказательствах лишь аксиомами и ранее выведенными из них утверждениями. Основания для применения аксиоматического метода могут быть разными, что обычно приводит к различению аксиом не только по их формулировкам, но и по их методологическим (прагматическим) статусам. Например, аксиома может иметь статус утверждения, или статус предположения, или статус лингвистического соглашения о желаемом употреблении терминов. Иногда это различие в статусах отражается в названиях аксиом (в современных аксиоматиках для эмпирических теорий среди всех аксиом выделяют часто т. и. постулаты значения, выражающие лингвистические соглашения, а древние греки делили геометрические аксиомы на общие понятия и постулаты, полагая, что первые описывают, вторые строят). Вообще говоря, учет статусов аксиом обязателен, так как можно, например, изменить содержание аксиоматической теории, не изменив при этом ни формулировку, ни семантику аксиом, а поменяв лишь их статус, объявив, скажем, одну из них новым постулатом значения. Аксиоматический метод был впервые продемонстрирован Евклидом в его «Началах», хотя понятия аксиомы, постулата и определения рассматривались уже Аристотелем. В частности, к нему восходит толкование аксиом как необходимых общих начал доказательства. Понимание аксиом как истин самоочевидных сложилось позднее, став основным с появлением школьной логики Пор-Рояяя, для авторов которой очевидность означает особую способность души осознавать некоторые истины непосредственно (в чистом созерцании, или интуиции). Между прочим, убеждение Канта в априорном синтетическом характере геометрии Евклида зависит от этой традиции не считать аксиомы лингвистическими соглашениями или предположениями. Открытие неевклидовой геометрии (Гаусс, Лобачевский, Бойяи); появление в абстрактной алгебре новых числовых систем, причем сразу целых их семейств (напр., /»-адические числа); появление переменных структур вроде групп; наконец, обсуждение вопросов типа «какая геометрия истинна?» - все это способствовало осознанию двух новых, по сравнению с античным, статусов аксиом: аксиом как описаний (классов возможных универсумов рассуждений) и аксиом как предположений, а не самоочевидных утверждений. Так сформировались основы современного понимания аксиоматического метода. Это развитие аксиоматического метода становится особенно наглядным при сопоставлении «Начал» Евклида с «Основаниями геометрии» Д. Гильберта-новой аксиоматики геометрии, базирующейся на высших достижениях математики 19 в. К концу того же века Дж. Пеано дал аксиоматику натуральных чисел. Далее аксиоматический метод был использован для спасения теории множеств после нахождения парадоксов. При этом аксиоматический метод был обобщен и на логику. Гильберт сформулировал аксиомы и правила вывода классической логики высказываний, а П. Бернайс -логики предикатов. Ныне аксиоматическое задание является стандартным способом определения новых логик и новых алгебраических понятий. В последние десятилетия по мере развития моделей теории аксиоматический метод стал в почти обязательном порядке дополняться теоретико-модельным.

