Атомно молекулярное учение кратко. Основные понятия и законы химии

Тема лекции: ОСНОВНЫЕ ПОНЯТИЯ И ЗАКОНЫ ХИМИИ.

План:

ОСНОВНЫЕ ПОНЯТИЯ ХИМИИ. АТОМНО-МОЛЕКУЛЯРНОЕ УЧЕНИЕ

ОСНОВНЫЕ ЗАКОНЫ ХИМИИ

ОСНОВНЫЕ ГАЗОВЫЕ ЗАКОНЫ

ХИМИЧЕСКИЙ ЭКВИВАЛЕНТ. ЗАКОН ЭКВИВАЛЕНТНЫХ ОТНОШЕНИЙ

ХИМИЧЕСКИЕ РЕАКЦИИ. КЛАССИФИКАЦИЯ ХИМИЧЕСКИХ РЕАКЦИЙ

МЕСТО ХИМИИ СРЕДИ ДРУГИХ НАУК

Химия относится к естественным наукам, изучающим окружающий нас материальный мир, его явления и за­коны.

Основным законом природы является закон вечности материи и ее движения. Отдельные формы движения материи изучаются отдельными науками. Место химии, имеющей дело главным образом с молекулярным (и атом­ным) уровнем организации материи, между физикой эле­ментарных частиц (субатомный уровень) и биологией (над­молекулярный уровень).

Химия - наука о веществах, их составе, строении, свойствах и превращениях, связанных с изменением состава, строения и свойств образующих их частиц.

Великий русский ученый М. В. Ломоносов сказал: «Широко простирает химия руки свои в дела человече­ские». Действительно, практически нет ни одной техни­ческой дисциплины, которая могла бы обойтись без зна­ний химии. Даже такие современные и далекие, казалось бы, от химии науки, как электроника, информатика, се­годня получили новый импульс в своем развитии, заклю­чив «союз» с химией (запись информации на молекуляр­ном уровне, разработка биокомпьютеров и др.). Что тогда говорить о фундаментальных дисциплинах: физике, био­логии и др., где давно существуют самостоятельные раз­делы, пограничные с химией (химическая физика, биохи­мия, геохимия и пр.).

ОСНОВНЫЕ ПОНЯТИЯ ХИМИИ.

АТОМНО-МОЛЕКУЛЯРНОЕ УЧЕНИЕ

Представление об атомах, как конструкционных эле­ментах вещественного мира, зародилось еще в древней Греции (Левкипп, Демокрит, 1У-Ш вв. до н. э.). Но только в конце XVIII - начале XIX в. было создано атомно-молекулярное учение. Важнейший вклад в обоб­щение накопленного материала был сделан М. В. Ломо­носовым.

Атомно-молекулярное учение включает в себя следую­щие основные положения:

1. Все вещества не являются сплошными, а состоят из частиц (молекул, атомов, ионов).

2. Молекулы состоят из атомов (элементов).

3. Различия между веществами определяются разли­чиями образующих их частиц, которые отличаются друг от друга составом, строением и свойствами.

4. Все частицы находятся в постоянном движении, скорость которого увеличивается при нагревании.

Атом - наименьшая частица химического элемента, являющаяся носителем его свойств. Это электронейтраль­ная микросистема, поведение которой подчиняется зако­нам квантовой механики.


Химический элемент - вид атомов, имеющих одина­ковый положительный заряд ядра и характеризующих­ся определенной совокупностью свойств.

Изотопы - атомы одного элемента, различающиеся массой (количеством нейтронов в ядре).

Любой химический элемент в природе представлен определенным изотопным составом, поэтому его масса рассчитывается как некоторая средняя величина из масс изотопов с учетом их содержания в природе.

Молекула - наименьшая частица вещества, являю­щаяся носителем его свойств и способная к самостоя­тельному существованию.

Простое вещество - вещество, молекулы которого состоят только из атомов одного элемента.

Аллотропия - способность элемента образовать про­стые вещества, имеющие различный состав, строение и свойства.

Разновидности аллотропных модификаций определя­ются:

Различным числом атомов элемента в составе моле­кулы простого вещества, например, кислород (О 2) и озон (О 3).

Различиями в строении кристаллической решетки про­стого вещества, например, соединения углерода: гра­фит (плоская, или двумерная, решетка) и алмаз (объемная, или трехмерная решетка).

