C какой элемент. Что такое химические элементы? Система и характеристика химических элементов

Очень много различных вещей и предметов, живых и неживых тел природы нас окружает. И все они имеют свой состав, строение, свойства. В живых существах протекают сложнейшие биохимические реакции, сопровождающие процессы жизнедеятельности. Неживые тела выполняют различные функции в природе и жизни биомассы и имеют сложный молекулярный и атомарный состав.

Но все вместе объекты планеты имеют общую особенность: они состоят из множества мельчайших структурных частиц, называемых атомами химических элементов. Настолько мелких, что невооруженным взглядом их не рассмотреть. Что такое химические элементы? Какими характеристиками они обладают и откуда стало известно об их существовании? Попробуем разобраться.

Понятие о химических элементах

В общепринятом понимании химические элементы - это лишь графическое отображение атомов. Частиц, из которых складывается все существующее во Вселенной. То есть на вопрос "что такое химические элементы" можно дать такой ответ. Это сложные маленькие структуры, совокупности всех изотопов атомов, объединенные общим названием, имеющие свое графическое обозначение (символ).

На сегодняшний день известно о 118 элементах, которые открыты как в естественных условиях, так и синтетически, путем осуществления ядерных реакций и ядер других атомов. Каждый из них имеет набор характеристик, свое местоположение в общей системе, историю открытия и название, а также выполняет определенную роль в природе и жизни живых существ. Изучением этих особенностей занимается наука химия. Химические элементы - это основа для построения молекул, простых и сложных соединений, а следовательно, химических взаимодействий.

История открытия

Само понимание того, что такое химические элементы, пришло только в XVII веке благодаря работам Бойля. Именно он впервые заговорил об этом понятии и дал ему следующее определение. Это неделимые маленькие простые вещества, из которых складывается все вокруг, в том числе и все сложные.

До этой работы господствовали взгляды алхимиков, признававшим теорию четырех стихий - Эмпидокла и Аристотеля, а также открывших "горючие начала" (сера) и "металлические начала" (ртуть).

Практически весь XVIII век была распространена совершенно ошибочная теория флогистона. Однако уже в конце этого периода Антуан Лоран Лавуазье доказывает, что она несостоятельна. Он повторяет формулировку Бойля, но при этом дополняет ее первой попыткой систематизации всех известных на тот момент элементов, распределив их на четыре группы: металлы, радикалы, земли, неметаллы.

Следующий большой шаг в понимании того, что такое химические элементы, делает Дальтон. Ему принадлежит заслуга открытия атомной массы. На основе этого он распределяет часть известных химических элементов в порядке возрастания их атомной массы.

Стабильно интенсивное развитие науки и техники позволяет делать ряд открытий новых элементов в составе природных тел. Поэтому к 1869 году - времени великого творения Д. И. Менделеева - науке стало известно о существовании 63 элементов. Работа русского ученого стала первой полной и навсегда закрепившейся классификацией этих частиц.

Строение химических элементов на тот момент установлено не было. Считалось, что атом неделим, что это мельчайшая единица. С открытием явления радиоактивности было доказано, что он делится на структурные части. Практически каждый при этом существует в форме нескольких природных изотопов (аналогичных частиц, но с иным количеством структур нейтронов, от чего меняется атомная масса). Таким образом, к середине прошлого столетия удалось добиться порядка в определении понятия химического элемента.

Система химических элементов Менделеева

В основу ученый положил различие в атомной массе и сумел гениальным образом расположить все известные химические элементы в порядке ее возрастания. Однако вся глубина и гениальность его научного мышления и предвидения заключалась в том, что Менделеев оставил пустые места в своей системе, открытые ячейки для еще неизвестных элементов, которые, по мнению ученого, в будущем будут открыты.

И все получилось именно так, как он сказал. Химические элементы Менделеева с течением времени заполнили все пустые ячейки. Была открыта каждая предсказанная ученым структура. И теперь мы можем смело говорить о том, что система химических элементов представлена 118 единицами. Правда, три последних открытия пока еще официально не подтверждены.