Отличное определение

Неполное определение ↓

аксиоматический метод

АКСИОМАТИЧЕСКИЙ МЕТОД (от греч. axioma) - принятое положение - способ построения научной теории, при котором в доказательствах пользуются лишь аксиомами, постулатами и ранее выведенными из них утверждениями. Впервые ярко продемонстрирован Евклидом в его «Началах», хотя понятия аксиомы и постулата упоминаются уже Аристотелем. У древних греков аксиомой называлось ясно сформулированное положение, настолько самоочевидное, что его не доказывают и кладут в основу других доказательств. Постулат - утверждение о возможности выполнить некоторое построение. Поэтому «Целое больше части» - аксиома, а «Из данной точки данным радиусом можно описать окружность» - постулат. В дальнейшем понятие аксиомы поглотило понятие постулата, поскольку не были осознаны понятия дескриптивности и конструктивности (аксиома описывает, постулат строит). Почти все аксиомы эллинской геометрии были сформулированы настолько четко и удачно, что не вызывали сомнений. Однако одно из положений Евклида, а именно пятый постулат, эквивалентный утверждению «Через точку, лежащую вне прямой, можно провести прямую, параллельную данной, и притом только одну», с самого начала вызывало сомнения. Более того, до Евклида эллины исследовали все три возможные гипотезы: 1) нельзя провести ни одной параллельной прямой, 2) можно провести больше одной и 3) можно провести лишь одну параллельную прямую; но Евклид осознанно выбрал одну формулировку, поскольку лишь в таком случае существовал квадрат и понятие подобия фигур. В дальнейшем наличие альтернатив было забыто, и пятый постулат неоднократно пытались доказать. Вплоть до 17 в. А. м. мало развивался. Евклид и Архимед сформулировали аксиомы статики и оптики, а в дальнейшем, в связи с общей тенденцией к комментаторству и канонизации, исследования перелагали, либо, в лучшем случае, анализировали старые системы аксиом. Неудивительно, что новая математика начала с отказа от А. м., и анализ бесконечно малых развивался как неформализованная теория. Была понята сомнительность аксиомы «Целое меньше части», поскольку Николай Кузанский и вслед за ним Галилей показали, что для бесконечных совокупностей целое может быть изоморфно части. Но это открытие было недооценено, потому что слишком хорошо согласовывалось с христианской религией (с концепциями различных ипостасей бесконечного Бога). Далее, неудача Спинозы в попытках вывести геометрическим, чисто рассудочным методом систему этики и метафизики показала неприменимость существующего А. м. к гуманитарным понятиям. Возвращение к А. м. произошло в 19 в. Оно базировалось на двух открытиях - неевклидовой геометрии (переоткрывшей то, что было известно до Евклида, но потом напрочь забыто), и абстрактной алгебре. В неевклидовой геометрии (Г а у с с, Лобачевский, Бойяи) было показано, что одно из отрицаний пятого постулата - а именно то, что через точку, лежащую вне прямой, можно провести две прямые, параллельные данной - совместимо с остальными аксиомами геометрии. Таким образом, те аксиомы и постулаты, которые создавались, чтобы описать «единственно истинное» пространство, на самом деле описывают целый класс различных пространств. В абстрактной алгебре появились новые числовые системы, причем сразу целые их семейства (напр., р-адические числа) и переменные структуры типа групп. Свойства переменных структур естественно было описывать при помощи аксиом, но теперь уже никто не настаивал на их самоочевидности, а рассматривали их просто как способ описания класса математических объектов. Напр., полугруппа определяется единственной аксиомой - ассоциативности умножения: а° (Ь о с) = (а о Ь) о С. В самой геометрии наступил черед критического переосмысления классических аксиом. Э. Паш показал, что Евклид не усмотрел еще один постулат, столь же интуитивно очевидный, как и описанные им: «Если прямая пересекает одну из сторон треугольника, то она пересечет и другую». Далее было показано, что один из признаков равенства треугольников нужно принять в качестве аксиомы, иначе теряется строгость доказательств, поскольку из остальных аксиом не следует возможность перемещения фигур. Была отброшена аксиома «Целое меньше части», как не имеющая смысла с точки зрения новой математики, и заменена на несколько положений о соотношении мер фигур. И, наконец, Д. Гильберт сформулировал новую аксиоматику геометрии, базирующуюся на высших достижениях математики 19 в. В эллинские времена и позже понятие числа не описывалось аксиоматически. Только в конце 19 в. Дж. Пеано (Италия) дал аксиоматику натуральных чисел. Аксиоматики Пеано и Гильберта содержат по одному принципу высшего порядка, говорящему не о фиксированных понятиях, а о произвольных понятиях либо совокупностях. Напр., в арифметике - это принцип математической индукции. Без принципов высших порядков однозначное описание стандартных математических структур невозможно. А. м. был использован для спасения теории множеств после нахождения связанных с нею парадоксов. Спасение само по себе производилось не лучшим способом - латанием парадигмы. Те из принципов теории множеств, которые казались не приводящими к парадоксам и обеспечивали необходимые для математики построения, были приняты в качестве аксиом. Но при этом А. м. был обобщен на логику. Д. Гильберт явно сформулировал аксиомы и правила вывода классической логики высказываний, а П. Бернайс - логики предикатов. Ныне аксиоматическое задание является стандартным способом определения новых логик и новых алгебраических понятий. Современный А. м. отличается от традиционного тем, что явно задаются не только аксиомы, но и язык, а в логике - еще и правила вывода описываемой теории либо системы. Пересмотренный и усиленный А. м. стал мощным оружием в таких новых областях знания, как когнитивная наука и математическая лингвистика. Он позволяет низводить семантические проблемы на уровень синтаксических и тем самым помогать их решению. В последние десятилетия по мере развития теории моделей А. м. стал в обязательном порядке дополняться теоретико-модельным. Формулируя аксиоматическую систему, нужно описать и совокупность ее моделей. Минимально необходимым обоснованием системы аксиом служит ее корректность и полнота на заданном классе моделей. Но для применений недостаточно такого формального обоснования - нужно также показать содержательный смысл построенной системы и ее выразительные возможности. Основным математическим ограничением А. м. служит то, что логика высших порядков неформализуема и неполна, а без нее описать стандартные математические структуры нельзя. Поэтому в тех областях, где есть конкретные числовые оценки, А. м. не может быть применен к полному математическому языку. В таких областях возможна лишь неполная и непоследовательная, так называемая частичная либо содержательная, аксиоматизация. Неформализуемость понятий сама по себе, как ни странно, не препятствует применению А. м. к данным понятиям. Все равно при работе в фиксированной обстановке есть смысл переходить к гораздо более эффективным формальным моделям. В данном случае положительной чертой формализмов часто может являться их несоответствие реальной ситуации. Формализмы не могут полностью соответствовать содержанию понятий, но если эти несоответствия спрятаны, то формализмами часто продолжают пользоваться и после того, как обстановка перестала быть подходящей для их применения, и даже в ситуации, с самого начала не подходящей для их использования. Подобные опасности существуют и для частичных формализации. Я Н. Непейвода

Отличное определение

Неполное определение ↓

АКСИОМАТИЧЕСКИЙ МЕТОД - метод построения научной теории, при котором выбирается ряд исходных утверждений, называемых аксиомами, а дальнейшие утверждения (теоремы) получаются из них с помощью чисто логических рассуждений (доказательств). Классический образец применения аксиоматического метода - изложенная в «Началах» Евклида (около 300 года до нашей эры) аксиоматическая система, которая охватывала всю известную в то время математику. Влияние аксиоматического метода распространилось и на другие области знания: физику, биологию, философию, богословие.

На протяжении многих столетий «Начала» Евклида были единственным примером аксиоматической теории. Начиная с 19 века, создаются новые теории, например Лобачевского геометрия, аксиоматические теории действительных и натуральных чисел. В начале 20 века были построены аксиоматические теории множеств, повлиявшие на развитие всей математики.

