Аналитическая химия и физико-химические методы анализа: Учебное пособие. Предмет и задачи аналитической химии

Указанные методы анализа применяются в случае присутствия зависимости между измеряемыми физическими свойствами в-в и их качественным и количественным составом. Поскольку для измерения физических св-в в-в применяются различные приборы (инструменты), то эти методы наз-ся инструментальными. Классификация физических и физико-химических методов анализа. Основана на учете измеряемых физических и физико-химических св-в в-ва или изучаемой системы. Оптические методы основаны на измерении оптических св-в в-в. Хроматографические на использовании способности различных в-в к избирательной сорбции. Электрохимические методы основаны на измерении электрохимических св-в системы. Радиометрические основаны на измерении радиоактивных св-в в-в. Термические на измерении тепловых эффектов соответствующих процессов. Масс-спектрометрические на изучении ионизированных фрагментов («осколков») в-в. Ультразвуковые, магнитохимические, пикнометрические и т.д. Достоинства инструментальных методов анализа: низкий предел обнаружения 1 -10 -9 мкг; малая предельная концентрация, до 10 -12 г/мл определяемого в-ва; высокая чувствительность, формально определяемая величиной тангенса угла наклона соответствующей градуировочной кривой, отражающей графически зависимость измеряемого физического параметра, который откладывается обычно по оси ординат, от кол-ва или концентрации определяемого в-ва (ось абсцисс). Чем больше тангенс угла наклона кривой к оси абсцисс, тем чувствительнее метод, что означает следующее: для получения одинакового «отклика» - изменения физического свойства - требуется меньшее изменение концентрации или кол-ва измеряемого в-ва. К достоинствам относится высокая селективность (избирательность) методов, т. е. сотавные компоненты смесей можно определять без разделения и выделения этих компонентов; малая продолжительность времени проведения анализа, возможность их автоматизации и компьютеризации. Недостатки: сложность аппаратуры и высокая стоимость; большая погрешность (5 -20 %), чем в классическом химич-ом анализе (0,1 -0,5%); хуже воспроизводимость. Оптические методы анализа основаны на измерении оптических св-в в-ва (испускание, поглощение, рассеяние, отражение, преломление, поляризация света), проявляющихся при взаимодействии электромагнитного излучения с в-вом.

Классификация по изучаемым объектам: атомный и молекулярный спектральный анализ. По характеру взаимодействия электромагнитного излучения с в-ом. При этом различают следующие методы. Атомно-абсорбционный анализ, в основе которого лежит измерениепоглощения монохроматического излучения атомами определяемого в-ва в газовой фазе после атомизации в-ва. Эмиссионный спектральный анализ - измерение интенсивности света, излучаемого в-ом (чаще всего атомами или ионами) при его энергетическом возбуждении, например, в плазме электрического разряда. Пламенная фотометрия - использование газового пламени в качестве источника энергетического возбуждения излучения. Нефелометрия - измерение рассеивания света частицами света дисперсной системы (среды). Турбидиметрический анализ - измерение ослабления интенсивности излучения при его прохождении через дисперсную среду. Рефрактометрический анализ измерение показателей светопреломления в-в. Поляриметрический анализ измерение величины оптического вращения - угла вращения плоскости поляризации света оптически активными в-ми. По области используемого электромагнитного спектра классифицируют следующие методы: спектроскопия (спектрофотометрия) в УВИ области спектра, т. е. в ближайшей ультрафиолетовой области спектра - в интервале длин волн 200 - 400 нм и в видимой области - в интервале длин волн 400 - 700 нм. Инфракрасная спектроскопия, изучающая участок электромагнитного спектра в интервале 0,76 - 1000 мкм (1 мкм=10 -6 м), реже рентгеновская и микроволновая спектроскопия. По природе энергетических переходов в различных спектрах - электронных (изменение энергии электронных состояний атомов, ионов, радикалов, молекул, кристаллов в УВИ области); колебательных (при изменении энергии колебательных состояний 2-х и многоатомных ионов, радикалов, молекул, а также жидких и твердых фаз в ИК области); вращательных также в ИК и микроволновой области. Т.о. взаимодействие между молекулами и электромагнитным излучением заключается в том, что путем поглощения электромагнитного излучения молекулы переходят в возбужденное состояние. При этом важную роль играет энергия, т. е. длина волны поглощенного излучения.

Так, в рентгеновских лучах, длина волны которых 0,05 - 5 нм, происходит процесс возбуждения внутренних электронов в атомах и молекулах; в ультрафиолетовых лучах (5 - 400 нм) происходит процесс возбуждения внешних электронов в атомах и молекулах; видимый свет (400 - 700 нм) происходит возбуждение внешних электронов в сопряженных р-электронных системах; инфракрасное излучение (700 нм - 500 мк) происходит процесс возбуждения колебаний молекул; микроволны (500 мк - 30 см) процесс возбуждения вращения молекул; радиоволны (более 30 см) процесс возбуждения спиновых переходов в атомных ядрах (ядерный магнитный резонанс). Поглощение излучений позволяет в спектрометрии их измерять и регистрировать. При этом падающее излучение делится на эталонное и измеряемое при одинаковой интенсивности. Измеряемое излучение проходит через пробу; при этом происходит поглощение, изменяется интенсивность. При поглощении энергии электромагнитного излучения частицы в-ва (атомы, молекулы, ионы) увеличивают свою энергию, т. е. переходят в более высоколежащее энергетическое состояние. Электронные, колебательные, вращательные энергетические состояния частиц в-ва могут изменяться лишь дискретно, на строго определенную величину. Для каждой частицы существует индивидуальный набор энергетических состояний - энергетических уровней (термов), например, электронных уровней энергии. Электронные энергетические уровни молекул и многоатомных ионов имеют тонкую структуру - колебательные подуровни; поэтому одновременно с чисто электронными переходами осуществляются и колебательные переходы.

Каждому электронному (электронно-колебательному) переходу с нижнего энергетического уровня на более высоко лежащий электронный уровень отвечает полоса в электронном спектре поглощения. Так как разность между электронными уровнями для каждой частицы (атома, иона, молекулы) строго определенна, то строго определенным является и положение полосы в электронном спектре поглощения, соответствующей тому или иному электронному переходу, т. е. длина волны (частота, волновое число) максимума полосы поглощения. Различия в интенсивности измеряются детектором и записываются на самописце в виде сигнала (пика), стр 318, химия, справочник школьника и студента, схема спектрометра. Ультрафиолетовая спектроскопия и абсорбционная спектроскопия в видимой области. Поглощение электромагнитного излучения из ультрафиолетовой и видимой части спектра; возбуждает переходы электронов в молекулах с занятых на незанятые энергетические уровни. Чем больше разность в энергии между энергетическими уровнями, тем большую энергию, т.е. более короткую длину волны, должно иметь излучение. Часть молекулы, которая в значительной части определяет поглощение света, называется хромофором (буквально, несущие цвет) - это атомные группы, влияющие на поглощение света молекулой, в особенности сопряженные и ароматические системы р-электронов.