Сложное вещество - вещество, молекулы которого состоят из атомов разных элементов.

Сложные вещества, состоящие только из двух эле­ментов, называются бинарными, например:

Ø оксиды: CO, CO 2 , CaO, Na 2 O, FeO, Fe 2 O 3 ;

Ø сульфиды: ZnS, Na 2 S, CS 2 ;

Ø гидриды: CaH 2 , LiH, NaH;

Ø нитриды: Li 3 N, Ca 3 N 2 , AlN;

Ø фосфиды: Li 3 P, Mg 3 P 2 , AlP;

Ø карбиды: Be 2 C, Al 4 C 3 , Ag 2 C 2 ;

Ø силициды: Ca 2 Si, Na 4 Si.

Сложные соединения, состоящие более чем из двух эле­ментов, относятся к основным классам неорганических со­единений. Это гидроксиды (кислоты и основания) и соли, в том числе комплексные соединения.

Атомы и молекулы имеют абсолютную массу, напри­мер, масса атома С 12 равна 2·10 -26 кг.

Такими величинами пользоваться на практике неудоб­но, поэтому в химии принята относительная шкала масс.

Атомная единица массы (а. е. м.) равна 1/12 массы изотопа С 12 .

Относительная атомная масса (А r - безразмерная ве­личина) равна отношению средней массы атома к а. е. м.

Относительная молекулярная масса (М r - безразмер­ная величина) равна отношению средней массы молеку­лы к а. е. м.

Моль (ν - «ню» или n ) - количество вещества, содержащее столько же структурных единиц (атомов, молекул или ионов), сколько атомов содержится в 12 г изотопа С 12 .

Число Авогадро - число частиц (атомов, молекул, ионов и др.), содержащееся в 1 моле любого вещества.

N A = 6,02·10 23 .

Более точные значения некоторых фундаментальных констант приводятся в таблицах приложения.

Молярная масса вещества (М) - это масса 1 моля вещества. Она рассчитывается как отношение массы ве­щества к его количеству:

Молярная масса численно равна А r (для атомов) или М r (для молекул).

Из уравнения 1 можно определить количество веще­ства, если известны его масса и молярная масса:

(2)

Молярный объем (V m для газов) - объем одного моля вещества. Рассчитывается как отношение объема газа к его количеству:

(3)

Объем 1 моля любого газа при нормальных условиях (Р = 1 атм = 760 мм. рт. ст. = 101,3 кПа; T = 273ТС = 0°С) равен 22,4 л.

(4)

Плотность вещества равна отношению его массы к объему.

(5)

1.Химия как предмет естествознания Химия изучает ту форму движения материи, в которой происходит взаимодействие атомов с образованием новых определенных веществ.Химия -наука о оставе,строении и свойствах веществ, их превращении или явлениях, кот.эти превращения сопровождают.Современная химия включает :общую, органическую,коллоидную,аналитическую,физическую,геологическую,биохимию,химию строительных материалов.Предмет химии - химические элементы и их соединения, а также закономерности, которым подчиняются различные химические реакции. соединяет физико-математические и биолого-социальные науки.

2.Класс неорганических соединений. Основные химические свойства кислот, оснований, солей. По свойствам неорганических соединений разделяеют на след. Классы : оксиды, основания, кислоты, соли.Оксиды -соединение элементов с кислородом, в которых последний является более электроотрицательным элементом, а именно проявляет степень окисления -2. и имеет место связь только элемент О2.Общ.формула СхОу. Бывают :кислотны е-способны к солеобразованию с основными оксидами и основаниями (SO3+Na2O=Na2SO4; So3+2NaOH=Na2SO4=H2O),основные- способны к солеобразовнию с кислотными оксидами и кислотами(СаО+СО2=СаСО3; СаО+2НСl=CaCl2+H2O ),амфотерные (к-ты и основ.)и с тем и с тем(ZnO,BeO,Cr2O3,SnO,PbO,MnO2).и несолеобразующие (CO,NO,N2O)Основания - вещества, при электролтической диссоциации которых анион м.б. только гидроксильная группа ОН. Кислотность основания-число ионов ОН образующихся при диссоциации гидроксида. Гидроксиды-вещества, содержащие группу ОН, получаются соединением оксидов с водой.Бывают 3видов : основные (основания) , кислотные (кислородсодержащие кислоты) и амфотерные (амфолиты-проявляют основные и кислотные свойства Cr(OH)3,Zn(OH)2,Be(OH)2,Al(OH)3) Кислоты -вещества, при электролитической диссоциации кот. Катионом м.б. только + заряженный ион Н. Бывают: бескислородные,кислородсодержащие .Число Н-основность кислоты. мета и орто формы-молекулы воды. Соли -вещества, при электоролитической диссоциации которых катионом может быть ион аммония(NH4) или ион металла, а анионом любой кислотный остаток Бывают:средние (полное замещение.состоят из кисотного остатка и иона метала), кислы е(неполное замещение.наличие в составе незамещенных Н), основные (неполное замещение.наличие незамещенных ОН) По составу неорганические вещества делятся на бинарные – состоящие только из двух элементов, и многоэлементные – состоящие из нескольких элементов.