Формальное определение аксиоматической теории было дано Д. Гильбертом. При формальном описании теории задаётся её язык (правила построения выражений различных типов, в том числе формул, которые соответствуют содержательным утверждениям), выделяется класс формул, называемых аксиомами теории, и описываются правила вывода, позволяющие строить доказательства теорем. Доказательство есть последовательность формул, каждая из которых либо является аксиомой, либо получается из предыдущих по одному из правил вывода. Теория называется непротиворечивой, если в ней нельзя получить противоречие, т. е. отрицания её теорем не являются теоремами; и полной, если для любой формулы А, либо А, либо отрицание А является теоремой. При построении формальных теорий вопрос о непротиворечивости является ключевым. Для установления непротиворечивости обычно используется метод интерпретаций. При синтаксической интерпретации теории Т выбирается другая теория Т1, непротиворечивость которой предполагается известной; интерпретация переводит формулы Т в формулы Т1, а теоремы Т в теоремы Т1. При семантической интерпретации строится модель теории: теоремы превращаются в истинные содержательные утверждения об объектах некоторого универсума. Если теория имеет модель, то она непротиворечива. Путём интерпретации доказательство непротиворечивости евклидовой геометрии сводится к доказательству непротиворечивости теории действительных чисел, а доказательство непротиворечивости геометрии Лобачевского - к доказательству непротиворечивости евклидовой геометрии.

Вопросы о непротиворечивости стали особенно актуальны в начале 20 века после обнаружения парадоксов множеств теории. В связи с этим в начале 20 века Д. Гильбертом выдвинута программа обоснования математики, целью которой было доказательство непротиворечивости формальных теорий, использующих бесконечные множества. Программа Гильберта существенно переосмыслена после открытий К. Гёделя (1931-32). Для любой непротиворечивой теории S, содержащей арифметику и заданной алгоритмически перечислимым списком аксиом, установлено, что теория S неполна (теорема Гёделя о неполноте) и непротиворечивость теории S нельзя доказать средствами самой теории S (теорема Гёделя о непротиворечивости). Первый результат, по существу, означает, что окончательная формализация научного знания невозможна, и в любой достаточно сильной аксиоматической теории имеются проблемы, которые неразрешимы в самой этой теории. Второй результат показывает, что такой проблемой является непротиворечивость теории S, и для её доказательства требуются неарифметические средства. С помощью дополнительных принципов были получены доказательства непротиворечивости арифметики, анализа и ряда других теорий. Была усилена теорема Гёделя о неполноте: найдены арифметические утверждения, которые истинны, но недоказуемы в формальной арифметике.

Формальная аксиоматическая теория называется алгоритмически разрешимой, если для любой формулы А существует алгоритм, который за конечное число шагов определяет, является ли формула А теоремой. Программа Гильберта подразумевала, что формальное доказательство теорем можно механизировать. Однако неразрешима даже простейшая теория - исчисление предикатов, неразрешима всякая непротиворечивая теория, содержащая арифметику, и многие другие теории. С другой стороны, обнаружены и нетривиальные примеры разрешимых теорий, например евклидова геометрия и теория конечных полей.

Альтернативным аксиоматическим методом является генетический (конструктивный) метод, при котором новые научные законы находятся опытным путём, а не как логические следствия известных результатов. Генетический метод развивался в 20 веке в интуиционистском (французский математик Г. Вейль, голландский математик Л. Брауэр) и конструктивном (А. А. Марков) направлениях математики.

Аксиоматический метод сыграл и продолжает играть важную роль в основаниях математики.

Лит.: Бурбаки Н. Начала математики. М., 1965. Ч. 1. Кн. 1: Теория множеств; Клини С. К. Математическая логика. М., 1973; Новиков П. С. Элементы математической логики. М., 1973; Ефимов Н.В. Высшая геометрия. 6-е изд. М., 1978; Гильберт Д., Бернайс П. Основания математики: Теория доказательств. М., 1982; Справочная книга по математической логике: В 3 часть М., 1982; Успенский В. А. Что такое аксиоматический метод? 2-е изд. Ижевск, 2001.

Аксиоматический метод дает возможность делать заключения и открывать законы без опоры на наблюдения и эксперименты, а посредствам логического вывода.

Пожалуй, одним из первых успешных применений аксиоматического метода стала геометрия древнегреческого математика Евклида (она появилась где-то в 330-320 гг. до н.э.). Евклидову аксиоматическую систему в общих словах можно охарактеризовать следующим образом. Изучение окружающего нас пространства дало возможность описать некоторые свойства объектов, которые получили название точка, прямая, плоскость, треугольник, круг и т.д. Несколько утверждений об этих объектах Евклид выбрал в качестве аксиом или постулатов. Их истинность, по его мнению, не нуждалось в доказательстве из-за их очевидности и легкого понимания. К числу аксиом он отнес суждения: «Через две точки можно провести только одну прямую», «Через прямую и точку вне ее может проходить лишь одна плоскость» и др. Из этих аксиом чисто логическим путем Евклиду удалось вывести все нужные геометрические утверждения и законы, которые обычно называются теоремами.

Справедливости ради нужно сказать, что доказательства Евклида (как и доказательства школьной геометрии, которую все мы изучили) сопровождаются многочисленными чертежами. И понадобилось немало времени, чтобы прийти к очевидной мысли, что чертежи не должны быть существенной частью самого процесса доказательства. Они должны либо облегчать процесс доказательства, либо помогать следить за ходом доказательства, либо, наконец, способствовать запоминанию доказательства. Этот недостаток геометрии Евклида исправил Д. Гильберт в своей книге «Основания геометрии» (1999).