Структурные элементы хромофоров в основном и участвуют в поглощении кванта световой энергии, что приводит к появлению полос в сравнительно узком участке спектра поглощения соединений. Практическое значение для определения строения органических молекул имеет область от 200 до 700 нм. Количественное измерение: наряду с положением максимума поглощения для анализа важно значение экстинкции (ослабления) излучения, т. е. интенсивности его поглощения. В соответствии с законом Ламберта - Бера Е=lgI 0 /I=еcd, Е - экстинкция, I 0 - интенсивность падающего света, I - интенсивность проходящего света, е - молярный коэффициент экстинкции, см 2 /моль, c - концентрация, моль/л, d - толщина слоя пробы, см. Экстинкция зависит от концентрации поглощающего в-ва. Методы абсорбционного анализа колориметрия, фотоэлектроколориметрия, спектрометрия. Колориметрия самый простой и старый метод анализа, основан на визуальном сравнении окраски жидкостей (определение рН почвы на приборе Алямовского) - самый простой метод сравнения с серией эталонных р-ов. Широко распространены 3-и метода колориметрии: метод стандартных серий (метод шкалы), метод уравнивания окрасок и метод разбавления. Используются стеклянные колориметрические пробирки, стеклянные бюретки, колориметры, фотометры. Метод шкалы - это определение рН на приборе Алямовского, т. е. серия пробирок с различной конц-ей в-ва и разная по изменению интенсивности цвета р-ра или эталонных р-ов. Фотоколориметрия - метод основан на измерении интенсивности немонохроматического светового потока, прошедшего через анализируемый р-р с помощью фотоэлементов.

Световой поток от источника излучения (лампы накаливания) проходит через светофильтр, пропускающий излучение лишь в определенном интервале длин волн, через кювету с анализируемым р-ом и попадает на фотоэлемент, преобразующий световую энергию в фототок, регистрируемый соответствующим прибором. Чем больше светопоглощение анализируемого р-ра (т. е. чем выше его оптическая плотность), тем меньше энергия светового потока, попадающего на фотоэлемент. ФЭКи снабжаются н-ми светофильтрами, имеющими максимум светопропускания при различных длинах волн. При наличии 2-х фотоэлементов происходит измерение 2-х световых потоков, одного через анализируемый р-р, другого через р-р сравнения. Концентрацию исследуемого в-ва находят по градуировочному графику.

Электрохимические методы анализа основаны на электродных реакциях и на переносе электричества через р-ры. В количественном анализе используется зависимость величин измеряемых параметров электрохимических процессов (разность электрических потенциалов, ток, кол-во электричества) от сод-ия определяемого в-ва в р-ре, участвующего в данном электрохимическом процессе. Электрохимические процессы - такие процессы, которые сопровождаются одновременным протеканием химических реакций и изменением электрических св-в системы, которую в подобных случаях можно наз-ать электрохимической системой. Основные принципы потенциометрии

Как следует из названия метода - в нем измеряется потенциал. Для пояснения, что за потенциал и почему он возникает, рассмотрим систему состоящую из металлической пластины и находящегося с ней в контакте раствора, содержащего ионы того же металла (электролит) (рис. 1). Такая система называется электродом. Любая система стремится к такому состоянию, которое отвечает минимуму ее внутренней энергии. Поэтому в первый момент после погружения металла в раствор на границе раздела фаз начинают протекать процессы, ведущие к снижению внутренней энергии системы. Предположим, что ионизированное состояние атома металла энергетически более «выгодно», чем нейтральное (возможен и обратный вариант). Тогда в первый момент времени атомы металла будут переходить из поверхностного слоя пластины в раствор, оставляя в ней свои валентные электроны. При этом поверхность пластины приобретает отрицательный заряд, причем этот заряд растет по мере увеличения количества атомов металла, перешедших в виде ионов в раствор. Электростатические силы притяжения разноименных зарядов (отрицательнозаряженные электроны в пластине и положительные ионы металла в растворе) не позволяют удалиться этим зарядам от границы раздела фаз, а также вызывают обратный процесс перехода ионов металла из раствора в металлическую фазу и восстановления их там. Когда скорости прямого и обратного процессов становятся одинаковыми, наступает равновесие. Состояние равновесия системы характеризуется разделением зарядов на границе раздела фаз, т. е. появляется «скачок» потенциала. Следует отметить, что описанный механизм возникновения электродного потенциала является не единственным, в реальных системах протекает также множество других процессов, приводящих к образованию «скачка» потенциалов на межфазовой границе. Кроме того, «скачок» потенциала может возникать на границе раздела фаз не только при контакте электролита с металлом, но и при контакте электролита с другими материалами, например, полупроводниками, ионообменными смолами, стеклами и т. д.

При этом ионы, концентрация которых влияет на потенциал электрода называются потенциалопределяющими. Потенциал электрода зависит от природы материала, контактирующего с электролитом, концентрации потенциалопределяющих ионов в растворе и температуры. Этот потенциал измеряется относительно другого электрода, потенциал которого постоянен. Т. о., установив эту связь, возможно использовать ее в аналитической практике для определения концентрации ионов в растворе. При этом электрод, потенциал которого измеряется, носит название измерительный, а электрод, относительно которого производятся измерения - вспомогательный или электрод сравнения. Постоянство потенциала электродов сравнения достигается постоянством концентрации потенциалопределяющих ионов в его электролите (электролит №1). Состав электролита №2 может меняться. Для предотвращения смешивания двух разных электролитов они разделяются мембраной, проницаемой для ионов. Потенциал измерительного электрода принимается равным измеренной э.д.с., приведенной электрохимической системы. Применяя в качестве электролита №2, растворы известного состава можно установить зависимость потенциала измерительного электрода от концентрации потенциалоопределяющих ионов. Эта зависимость в дальнейшем может быть использована при анализе раствора неизвестной концентрации.

Для стандартизации шкалы потенциалов в качестве электрода сравнения принят стандартный водородный электрод, потенциал которого принят равным нулю при любой температуре. Однако при обычных измерениях водородный электрод применяется редко из-за своей громоздскости. В повседневной практике применяют другие более простые электроды сравнения, потенциал которых относительно водородного электрода определен. Поэтому, при необходимости, результат измерения потенциала, проведенного относительно таких электродов, может быть пересчитан относительно водородного электрода. Наиболее широко распространенными являются хлорсеребряный и каломельный электроды сравнения. Разность потенциалов измерительного электрода и электрода сравнения является мерой концентрации определяемых ионов.

Электродную функцию можно описать с помощью линейного уравнения Нернста:

Е = Е 0 + 2,3 RT/nF *lg а,

где Е - разность потенциалов между измерительным электродом и электродом сравнения, мВ; Е 0 - константа, зависящая в основном от свойств электрода сравнения (стандартный потенциал электрода), мВ; R - газовая постоянная, Дж*моль -1 * К -1. ; n - заряд иона с учетом его знака; F - число Фарадея, Кл/моль; Т - абсолютная температура, 0 К; член 2,3 RT/nF, входящий в уравнение Нернста при 25 0 С равен 59,16 мВ для однозарядных ионов. Метод без наложения внешнего (постороннего) потенциала классифицируется как метод, основанный на учете природы источника электрической энергии в системе. В этом методе источником эл.эн. служит сама элек-хим-ая система, представляющая собой гальванический элемент (гальваническую цепь) - потенциометрические методы. ЭДС и электродные потенциалы в такой системе зависят от сод-ия определяемого в-ва в р-ре. Электрохимическая ячейка включает 2-ва электрода - индикаторный и электрод сравнения. Величина ЭДС, генерируемой в ячейке, равна разности потенциалов этих 2-х электродов.