3.Основные положения атомно-молекулярного учения

1.Все вещества состоят из молекул(корпускулы), при физических явлениях, молекулы сохраняются, при химических разрушаются.

2.Молекулы состоят из атомов(элементы), при химических реакциях атомы сохраняются.

3.Атомы каждого вида (элемента) одинаковы между собой, но отличаются от атомов любого другого вида.

4. При взаимодействии атомов образуются молекулы: гомоядерные (при взаимодействии атомов одного элемента) или гетероядерные (при взаимодействии атомов разных элементов).

5.Химичские реакции заключаются в образовании новых веществ, из тех же самых атомов, из которых состоят первоначальные вещества.+6.молек. и атомы находятся в непрерывном движении, а теплота состоит во внутреннем движении этих частиц

. Атом - наименьшая частица элемента, сохраняющая его химические свойства. Атомы различаются зарядами ядер, массой и размерами

Химический элемент - вид атомов с одинаково полож. Зарядом ядра. Физических свойств, характерных для простого вещества, химическому элементу приписать нельзя. Простые вещества - это вещества, состоящие из атомов одного и того же химического элемента. 4.Основные законы химии(закон сохранения, постоянства состава,кратных отношений, закон Авагадро) Закон сохранения: Масса веществ, вступающих в реакцию, равна массе веществ, образующихся в результате реакции. Закон постоянства состава : (любое хим. Соединение имеет один и тот же количественный состав независимо от способа его получения)Соотношения между массами элементов, входящих в сотав данного соединения,постоянны и не зависят от способа получения этого соединения.

Закон кратных отношений : Если два элемента образут друг с другом несколько химических соединений, то массы одного из элементов, приходящиеся в этих соединениях на одну и ту же массу другого, относятся между собой как небольшие целые числа.

Закон Авогадро. В равных объемах любых газов, взятых при одной и той же температуре при одинаковом давлении, содержится одно и то же число молекул.

5. Закон Эквивалентов . Эквивалент вещества - это такое количество вещества,какое взаимодействует с 1 молем атома водорода или вытесняет такое же количество атомов Н в хим. Реакций. Vэ(Л/Моль)- эквивалентный объем вещества, тоесть то объем одного эквивалента вещества в газообразном состояние.ЗАКОН.Все вещества реагируют в химических реакциях и образуются в эквивалентных количествах. Отношение эквивалентных масс, объемов, реагирующих или образующих вещества,прямо пропорционально отнощению их масс(объемов)илиилиЭ(простые)=А(атомная масса)/В(валентность элемента) Э(кислоты)=М(молярная масса)/осн(основание кислоты) Э(Гидроксида)=М/Кисл)Кислотность гидроксида) Э(аксиды соли)=M/а(количество атомов элемента образ. Оксид(соли)*в (валентность этого элемента или металла)