То обстоятельство, что аксиоматически построенная геометрия давала чрезвычайно, простой, удобный и экономный способ установления истинности геометрических рассуждений, производило сильное впечатление. Аксиоматический метод стали пытаться применять не только в математических теориях, но даже в философии (Спиноза). Представители очень многих наук надеялись, что в конце концов многие теории с помощью аксиоматики можно довести до такого же изящества и совершенства как евклидовую геометрию. Аксиоматический метод подвергся тщательному изучению. Первые наиболее важные результаты были получены опять таки в геометрии.

Пятый постулат Евклида (его можно сформулировать так: две параллельные прямые не пересекаются, сколько бы мы их не продолжали) казался математикам менее очевидным, чем остальные. Было предпринято множество попыток доказать этот постулат, посредством вывода его из остальных постулатов евклидовой системы. Но все эти попытки потерпели неудачу. В 1923 году Н.Н. Лобачевский и в 1933 г. Бойаи построили геометрию, в которой в качестве постулата фигурировало отрицание пятого постулата Евклида, т.е. в качестве аксиомы было взято суждение о том, что через точку вне прямой можно провести бесконечно много прямых, параллельных данной прямой. Первоначально многие математики встретили неевклидовую геометрию в штыки из-за ее явного противоречия воспринимаемому физическому пространству. Однако, в 1950 г. Фр. Клейн нашел очень удачную интерпретацию (разъяснение) этой геометрии. Если под «плоскостью» понимать внутренность какого-то круга евклидовой плоскости, под «точкой» - точку этого круга, а под «прямой» - хорду его окружности, то внутри круга будут выполняться все аксиомы и теоремы геометрии Лобачевского-Бойаи. Из этих открытий были сделаны важные заключения о любой аксиоматической системе: аксиомы этой системы должны удовлетворять требованиям независимости, полноты, непротиворечивости и она не должна быть вырожденной.

Требование независимости означает, что не одна из аксиом не должна выводиться в качестве теоремы из остальных. Полнота аксиоматики какой-то теории означает, что из аксиом по правилам логики должны выводиться все утверждения этой теории. Система аксиом должна быть непротиворечивой. Из них не должно выводиться какое-то утверждение вместе со своим отрицанием. Если это случается, то по закону исключенного третьего одно из суждений обязательно ложно. Какое, установить нельзя, потому что и то и другое будет выводиться по законам логики. Наконец, система аксиом будет невырожденной, если удается найти какие-то объекты (физические или теоретические), которые описывает теория, выведенная из этих аксиом.

Но еще больше вопросов, связанных с аксиоматическим методом, возникло с открытием в XX1 веке парадоксов теории множеств. Они представляли собой рассуждения совершенно справедливые с интуитивной (содержательной) точки зрения, но тем не менее приводящие к противоречиям. Некоторые из них, например, парадокс «Лжец» были известны с древности. Напомним, что суть этого парадокса в следующем: некто говорит: «Я лгу». Если при этом он лжет, то сказанное им ложь, и, следовательно, он не лжет. Если же при этом он не лжет, то сказанное им истина, и, следовательно, он лжет. Так что в любом случае он лжет и не лжет одновременно. Однако связь парадокса «Лжец» с теорией множеств не была осознанной. Это случилось тогда, когда из аксиоматической теорией множеств, предложенной Г.Кантором и др. стали выводиться аналогичные парадоксы. Самый простой из них - парадокс Берри (2006). Суть его такова: множество всех натуральных чисел, которые могут быть названы по-русски посредством числа слогов (или букв), меньше некоторого конечного натурального числа, безусловно, конечно, следовательно, должно существовать наименьшее из чисел, которые не могут быть так названы. Но «наименьшее целое число, которое не может быть названо по-русски меньше, чем в пятьдесят слогов» (подсчитайте число слогов) есть выражение русского языка, содержащие менее пятидесяти слогов. Известны различные модификации этого парадокса. При исследовании систем аксиом арифметики, теории множеств и других аксиоматических теорий обнаружилось, что не существует полной системы аксиом, из которых можно было бы вывести такую простую теорию как арифметика (К.Гедель). Оказалось так же, что проблемы непротиворечивости систем аксиом теории множеств и других теорий чрезвычайно трудны. При попытках их решения математики и логики раскололись на враждующие между собой группировки. По мнению Гильберта и его формалистской школы, чтобы избавить математику от парадоксов нужно сформулировать ее в виде аксиоматической теории, после чего следует доказать непротиворечивость этой теории. По мнению интуиционистов, возглавляемых Бауэром, чтобы избавить математику от парадоксов, надо отказаться от признания универсального характера некоторых законов логики, в частности закона исключенного третьего.

Итак, суть аксиоматического метода в следующем. В теорию вводятся без определения некие объекты, природа которых не определена. Затем посредством аксиом задают определенные отношения между объектами. Построить аксиоматическую теорию - это значит вывести логические следствия из аксиом, отказавшись от каких-либо других предложений относительно природы рассматриваемых объектов. Для построенной таким образом теории стремятся доказать полноту, непротиворечивость, независимость и невырожденность системы её аксиом.

Муниципальное образовательное учреждение.