Потенциал электрода сравнения в условиях проведения потенциометрического определения остается постоянным, то ЭДС зависит только от потенциала индикаторного электрода, т. е. от активностей (концентраций) тех или иных ионов в р-ре. На этом и основано потенциометрическое определение концентрации данного в-ва в анал-ом р-ре. Применяют как прямую потенциометрию, так и метод потенциометрического титрования. При определении рН р-ов в кач-ве индикаторных используются электроды потенциал которых зависит от конц-ии ионов водорода: стеклянный, водородный, хингидронный (окислительно-восстановительный электрод в виде платиновой проволоки, погруженной в р-р НС1, насыщенной хингидроном - эквимолекулярным соединением хинона с гидрохиноном) и нек-ые др. Мембранные или ион-селективные электроды имеют реальный потенциал, зависящий от активности тех ионов в р-ре, кот-ые сорбируются мембраной электрода (твердой или жидкой) метод наз-ся ионометрией.

Спектрофотометрами наз-ют приборы, позволяющие производить измерения светопоглощения образцов в узких по спектральному составу пучках света (монохроматический свет). Спектрофотметры позволяют разлагать белый свет в непрерывный спектр, выделять из этого спектра узкий интервал длин волн (1 - 20 нм ширина выделяемой полосы спектра), пропускать изолированный пучок света через анализируемый р-р и измерять с высокой точностью интенсивность этого пучка. Поглощение света окрашенным в-ом в р-ре измеряют, сравнивая его с поглощением нулевого р-ра. В спектрофотометре сочетаются два прибора: монохроматор для получения монохроматического светового потока и фотоэлектрический фотометр, предназначенный для измерения интенсивности света. Монохроматор состоит из источника света, диспергирующего устройства (разлагающего белый свет в спектр) и устройства регулирующего величину интервала длин волн светового пучка, падающего на р-р.

Из разнообразных физико-химических и физических методов анализа наибольшее значение имеют 2-ве группы методов: 1 - методы, основанные на изучении спектральных характеристик в-ва; 2 - методы, основанные на изучении физико-химических параметров. Спектральные методы основаны на явлениях, происходящих при взаимодействии вещества с различными видами энергии (электромагнитным излучением, термической энергией, электрической и пр.). К основным видам взаимодействия в-ва с лучистой энергией относится поглощение и испускание (эмиссия) излучения. Характер явлений, обусловленных поглощением или испусканием, в принципе одинаков. При взаимодействии излучения с в-вом частицы его (атомы молекулы) переходят в возбужденное состояние. Через некоторое время (10 -8 с) частицы возвращаются в основное состояние, испуская избыточную энергию в виде электромагнитного излучения. Эти процессы связаны с электронными переходами в атоме или молекуле.

Электромагнитное излучение можно охарактеризовать длиной волныл или частотой н, которые связаны между собой соотношением н=с/л, где с - скорость света в вакууме (2,29810 8 м/с). Совокупность всех длин волн (частот) электромагнитного излучения составляет электромагнитный спектр от г-лучей (коротковолновая область, фотоны обладают высокой энергией) до видимой области спектра (400 - 700 нм) и радиоволн (длинноволновая область, фотоны с низкой энергией).

На практике имеют дело с излучением, характеризующимся определенным интервалом длин волн (частот), т. е. с определенным участком спектра (или, как говорят, с полосой излучения). Часто для аналитических целей используется и монохроматический свет (световой поток, в котором электромагнитные волны имеют одну длину волны). Избирательное поглощение атомами и молекулами излучения с определенными длинами волн приводит к тому, что каждое в-во характеризуется индивидуальными спектральными характеристиками.

Для аналитических целей используют как поглощение излучения атомами и молекулами (соответственно атомно- абсорбционная спектроскопия), так и испускание излучения атомами и молекулами (эмиссионная спектроскопия и люминесценция).

Спектрофотометрия основана на избирательном поглощении электромагнитного излучения в-вом. Измеряя поглощение в-вом излучения различных длин волн, можно получить спектр поглощения, т. е. зависимость поглощения от длины волны падающего света. Спектр поглощения - это качественная характеристика в-ва. Количественной характеристикой является количество поглощенной энергии или оптическая плотность раствора, которая зависит от концентрации поглощающего в-ва по закону Бугера-Ламберта-Бера: D=еІс, где D - оптическая плотность, i - толщина слоя; с - концентрация, моль/л; е - молярный коэффициент поглощения (е = D при І=1 см и с=1 моль/л). Величина е служит характеристикой чувствительности: чем больше значение е, тем меньшие количества в-ва можно определить. Многие в-ва (особенно органические) интенсивно поглощают излучение в УФ- и видимой областях, что делает возможным их непосредственное определение. Большинство ионов, наоборот, слабо поглощают излучение видимой области спектра (е? 10…1000), поэтому их обычно переводят в другие, более интенсивно поглощающие соединения, а затем проводят измерения. Для измерения поглощения (оптической плотности) используют спектральные приборы 2-х видов: фотоэлектроколориметры (с грубой монохроматизацией) и спектрофотометры (с более тонкой монохроматизацией). Наиболее распространенным является фотометрический метод анализа, количественные определения в котором основаны на законе Бугера-Ламберта-Бера. Основными приемами фотометрических измерений являются: метод молярного коэффициента светопоглощения, метод градуировочного графика, метод стандартов (метод сравнения), метод добавок. В методе молярного коэффициента светопоглощения измеряют оптическую плотность D исследуемого р-ра и по известному значению молярного коэффициента светопоглощения е рассчитывают концентрацию с поглощающего в-ва в растворе: с = D/(е І). В методе градуировочного графика готовят ряд стандартных растворов с известным значением концентрации с определяемого компонента и определяют их значение оптической плотности D.

По полученным данным строят градуировочный график - зависимость оптической плотности раствора от концентрации в-ва: D = f(с). В соответствии с законом Бухера-Ламберта-Бера график представляет собой прямую линию. Затем измеряют оптическую плотность D исследуемого раствора и по градуировочному графику определяют концентрацию определяемого соединения. Метод сравнения (стандартов) основан на сравнении оптической плотности стандартного и исследуемого растворов:

D ст =е*І*с ст и D х = е*І*с х,

откуда D х / D ст =е*І*с х /е*І*с ст и с х =с ст *D х /Dст. В методе добавок сравниваются значения оптической плотности исследуемого раствора и того же раствора с добавлением (с а) известного количества определяемого компонента. По результатам определений рассчитывают концентрацию в-ва в исследуемом растворе: D х = е*І*с х и D х+а = е*І*(с х +с а), откуда D х /D х+а = е*І*с х /е*І*(с х +с а) и с х =с а * D х /D х+а - D х. .