6. Строение атомов. Ядро. Ядерные реакции. Виды излучения. Модель по резерфорду:1.практически вся масса сосредоточена в ядре 2.+ компенисруются – 3.заряд равен номеру группы. Простейшим –Н водород Современное понятие хим. Элемента-вид атомов с одинаково полож. Зарядом ядря атом состоит из положительно заряженного ядра и электронной оболочки. Электронная оболочка образована электронами. Число электронов равно числу протонов, поэтому заряд атома в целом равен 0 Число протонов, заряд ядра и число электронов численно равны порядковому номеру химического элемента. практически вся масса атома сосредоточена в ядре. Электроны двигаются вокруг ядра атома, не беспорядочно, а в зависимости от энергии, которой они обладают, образуя так называемый электронный слой. На каждом электронном слое может располагаться определенное число электронов: на первом - не больше 2, на втором - не больше 8, на третьем - не больше 18. Число электронных слоев определяется по номеру периода Число электронов на последнем (внешнем) слое определяется по номеру группы в периоде происходит постепенное ослабление металлических свойств и возрастание свойств неметаллов Я́дерная реа́кция - процесс образования новых ядер или частиц при столкновениях ядер или частиц. Радиоактивностью называют самопроизвольное превращение неустойчивого изотопа одного химического элемента в изотоп другого элемента, сопроваждающееся испусканием элементарных частиц или ядер.Виды излучений:альфа,бета(отриц и полож) и гамма. Алфа частица – ядро атома гелия 4/2He. При испускании альфа-частиц ядро теряет два протона и два нейтрона,следовательно заряд уменьшается на 2, а массовое число на 4.отрицательная бэта частица – электрон. при испускании электрона заряд ядра увеличивается на единицу, а массовое число не изменяется. нестабильный изотоп оказывается настолько возбужденным, что испускание частицы не приводит к полному снятию возбуждения, тогда он выбрасывает порцию чистой энергии, называемой гамма-излучением. Атомы обладающие одинаковы зарядом ядра, но разными массовыми числами, называются изотопами(например 35/17 Cl и 37/17Cl) Атомы имеющие одинаковые массовые числа,но разное число протонов в ядре,называются изобарами(например 40/19K и 40/20Ca) Периодом полураспада (Т ½)называется время,за которое распадается половина исходного количества радиоактивного изотопа.

В развитие атомно-молекулярного учения большой вклад внесли М. В. Ломоносов, Дж. Дальтон, А. Лавуазье, Ж. Пруст, А. Авогадро, Й. Берцелиус, Д. И. Менделеев, А. М. Бутлеров. Первый определил химию как науку М. В. Ломоносов. Ломоносов создал учение о строении вещества, заложил основу атомно-молекулярной теории. Оно сводится к следующим положениям:

1. Каждое вещество состоит из мельчайших, далее физически неделимых частиц (Ломоносов называл их корпускулами, впоследствии они были названы молекулами).

2. Молекулы находятся в постоянном, самопроизвольном движении.

3. Молекулы состоят из атомов (Ломоносов назвал их элементами).

4. Атомы характеризуются определенным размером и массой.

5. Молекулы могут состоять как из одинаковых, так и различных атомов.


Молекула - это наименьшая частица вещества, сохраняющая его состав и химические свойства. Молекула не может дробиться дальше без изменения химических свойств вещества. Между молекулами вещества существует взаимное притяжение, различное у разных веществ. Молекулы в газах притягиваются друг к другу очень слабо, тогда как между молекулами жидких и твердых веществ силы притяжения относительно велики. Молекулы любого вещества находятся в непрерывном движении. Этим явлением объясняется, например, изменение объема веществ при нагревании.


Атомами называются мельчайшие, химически неделимые частицы, из которых состоят молекулы. Атом - это наименьшая частица элемента, сохраняющая его химические свойства. Атомы различаются зарядами ядер, массой и размерами. При химических реакциях атомы не возникают и не исчезают, а образуют молекулы новых веществ. Элемент следует рассматривать как вид атомов с одинаковым зарядом ядра.


Химические свойства атомов одного и того же химического элемента одинаковы, такие атомы могут отличаться только массой. Разновидности атомов одного и того же элемента с различной массой, называются изотопами. Поэтому, разновидностей атомов больше, чем химических элементов.


Необходимо различать понятия "химический элемент" и "простое вещество".


Вещество - это определенная совокупность атомных и молекулярных частиц в любом из трех агрегатных состояний.


Агрегатные состояния вещества - состояние вещества, характеризующееся определенными свойствами (способность сохранять форму, объем).


Выделяют три основных агрегатных состояния: твёрдое тело, жидкость и газ. Иногда не совсем корректно к агрегатным состояниям причисляют плазму. Существуют и другие агрегатные состояния, например, жидкие кристаллы или конденсат Бозе - Эйнштейна.


Химический элемент - это общее понятие об атомах с одинаковым зарядом ядра и химическими свойствами.

Физических свойств, характерных для простого вещества, химическому элементу приписать нельзя.