Вознесенская средне образовательная школа.

Реферат по математике

на тему «Аксиоматика и аксиоматический метод»

ученика 7 класса Каера Евгения Викторовича.

Руководитель Пузикова Н. В.

с. Вознесенка, 2007 г.

изучение аксиоматического метода и его применений в различных областях знаний.

· Выяснить, что такое аксиоматика.

· Рассмотреть применения аксиоматического метода в геометрии

· Научиться применять аксиоматический метод.

1. Введение. Что такое аксиоматика.

2. Аксиоматический метод - важнейший научный метод.

3. Аксиоматический метод в геометрии.

4. Исследовательская работа. Применение аксиоматического метода в шахматном турнире.

6. Литература.

1. Введение. Что такое аксиоматика.

Аксиома-это некоторые утверждения о свойствах вещей, которые принимаются в качестве исходных положений, на основе которых далее доказываются теоремы и, вообще, строится вся теория.

Аксиоматика – система аксиом той или иной науки. Например, аксиоматика элементарной геометрии содержит около двух десятков аксиом. аксиоматика числового поля-9 аксиом. Наряду с ними важнейшую роль в современной математике играет аксиоматика группы, аксиоматика метрического и векторного пространств и др.

Советским математикам С. Н. Бернштейну и А. Н. Колмогорову принадлежит заслуга аксиоматического описания теории вероятностей. Десятки других направлений современной математики также развиваются на аксиоматической основе, т.е. на базе соответствующей системы аксиом.

2. Аксиоматический метод – важнейший научный метод

Аксиоматический метод - важный научный инструмент познания мира. Большинство правлений современной математики, теоретическая механика и ряд разделов современной физики строится на основе аксиоматического метода. В самой математике аксиоматический метод дает законченное, логически стройное построение научной теории. Не меньшее значение имеет и то, что математическая теория, построенная аксиоматически, находит многократные приложения и в естествознании.

Современная точка зрения на аксиоматическое построение какой-либо области знаний заключается в следующем:

1. Перечисляются первоначальные (неопределяемые) понятия;

2. Указывается список аксиом, в которых устанавливаются некоторые связи и взаимоотношения между первоначальными понятиями;

3. С помощью определений вводятся дальнейшие понятия;

4. Исходя из первоначальных фактов, содержащихся в аксиомах, выводятся, доказываются с помощью некоторой логической системы дальнейшие факты – теоремы.

Первоначальные понятия и аксиомы заимствованы из опыта. Поэтому очевидно, что все последующие факты, выводимые в аксиоматической теории, хотя их получают на основе аксиом чисто умозрительным, дедуктивным путем, имеют тесную связь с жизнью и могут быть применены в практической деятельности человека.

Важнейшим требованием к системе аксиом является ее непротиворечивость, которую можно понимать так: сколько бы мы ни выводили теорем из этих аксиом, среди них не будет двух теорем, противоречащих друг другу. Противоречивая аксиоматика не может служить основой построения содержательной теории.

Развив ту или иную аксиоматическую теорию, мы можем, не проводя повторных рассуждений, утверждать, что ее выводы имеют место в каждом случае, когда справедливы рассматриваемые аксиомы. Таким образом, аксиоматический метод позволяет целые аксиоматически развитые теории применять в различных областях знаний. В этом состоит сила аксиоматического метода.

3. Аксиоматический метод в геометрии

При изучении геометрии мы опирались на ряд аксиом. Напомним, что аксиомами называются те основные положения геометрии, которые принимаются в качестве исходных. Вместе с так называемыми основными понятиями они образуют фундамент для построения геометрии. Первые основные понятия, с которыми мы познакомились, были понятия точки и прямой. Определения основных понятий не даются, а их свойства выражаются в аксиомах. Используя основные понятия и аксиомы, мы даем определения новых понятий, формулируем и доказываем теоремы и таким образом изучаем свойства геометрических фигур.

Для примера рассмотрим аксиому параллельных прямых:

через точку, не лежащую на данной прямой, проходит только одна прямая, параллельная данной.

Утверждения, которые выводятся непосредственно из аксиом называются следствиями. Рассмотрим некоторые следствия из аксиомы параллельных прямых.

1. Если прямая пересекает одну из двух параллельных прямых, то она пересекает и другую.

2. Если две прямые параллельны третьей прямой, то они параллельны.

4.Исследовательская работа. Применение аксиоматического метода в шахматном турнире.

Чтобы объяснить подробнее, как применяется аксиоматический метод, приведем пример. Допустим, несколько школьников решили организовать шахматный турнир по упрощенной схеме: каждый должен сыграть ровно четыре партии с кем-либо из остальных участников (а белыми или черными фигурами –по жребию).Чтобы составить расписание турнира, нужно сформулировать требования, которые ученики предъявили к турниру, в виде аксиом. Для этого потребовалось ввести три первоначальных (неопределяемых) понятия: «игрок», «партия», «участие игрока в партии». Аксиом получилось четыре:

Аксиома 1. Число игроков нечетно.

Аксиома 2. Каждый игрок участвует в четырех партиях .

Аксиома 3. В каждой партии участвуют два игрока .

Аксиома 4. Для каждых двух игроков имеется не более одной партии, в которой они оба участвуют.

Из этих аксиом можно вывести ряд теорем.

Теорема 1.Число игроков не меньше пяти .