Атомно-абсорбционная спектроскопия основана на избирательном поглощении излучения атомами. Для переведения вещества в атомарное состояние раствор образца впрыскивают в пламя или подогревают в специальной кювете. В результате растворитель улетучивается или сгорает, а твердое в-во атомизируется. Большая часть атомов остается в невозбужденном состоянии, и лишь небольшая часть возбуждается с последующим испусканием излучения. Набор линий, соответствующий длинам волн поглощаемого излучения, т. е. спектр, является качественной характеристикой, а интенсивность этих линий - соответственно количественной характеристикой в-ва.

Атомно-эмиссионная спектроскопия основана на измерении интенсивности света, излучаемого возбужденными атомами. Источниками возбуждения могут быть пламя, искровый разряд, электрическая дуга и др. Для получения спектров испускания пробу в виде порошка или раствора вводят в источник возбуждения, где происходит переход в-ва в газообразное состояние или частичный распад его на атомы и простые (по составу) молекулы. Качественной характеристикой в-ва является его спектр (т. е. набор линий в спектре испускания), а количественной - интенсивность этих линий.

Люминесценция основана на испускании излучения возбужденными молекулами (атомами, ионами) при переходе их в основное состояние. Источниками возбуждения при этом могут быть ультрафиолетовое и видимое излучение, катодные лучи, энергия химической реакции и пр. Энергия излучения (люминесценции) всегда меньше поглощенной энергии, т. к. часть поглощенной энергии еще до начала испускания преобразуется в тепловую. Следовательно, люминесцентное испускание всегда имеет меньшую длину волны, чем длина волны поглощенного при возбуждении света. Люминесценция может использоваться как для обнаружения в-в (по длине волны), так и для их количественного определения (по интенсивности излучения). Электрохимические методы анализа основаны на взаимодействии в-ва с электрическим током. Протекающие при этом процессы локализованы либо на электродах, либо в приэлектродном пространстве. Большинство методов относятся к первому из этих типов. Потенциометрия. Электродным процессом называется гетерогенная реакция, при которой заряженная частица (ион, электрон) переносится через границу раздела фаз. В рез-те такого переноса на пов-ти электрода возникает разность потенциалов, обусловленная образованием двойного электрического слоя. Как всякий процесс, электродная реакция с течением времени приходит к равновесию, и на электроде устанавливается равновесный потенциал.

Измерение величин равновесных электродных потенциалов является задачей потенциометрического метода анализа. Измерения при этом проводят в электрохимической ячейке состоящей из 2-х полуэлементов. Одиг из них содержит индикаторный электрод (потенциал которого зависит от концентрации определяемых ионов в растворе в соответствии с уравнением Нернста), а другой - электрод сравнения (потенциал которого постоянен и не зависит от состава раствора). Метод может быть реализован в варианте прямой потенциометрии или в варианте потенциометрического титрования. В первом случае измеряют потенциал индикаторного электрода в анализируемом растворе относительно электрода сравнения и по уравнению Нернста рассчитывают концентрацию определяемого иона. В варианте потенциометрического титрования определяемый ион титруют подходящим реагентом, следя одновременно за изменением потенциала индикаторного электрода. По полученным данным строят кривую титрования (зависимость потенциала индикаторного электрода от объема прибавленного титранта). На кривой вблизи точки эквивалентности наблюдается резкое изменение значения потенциала (скачок потенциала) индикаторного электрода, что позволяет рассчитать содержание определяемого иона в растворе. Электродные процессы очень многообразны. В целом их можно классифицировать на 2-ве большие группы: процессы, происходящие с переносом электронов (т. е. собственно электрохимические процессы), и процессы, связанные с переносом ионов(при этом электроду присуща ионная проводимость). В последнем случае речь идет о так называемых ионселективных мембранных электродах, широко применяемых в настоящее время. Потенциал такого электрода в растворе, содержащем определяемые ионы, зависит от их концентрации по уравнению Нернста. К этому же типу электродов относится и стеклянный электрод, применяемый в рН-метрии. Возможность создания большого числа мембранных электродов с высокой селективностью к тем или иным ионам выделила эту область потенциометрического анализа в самостоятельную отрасль - ионометрию.

Полярография. При прохождении тока в электрохимической ячейке наблюдается отклонение величин электродных потенциалов от их равновесных значений. В силу ряда причин возникает так называемая электродная поляризация. Явление поляризации, возникающей в процессе электролиза на электроде с малой поверхностью, лежит в основе данного метода анализа. В этом методе к электродам, опущенным в исследуемый раствор, прикладывают возрастающую разность потенциалов. При малой величине разности потенциалов ток через раствор практически не идет (т. н. остаточный ток). При увеличении разности потенциалов до величины, достаточной для разложения электролита, сила тока резко возрастает. Эту величину разности потенциалов называют потенциалом разложения. Измеряя зависимость силы тока, проходящего через раствор, от величины приложенного напряжения, можно построить т. н. вольтамперную кривую, которая позволяет с достаточной точностью определить качественный и количественный состав раствора. При этом качественной характеристикой в-ва является величина разности потенциалов, достаточная для его электрохимического разложения (потенциал полуволны Е S), а количественной - величина прироста силы тока, обусловленная его электрохимическим разложением в растворе (высота длины волны Н, или различие в величинах предельного диффузионного тока и остаточного тока). Для количественного определения концентрации в-ва в растворе используют следующие приемы: метод градуировочного графика, метод стандартов, метод добавок. Кондуктометрический метод анализа основан на зависимости электропроводности раствора от концентрации электролита. Применяется, как правило, в варианте кондуктометрического титрования, точку эквивалентности в котором определяют по перегибу кривой титрования (зависимости электропроводности от количества прибавленного титранта). Амперометрическое титрование является разновидностью потенциометрического титрования, только индикаторным электродом является полярографическое устройство, т.е. применяется микроэлектрод с наложенным напряжением.

Основная цель аналитической химии - обеспечить в зависимости от поставленной задачи точность, высокую чувствительность, экспрессность и (или) избирательность анализа. Разрабатываются методы, позволяющие анализировать микрообъекты (смотри Микрохимический анализ), проводить локальный анализ(в точке, на поверхности и т.д.), анализ без разрушения образца (см. Неразрушающий анализ), на расстоянии от него (дистанционный анализ), непрерывный анализ (например, в потоке), а также устанавливать, в виде какого химического соединения и в составе какой фазы существует в образце определяемый компонент (фазовый анализ). Важные тенденции развития аналитической химии - автоматизация анализов, особенно при контроле технологических процессов и математизация, в частности широкое использование ЭВМ.

Структура. Можно выделить три крупных направления аналитической химии: общие теоретические основы; разработка методов анализа; аналитическая химия отдельных объектов. В зависимости от цели анализа различают качественный анализи количественный анализЗадача первого - обнаружение и идентификация компонентов анализируемого образца, второго - определение их концентраций или масс. В зависимости от того, какие именно компоненты нужно обнаружить или определить, различают изотопный анализ, элементный анализ, структурно-групповой (в т. ч. функциональный анализ), молекулярный анализ, фазовый анализ. По природе анализируемого объекта различают анализ неорганических и органических веществ.