Простые вещества - это вещества, состоящие из атомов одного и того же химического элемента. Один и тот же элемент может образовывать несколько простых веществ.

Современное изложение основных положений атомно-молекулярного учения:

1. Все вещества состоят из атомов.
2. Атомы каждого вида (элемента) одинаковы между собой, но отличаются от атомов любого другого вида (элемента).
3. При взаимодействии атомов образуются молекулы: гомоядерные (при взаимодействии атомов одного элемента) или гетероядерные (при взаимодействии атомов разных элементов).
4. При физических явлениях молекулы сохраняются, при химических - разрушаются; при химических реакциях атомы в отличие от молекул сохраняются.
5. Химические реакции заключаются в образовании новых веществ из тех же самых атомов, из которых состоят первоначальные вещества.

Понятие и структура атома

Одним из основных понятий химии и других естественных наук является атом. Этот термин имеет давнее происхождение; он насчитывает уже около 2500 лет. Впервые понятие атома зародилось в Древней Греции, примерно в V в. до н. э. Основоположниками атомистического учения были древнегреческие философы Левкипп и его ученик Демокрит. Именно они выдвинули идею о дискретном строении материи и ввели термин «АТОМ». Демокрит определял атом как наименьшую, далее неделимую, частицу материи.

Учение Демокрита не получило широкого распространения, и в течение большого исторического периода в химии (а во времена средневековья - алхимии) господствовала теория Аристотеля (384 - 322 гг. до н.э.). Согласно учению Аристотеля, основными началами природы являются абстрактные «принципы»: холод, тепло, сухость и влажность, при комбинации которых образуются четыре основных «элемента-стихии»: земля, воздух, огонь и вода.

Только в начале XIX столетия английский ученый Джон Дальтон возвращается к атомам как наименьшим частицам материи и вводит в науку этот термин. Этому предшествовали работы таких замечательных ученых, как Р. Бойль (в книге «Химик-скептик» он нанес сокрушительный удар по представлениям алхимиков), Дж. Пристли и К. В. Шееле (открытие кислорода), Г. Кавендиш (открытие водорода), А. Л. Лавуазье (попытка составить первую таблицу простых веществ), М. В. Ломоносов (основные положения атомно-молекулярного учения, закон сохранения массы), Ж. Л. Пруст (закон постоянства состава) и многие другие.

Атом (греч. ατομος - неделимый) - это наименьшая частица химического элемента, способная к самостоятельному существованию и являющаяся носителем его свойств. Атом представляет собой электронейтральную микросистему, состоящую из положительно заряженного ядра и соответствующего числа электронов.

Тип атома определяется составом его ядра. Атомы каждого вида одинаковы между собой, но они отличаются от атомов любого другого вида. Так, атомы углерода, азота и кислорода имеют различные размеры, отличаются по физическим и химическим свойствам. Ядро состоит из электронов, протонов и нейтронов, вместе называемых нуклонами.

Электрон [др.греч. ηλεκτρον - янтарь (хорошо электризуется при трении)] - стабильная элементарная частица, имеющая массу покоя, равную 9,109·10 -31 кг = 5,486·10 -4 а.е.м. , и несущая элементарный отрицательный заряд, равный 1,6·10 -19 Кл.

В химии и в физике при решении многих задач заряд электрона принимают за - 1 и заряды всех остальных частиц выражают в этих единицах. Электроны входят в состав всех атомов.

Протон (греч. πρωτοσ - первый) - элементарная частица, являющаяся составной частью ядер атомов всех химических элементов, обладает массой покоя m р = 1,672·10 -27 кг = 1,007 а.е.м. и элементарным положительным электрическим зарядом, равным по величине заряду электрона, т.е. 1,6·10 -19 Кл.

Число протонов в ядре определяет порядковый номер химического элемента.

Нейтрон (лат. neutrum - ни то, ни другое) - электрически нейтральная элементарная частица с массой покоя, несколько превышающей массу покоя протона m n = 1,65·10 -27 кг = 1,009 а.е.м.

Наряду с протоном нейтрон входит в состав всех атомных ядер (за исключением ядра изотопа водорода 1 Н, представляющего собой один протон).

Характеристики отдельных элементарных частиц

Элементарная частица Обозначение Масса Электрический заряд
в ед. СИ (кг) в а.е.м. в Кл в зарядах электрона
Электрон e - 9,109·10 -31 5,486·10 -4 1,6·10 -19 -1
Протон p 1,672·10 -27 1,007 1,6·10 -19 1
Нейтрон n 1,675·10 -27 1,009 0 0

Обобщающее (групповое) название протонов и нейтронов - нуклоны .