Доказательство. Так как нуль- четное число, то по аксиоме 1 число игроков не равно нулю, т.е. существует хотя бы один игрок А. Этот игрок в силу аксиомы 2 участвует в четырех партиях, причем в каждой из этих партий, кроме А, участвует еще один игрок (аксиома 3). Пусть В,С,Д,Е - игроки, отличные от А, которые участвуют в этих партиях. По аксиоме 4 все игроки В,С,Д,Е различны (если бы, например, было В=С, то оказалось бы, что имеются две партии, в которых участвуют игрок А и игрок В=С).Итак, мы нашли уже пятерых игроков: А,В,С,Д,Е. Но тогда по аксиоме 1 число игроков не меньше пяти.

Теорема.2. Число всех выступлений игроков четно .

q- некоторая партия, введем новое понятие - (q,А)- выступление игрока.

Доказательство. Каждая партия дает два выступления игроков (q,А),(q,В),(по аксиоме 3), число всех выступлений 2n, где n число игроков (А 4). Следовательно, число всех выступлений игроков кратно 2, т.е. четно.

Теорема3.Число выигрышей в турнире не превышает число игроков.

Доказательство. Пусть п - число игроков, тогда 2п - число выступлений игроков (А), п - число сыгранных партий(А3). Рассмотрим два случая:

1. Во всех партиях были победитель и проигравший. Тогда число выигрышей будет равно числу партий, т.е. п.

2. Некоторые партии закончились вничью, пусть таких партий будет к. Тогда в оставшихся п - к партиях был выявлен победитель, т.е. число выигрышей не превышает число партий. Теорема доказана.

Прочитав литературу, я узнал, что такое аксиома, что такое аксиоматический метод и, как он применяется в геометрии. Изучив аксиоматический метод я применил его к исследованию шахматного турнира.

Литература.

Энциклопедический словарь юного математика

/Сост. Э- 68 А.П. Савин.- М.: Педагогика, 1989.

Геометрия, 7-9: Учеб. Для общеобразоват. Учереждений /Л.С. Атанасян и др. Просвещение, 2004.

Аксиоматический метод

Наименование параметра Значение
Тема статьи: Аксиоматический метод
Рубрика (тематическая категория) История

Аксиомой называют отправное, исходное положение какой-либо теории, находящееся в базе доказательств других положений (к примеру, теорем) этой теории, в пределах которой оно принимается без доказательств. В обыденном сознании и языке аксиомой называют некую истину, настолько бесспорную, что она не требует доказательств.

Итак, аксиоматический метод - ϶ᴛᴏ один из способов дедуктивного построения научной теории, при котором выбирается неĸᴏᴛᴏᴩᴏᴇ множество принимаемых без доказательства положений, называемых ʼʼначаламиʼʼ, ʼʼпостулатамиʼʼ или ʼʼаксиомамиʼʼ, а всœе остальные предложения теории получается как логическое следствие этих аксиом.

Аксиоматический метод в математике берет начало по меньшей мере от Евклида, хотя термин ʼʼаксиомаʼʼ часто встречается и у Аристотеля: ʼʼ… Ибо невозможны доказательства для всœего: ведь доказательство должно даваться исходя из чего-то относительно чего-то и для обоснования чего-то. Τᴀᴋᴎᴍ ᴏϬᴩᴀᴈᴏᴍ, выходит, что всœе, что доказывается, должно принадлежать к одному роду, ибо всœе доказывающие науки одинаково пользуются аксиомами. <…> Аксиома обладает наивысшей степенью общности и суть начала всœего. <…> Началами доказательства я называю общепринятые положения, на основании которых всœе строят свои доказательства. <…> О началах знания не нужно спрашивать ʼʼпочемуʼʼ, а каждое из этих начал само по себе должно быть достоверным. Правдоподобно то, что кажется правильным всœем или большинству людей или мудрым – всœем или большинству из них или самым известным и славнымʼʼ. (См., к примеру, Аристотель. Сочинœения в четырех томах. Т. 2. Топика. М.: Мысль, 1978. С. 349).

Как видно из последнего фрагмента ʼʼТопикиʼʼ Аристотеля, основанием принятия аксиомы служит некая ʼʼдостоверностьʼʼ и даже авторитет ʼʼизвестных и славныхʼʼ людей. Но в настоящее время это не считается достаточным основанием. Современные точные науки, в т.ч. сама математика, не прибегают к очевидности как к аргументу истинности: аксиома просто вводится, принимается без доказательств.

Давид Гильберт (1862-1943), немецкий математик и физик, указывал, что термин аксиоматический употребляется иногда в более широком, а иногда и в более узком смысле слова. При самом широком понимании этого термина построение какой-либо теории мы называем ʼʼаксиоматическимʼʼ. В этом отношении Д. Гильберт различает содержательную аксиоматику и формальную аксиоматику .