В теоретич. основах аналитической химии существенное место занимает метрология химического анализа, в том числе статистическая обработка результатов. Теория аналитической химии включает также учение об отборе и подготовкеаналитических проб. о составлении схемы анализа и выборе методов, принципах и путях автоматизации анализа, применения ЭВМ, а также основы народнохозяйств. использования результатов хим. анализа. Особенность аналитической химии - изучение не общих, а индивидуальных, специфических свойств и характеристик объектов, что обеспечивает избирательность мн. аналитичекских методов. Благодаря тесным связям с достижениями физики, математики, биологии и разл. областей техники (это особенно касается методов анализа) аналитическая химия превращена в дисциплину на стыке наук.

В аналитической химии различают методы разделения, определения (обнаружения) и гибридные, сочетающие методы первых двух групп. Методы определения подразделяют на химические методы анализа (гравиметрический анализ, титриметрия), физико-химические методы анализа (например, электрохимические, фотометрические, кинетические),физические методы анализа (спектральные, ядерно-физические и другие) и биологические методы анализа. Иногда методы определения делят на химические, основанные на химических реакциях, физические, базирующиеся на физических явлениях, и биологические, использующие отклик организмов на изменения в окружающей среде.

Аналитическая химия определяет общий подход к выбору путей и методов анализа. Разрабатываются способы сопоставления методов, условия их взаимозаменяемости и сочетания, принципы и пути автоматизации анализа. Для практич. использования анализа необходима разработка представлений о его результате как показателе качества продукции, учение об экспрессном контроле технол. процессов, создание экономичных методов. Большое значение для аналитиков, работающих в различных отраслях народного хозяйства, имеет унификация и стандартизация методов. Разрабатывается теория оптимизации кол-ва информации, необходимой для решения аналитической задачи.

Методы анализа . В зависимости от массы или объема анализируемого образца методы разделения и определения иногда подразделяют на макро-, микро- и ультрамикрометоды.

К разделению смесей обычно прибегают в тех случаях, когда методы прямого определения или обнаружения не позволяют получить правильный результат из-за мешающего влияния других компонентов образца. Особенно важно так называемое относительное концентрирование - отделение малых количеств определяемых компонентов от значительно больших количествв основных компонентов пробы. Разделение смесей может базироваться на различии в термодинамических, или равновесных, характеристиках компонентов (константы обмена ионов, константы устойчивости комплексов) или кинетических параметров. Для разделения применяют главным образом хроматографию, экстракцию, осаждение, дистилляцию, а также электрохимические методы, например электроосаждение.

Физико-химические методы анализа , основаны на зависимости физических свойств вещества от его природы, причем аналитический сигнал представляет собой величину физического свойства, функционально связанную сконцентрацией или массой определяемого компонента. Физико-химические методы анализа могут включать химические превращения определяемого соединения, растворение образца, концентрирование анализируемого компонента, маскирование мешающих веществ и других. В отличие от «классических» химических методов анализа, где аналитическим сигналом служит масса вещества или его объем, в физико-химические методы анализа в качестве аналитического сигнала используют интенсивность излучения, силу тока, электропроводность, разность потенциалов и др.

Важное практическое значение имеют методы, основанные на исследовании испускания и поглощения электромагнитного излучения в различных областях спектра. К ним относится спектроскопия (например, люминесцентный анализ, спектральный анализ, нефелометрия и турбидиметрия и другие). К важным физико-химическим методам анализа принадлежат электрохимические методы, использующие измерение электрических свойств вещества.

ФИЗИЧЕСКИЕ МЕТОДЫ АНАЛИЗА , основаны на измерении эффекта, вызванного взаимод. с в-вом излучения - потока квантов или частиц. Излучение играет примерно ту же роль, что играет реактив в химических методах анализа. Измеряемый физ. эффект представляет собой сигнал. В результате неск. или мн. измерений величины сигнала и их стати-стич. обработки получают аналит. сигнал. Он связан с концентрацией или массой определяемых компонентов.

Исходя из характера используемого излучения, физические методы анализа можно разделить на три группы: 1) методы, использующие первичное излучение, поглощаемое образцом; 2) применяющие первичное излучение, рассеиваемое образцом; 3) использующие вторичное излучение, испускаемое образцом. К примеру, масс-спектрометрия относится к третьей группе -первичным излучением здесь служит поток электронов , квантов света, первичных ионов или др. частиц, а вторичное излучение представляет собой ионы разл. масс и зарядов.

С точки зрения практич. применения чаще используют др. классификацию физических методов анализа: 1) спектроскопич. методы анализа -атомно-эмиссионная, атомно-абсорбционная, атомно-флуо-ресцентная спектрометрия и др. (см., напр., Атомно-абсорб-ционный анализ, Атомно-флуоресцентный анализ , Инфракрасная спектроскопия , Ультрафиолетовая спектроскопия), рентгеновская спектроскопия , в т. ч. рентгено-флуоресцент-ный метод и рентгеноспектральный микроанализ, масс-спектрометрия , электронный парамагнитный резонанс и ядерный магнитный резонанс , электронная спектрометрия; 2) ядер-но-физ. и радиохим. методы - радиоактивационный анализ (см. Активационный анализ), ядерная гамма-резонансная, или мёссбауэровская спектроскопия , изотопного разбавления метод ", 3) прочие методы, напр. рентгеновская дифрактометрия (см. Дифракционные методы), и др.

Достоинства физ. методов: простота пробоподготовки (в большинстве случаев) и качественного анализа проб , большая универсальность по сравнению с хим. и физ.-хим. методами (в т.ч. возможность анализа многокомпонентных смесей), широкий динамич. диапазон (т. е. возможность определения основных, примесных и следовых составляющих), часто низкие пределы обнаружения как по концентрации (до 10 -8 % без использования концентрирования), так и по массе (10 -10 -10 -20 г), что позволяет расходовать предельно малые кол-ва пробы , а иногда проводить неразрушающий анализ . Многие физические методы анализа позволяют выполнять как валовый, так и локальный и послойный анализ с пространств. разрешением вплоть до моноатомного уровня. Физические методы анализа удобны для автоматизации.

Использование достижений физики в аналит. химии приводит к созданию новых методов анализа. Так, в кон. 80-х гг. появились масс-спектрометрия с индуктивно связанной плазмой , ядерный микрозонд (метод, основанный на регистрации рентгеновского излучения, возбужденного при бомбардировке исследуемого образца пучком ускоренных ионов , обычно протонов). Расширяются области применения физических методов анализа природных объектов и техн. материалов. Новый толчок их развитию даст переход от разработки теоретич. основ отдельных методов к созданию общей теории физических методов анализа. Цель таких исследований - выявление физ. факторов, обеспечивающих все связи в процессе анализа. Нахождение точной взаимосвязи аналит. сигнала с содержанием определяемого компонента открывает путь к созданию "абсолютных" методов анализа, не требующих образцов сравнения. Создание общей теории облегчит сопоставление физических методов анализа между собой, правильный выбор метода для решения конкретных аналит. задач, оптимизацию условий анализа.

Лит.: Данцер К., Тан Э., Moльх Д., Аналитика. Систематический обзор, пер. с нем., M., 1981; Юинг Г., Инструментальные методы химического анализа , пер. с англ., M., 1989; Рамендик Г.И., Шишов В.В., "Ж. аналит. химии ", 1990, т. 45, № 2, с. 237-48; Золотов Ю.А., Аналитическая химия : проблемы и достижения, M., 1992. Г.И. Рамендик.