Понятие и формы существования химического элемента

Химический элемент - вид атомов с одинаковым зарядом ядра.

Химический элемент - это понятие, а не материальная частица. Это не атом, а совокупность атомов, характеризующихся определенным признаком - одинаковым зарядом ядра.

Атомы элемента могут иметь различные числа нейтронов в составе ядра, а следовательно, и массу.

Массовое число - общее число нуклонов (протонов и нейтронов) в ядре.

Ядро атома состоит из протонов, число которых равно порядковому номеру элемента (Z) , и нейтронов (N) . А = Z + N , где А - массовое число.

Нуклиды (лат. nucleus - ядро) - общее название атомных ядер, характеризуются определенным числом протонов и нейтронов (величиной положительного заряда и массовым числом).

Для того чтобы указать химический элемент, достаточно назвать только одну величину - заряд ядра, т.е. порядковый номер элемента в Периодической системе. Для определения нуклида этого недостаточно - надо указать также и его массовое число.

Иногда, не совсем точно, понятие «нуклид» относят не к самому ядру, а ко всему атому.

Изотопы (греч. ισος - одинаковый + τοπος - место) - нуклиды, имеющие одинаковое число протонов, но различающиеся массовыми числами.

Изотопы - нуклиды, занимающие одно и то же место в Периодической системе, т. е. атомы одного и того же химического элемента.

Например: 11 22 Na , 11 23 Na , 11 24 Na .

Изобары (греч. ιςο - равный + βαροσ - вес) - нуклиды, имеющие одинаковые массовые числа, но различное число протонов (т.е. относящиеся к разным химическим элементам).

Например: 90 Sr , 90 Y , 90 Zr .

Изотоны - нуклиды с одинаковым числом нейтронов.

При химическом взаимодействии атомов образуются молекулы.

Молекула (уменьшительное от лат. moles - масса) - это наименьшая частица вещества, определяющая его свойства. Состоит из атомов одного или различных химических элементов и существует как единая система атомных ядер и электронов. В случае одноатомных молекул (например, благородных газов) понятия атома и молекулы совпадают.

Молекулы бывают одноатомные (например, молекулы гелия Не ), двухатомные (азота N 2 , оксида углерода СО ), многоатомные (воды Н 2 О , бензола С 6 Н 6 ) и полимерные (содержащие до сотен тысяч и более атомов - молекулы металлов в компактном состоянии, белков, кварца).

Атомы удерживаются в молекуле с помощью химических связей.

В химии, кроме атомов и молекул, приходится рассматривать и другие структурные единицы: ионы и радикалы.

Ионы (греч. ιον - идущий) - электрически заряженные частицы, образовавшиеся из атомов (или атомных групп) в результате присоединения или потери электронов.

Положительно заряженные ионы называются катионами (греч. κατα вниз + ион), отрицательно заряженные - анионами (греч. ανα - вверх + ион).

Например: К + - катион калия, Fe 2+ - катион железа, NH 4 + - катион аммония, Cl - - анион хлора (хлорид-анион) , S 2- - анион серы (сульфид-анион), SO 4 2- - сульфат-анион.

Радикалы (лат. radicalis - коренной) - частицы (атомы или группы атомов) с неспаренными электронами.

Они обладают высокой реакционной способностью.

Например: Н - радикал водорода, С1 - радикал хлора, СН 3 - радикал-метил.

В то же время парамагнитные молекулы, например, О 2 , NO , NO 2 , имеющие неспаренные электроны, не являются радикалами.

Простое вещество - вещество, состоящее из атомов одного химического элемента.

Простое вещество - это форма существования химического элемента. Многие элементы могут существовать в виде нескольких простых веществ, например, углерод (графит, алмаз, карбин, фуллерены), фосфор (белый, красный, черный), кислород (озон, кислород).

Известно около 400 простых веществ.

Аллотропия (греч. αλλοσ - другой + τροπε - поворот) - способность химического элемента существовать в виде двух или нескольких простых веществ, отличающихся количеством атомов в молекуле (например, О 2 и О 3 ) или разной структурой кристаллов (графит и алмаз).