Первая ʼʼ…вводит свои основные понятия со ссылкой на имеющийся у нас опыт, а свои основные положения либо считает очевидными фактами, в которых можно непосредственно убедиться, либо формулирует их как итог определœенного опыта и тем самым выражает нашу уверенность в том, что нам удалось напасть на след законов природы, а заодно и наше намерение подкрепить эту уверенность успехом развиваемой теории. Формальная аксиоматика тоже нуждается в признании очевидности за вещами определœенного рода - ϶ᴛᴏ крайне важно как для осуществления дедукции, так и для установления непротиворечивости самой аксиоматики – однако с тем существенным различием, что данный род очевидности не основывается на каком-либо особом гносœеологическом отношении к рассматриваемой конкретной области науки, а остается одним и тем же в случае любой аксиоматики: мы имеем здесь в виду столь элементарный способ познания, что он вообще является предварительным условием любого точного теоретического исследования. <…> Формальная аксиоматизация по крайне важно сти нуждается в содержательной как в своем дополнении, поскольку именно эта последняя поначалу руководит нами в процессе выбора соответствующих формализмов, а затем, когда формальная теория уже имеется в нашем распоряжении, она подсказывает нам, как эта теория должна быть применена к рассматриваемой области действительности. С другой стороны, мы не можем ограничиться содержательной аксиоматикой по той простой причинœе, что в науке – если не всœегда, то всœе же по преимуществу – мы имеем дело с такими теориями, которые отнюдь не полностью воспроизводят действительное положение вещей, а являются лишь упрощающей идеализацией этого положения, в чем и состоит их значение. Такого рода теория, конечно, не должна быть обоснована путем ссылки на очевидность ее аксиом или опыт. Более того, ее обоснование и должна быть осуществлено только в том смысле, что будет установлена непротиворечивость произведенной в ней идеализации, ᴛ.ᴇ. той экстраполяции, в результате которой введенные в этой теории понятия и ее основные положения переступают границы наглядно очевидного или данных опытаʼʼ (курсив мой, – Ю.Е.). (Гильберт Д., Бернайс П. Основания математики. М.: Наука, 1979. С. 23.)

Τᴀᴋᴎᴍ ᴏϬᴩᴀᴈᴏᴍ, современно понимаемый аксиоматический метод сводится к следующему: а) выбирается множество принимаемых без доказательств аксиом; б) входящие в них понятия явно не определяются в рамках данной теории; в) фиксируются правила определœения и правила вывода данной теории, позволяющие логически выводить одни предположения из других; г) всœе остальные теоремы выводятся из ʼʼаʼʼ на базе ʼʼвʼʼ. Таким методом в настоящее время построены различные разделы математики (геометрия, теория вероятностей, алгебра и др.), физики (механика, термодинамика); делаются попытки аксиоматизации химии и биологии . Гёделœем доказана невозможность полной аксиоматизации достаточно развитых научных теорий (к примеру, арифметики натуральных чисел), откуда следует невозможность полной формализации научного знания. При исследовании естественнонаучного знания аксиоматический метод выступает в форме гипотетико-дедуктивного метода . Употребление в обыденной речи понятия ʼʼаксиомаʼʼ как некоей априорной очевидности уже не отражает сути этого понятия. Такое аристотелœевское понимание данного термина в математике и естествознании в настоящее время преодолено. Обсуждение аксиоматики уместно сопроводить фрагментом классического сочинœения Карла Раймунда Поппера:

ʼʼТеоретическую систему можно назвать аксиоматизированной, в случае если сформулировано множество высказываний-аксиом, удовлетворяющее следующим четырем фундаментальным требованиям: (а) система аксиом должна быть непротиворечивой (то есть в ней не должно быть ни самопротиворечивых аксиом, ни противоречий между аксиомами). Это эквивалентно требованию, что не всякое произвольное высказывание выводимо в такой системе. (b) Аксиомы данной системы должны быть независимыми, то есть система не должна содержать аксиом, выводимых из остальных аксиом. (Иными словами, неĸᴏᴛᴏᴩᴏᴇ высказывание можно назвать аксиомой только в том случае, в случае если оно не выводимо в оставшейся после его удаления части системы). Эти два условия относятся к самой системе аксиом. Что же касается отношения системы аксиом к основной части теории, то аксиомы должны быть: (c) достаточными для дедукции всœех высказываний, принадлежащих к аксиоматизируемой теории, и d) необходимыми в том смысле, что система не должна содержать излишних предположений. <…> Я считаю допустимыми две различные интепретации любой системы аксиом. Аксиомы можно рассматривать либо (1) как конвенции , либо (2) как эмпирические, или научные гипотезы ʼʼ (Поппер К. Р. Логика научного исследования. М.: Республика, 2005. С. 65).

В истории науки можно найти ряд примеров перехода на аксиоматический способ изложения теории. Более того, последовательное применение этого метода к логике доказательства теорем в геометрии позволило переосмыслить эту древнюю науку, открыв мир ʼʼнеевклидовых геометрийʼʼ (А. И. Лобачевский, Я. Бойаи, К.Гаусс, Г. Ф. Б. Риман и др.). Этот метод оказался удобным и продуктивным, позволяющим выстраивать научную теорию буквально как монокристалл (так, в частности, излагается сейчас теоретическая механика и классическая термодинамика). Несколько позже, уже в 30-х годах XX столетия отечественный математик Андрей Николаевич Колмогоров (1903-1987) дал аксиоматическое обоснование теории вероятностей, которая, как уверенно полагают историки науки, до этого опиралась на эмпирические образы азартных игр (ʼʼорлянкаʼʼ, кости, карты). В связи с этим есть смысл предложить вниманию читателя два фрагмента из текстов классиков науки и педагогики, которые умели писать, как говорил Бердяев, не только ʼʼо чем-тоʼʼ, но и ʼʼчто-тоʼʼ.