Т.Н.ОРКИНА

ХИМИЧЕСКИЙ И ФИЗИКО-ХИМИЧЕСКИЙ АНАЛИЗ

Учебное пособие

Оркина Т. Н. Химия. Химический и физико-химический анализ. Учебное пособие / СПб.: Изд-во Политехнического Ун-та, 2012. – 45с.

В пособии представлены цели и задачи современной аналитической химии - химических, физико-химических и физических методов анализа.

Подробно изложены методики проведения качественного и количественного анализа. Дается описание лабораторных работ по качественному анализу растворов и металлических сплавов, а также расчеты и методика проведения титриметрического (объемного) анализа. Рассмотрены основы физико-

химического анализа - построение фазовых диаграмм, термический анализ металлических сплавов и построение диаграмм плавкости.

Пособие соответствует образовательному стандарту дисциплин «Химия» и «Неорганическая химия» и предназначено для студентов высших учебных заведений, обучающихся по различным направлениям и специальностям в области техники и технологии по направлению

«Материаловедение», «Металлургия» и другим. Пособие может быть полезно для студентов, обучающихся по любым техническим специальностям в рамках дисциплины «Химия».

ВВЕДЕНИЕ

Аналитическая химия – это раздел химии, изучающий свойства и процессы превращения веществ с целью установления их химического состава. Установление химического состава веществ (химическая идентификация) – это ответ на вопрос о том, какие элементы или их соединения и в каких количественных соотношениях содержаться в анализируемом образце. Аналитическая химия развивает теоретические основы химического анализа веществ и материалов, разрабатывает методы идентификации, обнаружения, разделения и определения химических элементов и их соединений, а также методы установления строения вещества. Обнаружение или, как говорят, открытие элементов или ионов, входящих в состав исследуемого вещества, составляют предмет качественного анализа . Определение концентраций или количества химических веществ, входящих в состав анализируемых объектов, составляет задачу количественного анализа . Качественный анализ обычно предшествует количественному анализу, так как для выполнения количественного анализа требуется знать качественный состав анализируемого образца. Когда состав изучаемого объекта известен заранее, качественный анализ проводят по мере необходимости.

1. МЕТОДЫ АНАЛИТИЧЕСКОЙ ХИМИИ

Для обнаружения какого-либо компонента обычно используют так называемый аналитический сигнал. А налитический сигнал – это видимые изменения в самом объекте исследования (образование осадка, изменение окраски и т.д.) или изменение параметров измерительных приборов

(отклонение стрелки прибора, изменение цифрового отсчета, появление линии в спектре и пр.). Для получения аналитического сигнала используют химические реакции разных типов (ионообменные, комплексообразования, окислительно-восстановительные), различные процессы (например,

осаждение, выделение газов), а также разнообразные химические, физические и биологические свойства самих веществ и продуктов их реакций. Поэтому

аналитическая химия располагает различными методами для решения своих задач.

Химические методы (химический анализ) основаны на проведении химической реакции между изучаемым образцом и специально подобранными реактивами. В химических методах аналитический сигнал, возникающий в результате химической реакции, наблюдают, главным образом, визуально.

Физико-химические методы анализа основаны на количественном изучении зависимости состав – физическое свойство объекта. Аналитическим сигналом служит электрический потенциал, сила тока,

сопротивление и др., или любой другой параметр (температура фазовых превращений, твердость, плотность, вязкость, давление насыщенного пара и т.п.), связанный определенной функциональной зависимостью с составом и концентрацией объекта исследования. Физико-химические методы исследования обычно требуют применения высокочувствительной аппаратуры. Достоинствами этих методов являются их объективность,

возможность автоматизации и быстрота получения результатов. Примером физико-химического метода анализа является потенциометрическое определение рН раствора с помощью измерительных приборов - потенциометров. Этот метод позволяет не только измерять, но и непрерывно следить за изменением рН при протекании в растворах каких-либо процессов.

В физических методах анализа аналитический сигнал, как правило,

получают и регистрируют с помощью специальной аппаратуры. К физическим методам, прежде всего, относятся оптические спектроскопические методы анализа, основанные на способности атомов и молекул испускать, поглощать и рассеивать электромагнитное излучение.

Регистрируя испускание, поглощение или рассеяние электромагнитных волн анализируемым образцом, получают совокупность сигналов,

характеризующих ее качественный и количественный состав.

Между всеми тремя методами нет резкой границы, поэтому это деление несколько условно. Например, в химических методах пробу подвергают сначала действию какого-либо реагента, т.е. проводят определенную химическую реакцию, и только после этого наблюдают и измеряют физическое свойство. При анализе физическими методами наблюдение и измерение выполняют непосредственно с анализируемым материалом, используя специальную аппаратуру, причем химические реакции, если они проводятся, играют вспомогательную роль. В соответствии с этим в

химических методах анализа главное внимание уделяют правильному выполнению химической реакции, в то время как в физико-химических и физических методах основной упор делается на соответствующее аппаратурное обеспечение измерения – определение физического свойства.

2. КЛАССИФИКАЦИЯ ХИМИЧЕСКИХ И ФИЗИКО-

ХИМИЧЕСКИХ МЕТОДОВ

Химические и физико-химические методы анализа классифицируют в зависимости от массы и объема анализируемых проб. По количеству вещества или смеси веществ (пробы), используемого для анализа, различают макро-, полумикро-, субмикро-, и ультрамикроанализ. В таблице 1 приведены диапазоны массы и объема растворов пробы, рекомендуемые отделением аналитической химии ИЮПАК (аббревиатура с английского Международного союза теоретической и прикладной химии).

Таблица 1

Вид анализа

Масса пробы,г

раствора, мл

Макроанализ

10-103

Полумикроанализ

10-1 – 10

Микроанализ

10-2 – 1

Субмикроанализ

10-4 – 10-3

менее 10-2

Ультрамикроанализ

менее 10-4

менее 10-3

В зависимости от характера поставленной задачи различают следующие виды анализа.

1 . Элементный анализ – установление наличия и содержания отдельных элементов в данном веществе, т.е. нахождение его элементного состава.

2 . Фазовый анализ – установление наличия и содержания отдельных фаз исследуемого материала. Например, углерод в стали может находиться в виде графита или в форме карбидов железа. Задача фазового анализа – найти, сколько углерода содержится в виде графита и сколько в виде карбидов.

3 . Молекулярный анализ (вещественный анализ) - установление наличия и содержания молекул различных веществ (соединений) в материале.

Например, в атмосфере определяют количество CO, CO2 , N2 , O2 др. газы.

4 . Функциональный анализ – установление наличия и содержания функциональных групп в молекулах органических соединений, например аминогрупп (-NH2 ), нитро(-NO2 ), гидроксильных (-ОН) и других групп.

В зависимости от характера анализируемого материала различают

анализ неорганических и органических веществ. Выделение анализа органических веществ в отдельный раздел аналитической химии связано с особенностями органических веществ. Даже первый этап анализа – переведение пробы в раствор - существенным образом различается для органических и неорганических веществ.

Основными этапами любого химического анализа сложных

материалов являются следующие действия.

1. Отбор пробы для анализа. Средний состав пробы должен соответствовать среднему составу всей партии анализируемого материала.