Полиморфизм (греч. πολιμορφοσ - многообразный) - способность твердых веществ существовать в двух или нескольких формах с различной кристаллической структурой и различными же свойствами. Такие формы называются полиморфными модификациями.

Например: FeS 2 может образовывать два вещества с различными кристаллическими структурами (полиморфные модификации): одно называется пирит, а другое - марказит. Являются ли эти вещества аллотропными модификациями? Не являются.

Аллотропия относится только к простым веществам и рассматривает как различие в составе их молекул, так и различие в строении кристаллических решеток. Если речь идет о различии в строении кристаллических решеток простых веществ, то понятия полиморфизм и аллотропия совпадают, например, о графите и алмазе можно сказать, что это аллотропные формы, а можно - полиморфные формы.


§ 1 М.В. Ломоносов, как основоположник атомно-молекулярного учения

Начиная с XVII века, в науке существовало молекулярное учение, которое использовалось для объяснения физических явлений. Практическое применение молекулярной теории в химии было ограничено тем, что ее положения не могли объяснить сущность протекания химических реакций, ответить на вопрос, как из одних веществ в ходе химического процесса образуются новые.

Решение этого вопроса оказалось возможным на основе атомно-молекулярного учения. В 1741 г. в книге «Элементы математической химии» Михаил Васильевич Ломоносов фактически сформулировал основы атомно-молекулярного учения. Русский учёный-энциклопедист рассматривал строение вещества не как определенную комбинацию атомов, но как сочетание более крупных частиц - корпускул, которые, в свою очередь, состоят из более мелких частиц - элементов.

Терминология Ломоносова со временем претерпела изменения: то, что он называл корпускулами, стали называть молекулами, а на смену термину элемент пришёл термин атом. Однако суть высказанных им идей и определений блестяще выдержала испытание временем.

§ 2 История развития атомно-молекулярного учения

История развития и утверждения в науке атомно-молекулярного учения оказалась очень непростой. Работа с объектами микромира вызывала огромные трудности: атомы и молекулы было невозможно увидеть и, таким образом, убедиться в их существовании, а попытки измерения атомных масс нередко заканчивались получением ошибочных результатов. Через 67 лет после открытия Ломоносова, в 1808 году, известный английский учёный Джон Дальтон выдвинул атомную гипотезу. Согласно ей, атомы представляют собой мельчайшие частицы вещества, которые невозможно разделить на составные части или превратить друг в друга. По Дальтону, все атомы одного элемента имеют совершенно одинаковый вес и отличаются от атомов других элементов. Соединив учение об атомах с учением о химических элементах, разработанным Робертом Бойлем и Михаилом Васильевичем Ломоносовым, Дальтон обеспечил прочный фундамент для дальнейших теоретических исследований в химии. К сожалению, Дальтон отрицал существование молекул у простых веществ. Он считал, что из молекул состоят только сложные вещества. Это не способствовало дальнейшему развитию и применению атомно-молекулярного учения.

Условия для распространения идей атомно-молекулярного учения в естествознании сложились лишь во второй половине XIX века. В 1860 году на Международном съезде естествоиспытателей в немецком городе Карлсруэ были приняты научные определения атома и молекулы. Учения о строении веществ тогда ещё не было, поэтому было принято положение о том, что все вещества состоят из молекул. Считалось, что простые вещества, например металлы, состоят из одноатомных молекул. Впоследствии такое сплошное распространение принципа молекулярного строения на все вещества оказалось ошибочным.

§ 3 Основные положения атомно-молекулярного учения

1.Молекула - наименьшая часть вещества, сохраняющая его состав и важнейшие свойства.

2.Молекулы состоят из атомов. Атомы одного элемента сходны друг с другом, но отличаются от атомов других химических элементов.



Последние материалы раздела:

Изменение вида звездного неба в течение суток
Изменение вида звездного неба в течение суток

Тема урока «Изменение вида звездного неба в течение года». Цель урока: Изучить видимое годичное движение Солнца. Звёздное небо – великая книга...

Развитие критического мышления: технологии и методики
Развитие критического мышления: технологии и методики

Критическое мышление – это система суждений, способствующая анализу информации, ее собственной интерпретации, а также обоснованности...

Онлайн обучение профессии Программист 1С
Онлайн обучение профессии Программист 1С

В современном мире цифровых технологий профессия программиста остается одной из самых востребованных и перспективных. Особенно высок спрос на...