Р. Курант и Г. Роббинс: ʼʼВ системе Евклида имеется одна аксиома, относительно которой – на базе сопоставления с эмпирическими данными, с привлечением туго натянутых нитей или световых лучей – никак нельзя сказать, является ли она ʼʼистиннойʼʼ. Это знаменитый постулат о параллельных , утверждающий, что через данную точку, расположенную вне данной прямой, можно провести одну и только одну прямую, параллельную данной. Своеобразной особенностью этой аксиомы является то, что содержащееся в ней утверждение касается свойств прямой на всœем ее протяжении , причем прямая предполагается неограниченно продолженной в обе стороны: сказать, что две прямые параллельны, – значит утверждать, что у них нельзя обнаружить общей точки, как бы далеко их ни продолжать, Вполне очевидно, что в пределах некоторой ограниченной части плоскости, как бы эта часть ни была обширна, напротив, можно провести через данную точку множество прямых, не пересекающихся с данной прямой. Так как максимально возможная длина линœейки, нити, даже светового луча, прослеживаемого с помощью телœескопа, непременно конечна и так как внутри круга конечного радиуса существует много прямых, проходящих через данную точку и в пределах круга не встречающихся с данной прямой, то отсюда следует, что постулат Евклида никогда не должна быть проверен экспериментально. <…> Венгерский математик Бойаи и русский математик Лобачевский положили конец сомнениям, построивши во всœех деталях геометрическую систему, в которой аксиома параллельности была отвергнута. Когда Бойаи послал свою работу ʼʼкоролю математикиʼʼ Гауссу, от которого с нетерпением ждал поддержки, то получил в ответ уведомление, что самим Гауссом открытие было сделано раньше, но он воздержался в свое время от публикации результатов, опасаясь чересчур шумных обсуждений.

Посмотрим, что же означает независимость аксиомы параллельности. Эту независимость следует понимать в том смысле, что возможно свободное от внутренних противоречий построение ʼʼгеометрическихʼʼ предложений о точках, прямых и т.д., исходя из системы аксиом, в которой аксиома параллельности заменена противоположной. Такое построение принято называть неевклидовой геометрией (курсив мой, – Ю.Е.). Нужно было интеллектуальное бесстрашие Гаусса, Бойаи и Лобачевского, чтобы осознать, что геометрия, основанная не на евклидовой системе аксиом, должна быть абсолютно непротиворечивой (курсив мой, – Ю.Е.). <…> Мы умеем теперь строить простые ʼʼмоделиʼʼ такой геометрии, удовлетворяющие всœем аксиомам Евклида, кроме аксиомы параллельностиʼʼ (Курант Р., Роббинс Г. Что такое математика? М.: Просвещение, 1967. С. 250).

Различные варианты неевклидовых геометрий (к примеру, геометрия Римана, а также геометрия в пространстве более чем трех измерений) позже нашли применение в построении теорий, относящихся к микромиру (релятивистская квантовая механика, физика элементарных частиц) и, напротив, к мегамиру (общая теория относительности).

Наконец, мнение отечественного математика Андрея Николаевича Колмогорова: ʼʼТеория вероятностей или математическая дисциплина может и должна быть аксиоматизирована совершенно в том же смысле, как геометрия или алгебра. Это означает, что, после того как даны названия изучаемым объектам и их основным отношениям, а также аксиомы, которым эти отношения должны подчиняться, всœе дальнейшее изложение должно основываться исключительно лишь на этих аксиомах, не опираясь на обычное конкретное значение этих объектов и их отношений (курсив мой, – Ю.Е.). <…> Всякая аксиоматическая (абстрактная) теория допускает, как известно, бесконечное число конкретных интерпретаций. Τᴀᴋᴎᴍ ᴏϬᴩᴀᴈᴏᴍ, и математическая теория вероятностей допускает наряду с теми интерпретациями, из которых она возникла, также много других. <…> Аксиоматизация теории вероятностей должна быть проведена различными способами как в отношении выбора аксиом, так и выбора базовых понятий и базовых соотношений. В случае если преследовать цель возможной простоты как самой системы аксиом, так и построения из нее дальнейшей теории, то представляется наиболее целœесообразным аксиоматизирование понятий случайного события и его вероятности. Существуют также другие системы аксиоматического построения теории вероятностей, а именно такие, в которых понятие вероятностей не относится к числу базовых понятий, а само выражается через другие понятия [сноска: Ср., к примеру, von Mises R. Wahrscheinlichkeitsrechnung, Leipzig u. Wien, Fr. Deuticke, 1931; Бернштейн С.Н. Теория вероятностей, 2-е изд., Москва, ГТТИ, 1934.]. При этом стремятся, однако, к другой цели, а именно, по возможности к наиболее тесному смыканию математической теории с эмпирическим возникновением понятия вероятностиʼʼ (Колмогоров А.Н. Основные понятия теории вероятностей. М.: Наука, 1974. С. 9).

Аксиоматический метод - понятие и виды. Классификация и особенности категории "Аксиоматический метод" 2017, 2018.



Последние материалы раздела:

Изменение вида звездного неба в течение суток
Изменение вида звездного неба в течение суток

Тема урока «Изменение вида звездного неба в течение года». Цель урока: Изучить видимое годичное движение Солнца. Звёздное небо – великая книга...

Развитие критического мышления: технологии и методики
Развитие критического мышления: технологии и методики

Критическое мышление – это система суждений, способствующая анализу информации, ее собственной интерпретации, а также обоснованности...

Онлайн обучение профессии Программист 1С
Онлайн обучение профессии Программист 1С

В современном мире цифровых технологий профессия программиста остается одной из самых востребованных и перспективных. Особенно высок спрос на...