2. Разложение пробы и переведение ее в раствор. Пробу растворяют в воде или кислотах, сплавляют с различными веществами или используют другие способы или химические воздействия.

Проведение химической реакции:

Р, где Х –

компонент пробы; R – реагент; Р – продукт реакции.

Фиксация

измерение

какого-либо физического параметра

продукта реакции, реагента или определяемого вещества.

Рассмотрим

подробно

химического

анализа –

качественный и количественный анализ.

3. КАЧЕСТВЕННЫЙ АНАЛИЗ

Задачей качественного анализа является идентификация компонентов и определение качественного состава вещества или смеси веществ. Обнаружение или, как говорят, открытие элементов или ионов в составе исследуемого вещества производят, переводя их в соединение, обладающее какими-либо характерными свойствами, т. е. фиксируют появление аналитического сигнала. Происходящие при этом химические превращения называются аналитической реакцией. Вещество, с помощью которого проводят открытие – реактивом или реагентом.

Существуют разные приемы качественного анализа, требующие применения различных количеств исследуемого вещества в соответствии с таблицей 1. Например: в макроаналитическом методе берут около 1г вещества (0,5 г для металлов и сплавов) и растворяют в 20-30 мл воды.

Реакции проводят в пробирках (пробирочный анализ). В случае проведения микроанализа веществ берут примерно в 100 раз меньше по сравнению с макроанализом (миллиграммы твердого вещества и несколько десятых миллилитров раствора). Для открытия отдельных частей применяют высокочувствительные реакции, позволяющие обнаружить присутствие малых количеств элемента или иона. Выполнение реакций производят либо микрокристаллическим, либо капельным методом. Микрокристаллические реакции выполняют на предметном стекле и о присутствии элемента судят по форме образующихся кристаллов, которые рассматривают под микроскопом. Капельные реакции , сопровождающиеся изменением окраски раствора и образованием окрашенных осадков, выполняют на полоске фильтровальной бумаги, нанося на нее по капле исследуемые растворы и реактивы. Иногда капельные реакции проводят на специальной «капельной пластинке» - фарфоровой пластинке с углублениями, а также на часовом стекле или в фарфоровом тигле малого размера. Полумикроананализ (полумикрометод)

занимает промежуточное положение между макро- и микроанализом.

Необходимое для исследования состава количество вещества, примерно 20-25 раз меньше, чем при проведении макроанализа – около 50мг твердого вещества и 1мл раствора. В данном методе сохраняется система макроанализа и открытия ионов, но все реакции выполняют с малыми количествами вещества, пользуясь специальной техникой и аппаратурой. Например, реакции проводят в маленьких пробирках на 1-2мл, в которые растворы вводят с помощью пипеток. Отделение осадков производят только центрифугированием. Субмикроанализ и ультрамикроанализ проводятся по специальным методикам с использованием микроскопов разной степени увеличения, электронных микроскопов и другой аппаратуры. Их рассмотрение не входит в задачу данного пособия.

В качественном анализе химические реакции проводят чаще всего в растворе, так называемым «мокрым путем». Но иногда возможно проведение твердофазных реакций, т.е. реакций «сухим путем» . Вещество и соответствующие реактивы берут в твердом виде и для проведения реакций нагревают до высокой температуры. Примером таких реакций могут служить реакции окрашивания пламени солями некоторых металлов. Известно, что

соли натрия окрашивают пламя в ярко-желтый цвет, соли калия – в фиолетовый, соли меди – в зеленый. По этой окраске можно обнаружить присутствие указанных элементов в исследуемом веществе. К реакциям «сухим путем» относятся также реакции образования окрашенных перлов – стеклообразных сплавов различных солей . Например буры – Na2 B4 O7

·10H2 O или перлов двойной соли NaNH4 HPO4 · 4Н2 О. Эти методы называются пирохимическими и широко используются для определения минералов и горных пород. Но в основном, в качественном анализе реакции проводятся

«мокрым путем» между растворенными веществами.

3.1. Методика проведения качественного анализа

Первый этап любого анализа состоит в переведении пробы в раствор с помощью различных растворителей. При анализе неорганических веществ в качестве растворителей чаще всего используются вода, водные растворы кислот, щелочей, реже - других неорганических веществ. Затем проводят характерные реакции открытия ионов. Качественные реакций открытия

ионов – это химические реакции, которые сопровождаются внешним эффектом (изменение окраски раствора, выделение газа, образование осадка), на основании которого можно судить, что реакция имеет место.

Чаще всего имеют дело с водными растворами солей, кислот, оснований, между которыми протекают ионообменные реакции (реже – окислительно-

восстановительные).

Та или иная аналитическая реакция должна выполняться в определенных условиях, зависящих от свойств образующихся соединений. При несоблюдении этих условий результаты открытия ионов могут оказаться недостоверными. Например, осадки, растворимые в кислотах, не выпадают из раствора при избытке кислоты. Поэтому необходимо соблюдать следующие

условия проведения реакций.

1.Надлежащая среда исследуемого раствора, которая создается прибавлением кислоты или щелочи.

2.Определенная температура раствора. Например, реакции образования осадков, растворимость которых сильно возрастает с температурой, проводят на «холоду». Наоборот, если реакция протекает чрезвычайно медленно,

требуется нагревание.

3.Достаточно высокая концентрация открываемого иона, так как при малых концентрациях реакция не проходит, т.е. реакция малочувствительна.

Понятие «чувствительность реакции» количественно характеризуется двумя показателями: открываемый минимум и предельное разбавление. Для экспериментального определения чувствительности реакцию многократно повторяют с исследуемыми растворами, постепенно уменьшая количество растворенного вещества и объем растворителя. Открываемый минимум (Υ) – это наименьшее количество вещества, которое может быть открыто посредством данной реакции при определенных условиях ее выполнения. Выражают в микрограммах (1Υ - миллионные доли грамма, 10-6 г). Открываемый минимум не может полностью характеризовать чувствительность реакции, так как имеет значение концентрация открываемого иона в растворе. Предельное разбавление (1:G ) характеризует наименьшую концентрацию вещества (иона), при которой его можно открыть посредством данной реакции; где G – массовое количество растворителя, приходящееся на единицу массы открываемого вещества или иона. В

макроанализе и полумикрометоде применяют те реакции, чувствительность которых превышает 50Υ, а предельное разбавление 1: 1000.

При выполнении аналитических реакций следует учитывать не только чувствительность, но и специфичность реакции – возможность открытия данного иона в присутствии других ионов. Открытие ионов посредством

специфических реакций, производимое в отдельных порциях исследуемого

раствора в произвольной последовательности, называется дробным анализом. Но специфических реакций не так много. Чаще приходится иметь дело с реактивами, дающими одинаковый или сходный эффект реакции со многими ионами. Например, хлорид бария осаждает из раствора карбонат- и

сульфатионы в виде осадков ВаСО3 и ВаSO4 . Реактивы, дающие

одинаковый аналитический сигнал с ограниченным числом ионов,

называются избирательными или селективными. Чем меньше число ионов, открываемых данным реактивом, тем выше степень селективности реактива.

Иногда посторонние ионы не реагируют с данным реактивом, но уменьшают чувствительность реакции или изменяют характер образующихся продуктов. В этом случае надо учитывать предельное соотношение концентраций открываемого и постороннего ионов, а также использовать маскирующие средства (приемы или реактивы). Мешающий ион переводят в малодиссоциирующие соединения или комплексные ионы, его концентрация в растворе понижается, и этот ион уже не препятствует открытию анализируемых ионов. Все выше перечисленные особенности и приемы

используются при разработке последовательности проведения химических реакций в процессе анализа. Если реакции, используемые при анализе,

неспецифичны, и мешающее влияние посторонних ионов устранить нельзя, то применение дробного метода становиться невозможным и прибегают к

систематическому ходу анализа.

Систематический ход анализа – это определенная последовательность реакций, разработанная с таким расчетом, чтобы открытие каждого иона производилось лишь после открытия и удаления всех мешающих этому открытию ионов. При систематическом ходе анализа из сложной смеси ионов производят выделение отдельных групп ионов, пользуясь сходным отношением их к действию некоторых реактивов, называемых групповым реагентом. Например, одним из групповых реагентов является хлорид натрия,

который производит сходное действие на ионы Ag+ , Pb2+ , Hg2 2+ . Действие хлорида натрия на растворимые соли, содержащие эти катионы, приводит к образованию осадков, нерастворимых в хлороводородной кислоте:

Ag+ + Cl- = AgCl↓

Pb2 + Cl- = PbCl2 ↓

Hg2 2+ + 2Cl- = Hg2 Cl2 ↓

Все остальные ионы, если подействовать HCl, перейдут в раствор, а три катиона Ag+ , Pb2+ и Hg2 2+ будут отделены от других с помощью группового реагента NaCl. Применение групповых реагентов представляет большие удобства: сложная задача распадается на ряд более простых. Кроме того,

если какая-либо группа ионов полностью отсутствует, то ее групповой реагент не даст с анализируемым раствором никакого осадка. В этом случае не имеет смысла проводить реакции на отдельные ионы этой группы. В результате достигается значительная экономия труда, времени и реактивов.

Из вышесказанного следует, что в качественном анализе в основу классификации ионов положено различие в растворимости некоторых образуемых ими соединений; на основании этого различия основан метод отделения одной группы ионов от другой. Основная классификация катионов была введена выдающимся русским химиком Н.А. Меншуткиным (1871г.).

В основу классификации анионов положена растворимость солей бария

и серебра в соответствующих кислотах. Эта классификация не является строго установленной, так как различные авторы подразделяют анионы на различное число групп. Один из самых распространенных вариантов – подразделение изучаемых анионов на три группы:

Анионы, образующие нерастворимые в воде соли бария;

ФИЗИЧЕСКИЕ МЕТОДЫ АНАЛИЗА (а. physical methods of analysis; н. physikalische Analyseverfahren; ф. procedes physiques de l"analyse; и. metodos fisiсоs de analisis) — совокупность методов качественного и количественного анализа веществ, основанных на измерении физических характеристик, обусловливающих химическую индивидуальность определяемых компонентов.

Физические методы анализа подразделяют на три группы: спектроскопические, ядерно-физические и радиохимические. Из спектроскопических методов наиболее распространён атомно-эмиссионный анализ. Атомы или ионы, возбуждённые дуговым, искровым разрядом, высокочастотной или индукционной плазмой, испускают световую энергию. Каждый элемент характеризуется своим набором спектральных линий. Интенсивность излучения данного элемента определяется его концентрацией в анализируемой пробе . Характерной особенностью атомно-эмиссионного анализа является возможность одновременного определения нескольких элементов. Абсолютный предел обнаружения некоторых элементов достигает 10 г. Широко распространён атомно-абсорбционный анализ, основанный на измерении поглощения света свободными атомами элементов. В основе атомно-флуоресцентного анализа лежит спонтанный переход атомов, возбуждённых световым потоком, в исходное состояние, сопровождаемый флуоресценцией.

В рентгеноспектральных методах пробу облучают потоком электронов и по величине возникающего при этом рентгеновского излучения судят о содержании определяемого вещества в пробе. В другом варианте метода пробу облучают не электронами, а рентгеновскими лучами и определяют интенсивность вторичного излучения (рентгенофлуоресцентный анализ). Рентгеновские методы пригодны для локального анализа (фокусируют пучок электронов) без разрушения анализируемого образца. Рентгенофлуоресцентный метод позволяет определять свыше 80 химических элементов с относительной погрешностью до 1%. На многоканальных рентгеновских квантометрах проводят анализ горных пород и минералов на основные породообразующие элементы за несколько минут (см. Рентгенографический фазовый анализ , Рентгенография , ).

Macc-спектрометрические методы основаны на разном отклонении в магнитном поле различных по массе ионов, которые получают ионизацией исследуемого вещества, например в искре. Эти методы часто применяют для определения примесей в материалах. Метод позволяет одновременно определять до 70 химических элементов примесей в твёрдых веществах. Абсолютный предел обнаружения элементов достигает 10-15 г (см. Macc-спектрометрия).

Из ядерно-физических методов наиболее важное значение имеет радиоактивационный анализ, в котором вещество облучают нейтронами, гамма-квантами или заряженными частицами. При взаимодействии облучающих частиц с ядрами атомов элементов в веществе в результате ядерных реакций образуются радиоактивные "дочерние" элементы или изотопы. По величине их радиоактивности судят о количестве определяемого элемента в пробе. Радиоактивационный метод обладает исключительно низким пределом обнаружения и позволяет определять до 10-10% примесей в геологических образцах и других материалах. По характеру используемого для активации излучения различают нейтронно-активационный, гамма-активационный и другие анализы (см. Радиографический анализ , ).

К радиохимическим методам относится метод изотопного разбавления. К анализируемому образцу прибавляют радиоактивный изотоп определяемого элемента и после установления химического равновесия выделяют каким-либо способом определенную часть данного элемента. Измеряют радиоактивность этой выделенной части и по её значению рассчитывают содержание элемента в пробе (см. ).

Физические методы анализа характеризуются высокой производительностью, низкими пределами обнаружения элементов, объективностью результатов анализа, высоким уровнем автоматизации. Физические методы анализа используют при анализе горных пород и минералов. Например, атомно-эмиссионным методом определяют



Последние материалы раздела:

SA. Парообразование. Испарение, конденсация, кипение. Насыщенные и ненасыщенные пары Испарение и конденсация в природе сообщение
SA. Парообразование. Испарение, конденсация, кипение. Насыщенные и ненасыщенные пары Испарение и конденсация в природе сообщение

Все газы явл. парами какого-либо вещества, поэтому принципиальной разницы между понятиями газ и пар нет. Водяной пар явл. реальным газом и широко...

Программа и учебные пособия для воскресных школ А тех, кто вокруг, не судить за грехи
Программа и учебные пособия для воскресных школ А тех, кто вокруг, не судить за грехи

Учебно-методический комплект "Вертоград" включает Конспекты учителя, Рабочие Тетради и Сборники тестов по следующим предметам:1. ХРАМОВЕДЕНИЕ...

Перемещение Определить величину перемещения тела
Перемещение Определить величину перемещения тела

Когда мы говорим о перемещении, важно помнить, что перемещение зависит от системы отсчета, в которой рассматривается движение. Обратите внимание...