Сама по себе система химических элементов отображается графически таблицей, в которой элементы располагаются согласно иерархичности их свойств, зарядам ядер и особенностям строения электронных оболочек их атомов. Так, имеются периоды (7 штук) - горизонтальные ряды, группы (8 штук) - вертикальные, подгруппы (главная и побочная в пределах каждой группы). Чаще всего отдельно в нижние слои таблицы выносятся два ряда семейств - лантаноиды и актиноиды.

Атомная масса элемента складывается из протонов и нейтронов, совокупность которым имеет название "массовое число". Количество протонов определяется очень просто - оно равно порядковому номеру элемента в системе. А так как атом в целом - система электронейтральная, то есть не имеющая вообще никакого заряда, то количество отрицательных электронов всегда равно количеству положительных частиц протонов.

Таким образом, характеристика химического элемента может быть дана по его положению в периодической системе. Ведь в ячейке описано практически все: порядковый номер, а значит, электроны и протоны, атомная масса (усредненное значение всех существующих изотопов данного элемента). Видно, в каком периоде находится структура (значит, на стольких слоях будут располагаться электроны). Также можно предсказать количество отрицательных частиц на последнем энергетическом уровне для элементов главных подгрупп - оно равно номеру группы, в которой располагается элемент.

Количество нейтронов можно рассчитать, если вычесть из массового числа протоны, то есть порядковый номер. Таким образом, можно получить и составить целую электронно-графическую формулу для каждого химического элемента, которая будет в точности отражать его строение и показывать возможные и проявляемые свойства.

Распространение элементов в природе

Изучением этого вопроса занимается целая наука - космохимия. Данные показывают, что распределение элементов по нашей планете повторяет такие же закономерности во Вселенной. Главным источником ядер легких, тяжелых и средних атомов являются ядерные реакции, происходящие в недрах звезд - нуклеосинтез. Благодаря этим процессам Вселенная и космическое пространство снабдили нашу планету всеми имеющимися химическими элементами.

Всего из известных 118 представителей в естественных природных источниках людьми были обнаружены 89. Это основополагающие, самые распространенные атомы. Химические элементы также были синтезированы искусственно, путем бомбардировки ядер нейтронами (нуклеосинтез в лабораторных условиях).

Самыми многочисленными считаются простые вещества таких элементов, как азот, кислород, водород. Углерод входит в состав всех органических веществ, а значит, также занимает лидирующие позиции.

Классификация по электронному строению атомов

Одна из самых распространенных классификаций всех химических элементов системы - это распределение их на основе электронного строения. По тому, сколько энергетических уровней входит в состав оболочки атома и который из них содержит последние валентные электроны, можно выделить четыре группы элементов.

S-элементы

Это такие, у которых последней заполняется s-орбиталь. К этому семейству относятся элементы первой группы главной подгруппы (или Всего один электрон на внешнем уровне определяет схожие свойства этих представителей как сильных восстановителей.

Р-элементы

Всего 30 штук. Валентные электроны располагаются на р-подуровне. Это элементы, формирующие главные подгруппы с третьей по восьмую группу, относящиеся к 3,4,5,6 периодам. Среди них по свойствам встречаются как металлы, так и типичные неметаллические элементы.

d-элементы и f-элементы

Это переходные металлы с 4 по 7 большой период. Всего 32 элемента. Простые вещества могут проявлять как кислотные, так и основные свойства (окислительные и восстановительные). Также амфотерные, то есть двойственные.

К f-семейству относятся лантаноиды и актиноиды, у которых последние электроны располагаются на f-орбиталях.

Вещества, образуемые элементами: простые

Также все классы химических элементов способны существовать в виде простых или сложных соединений. Так, простыми принято считать такие, которые образованы из одной и той же структуры в разном количестве. Например, О 2 - кислород или дикислород, а О 3 - озон. Такое явление носит название аллотропии.

Простые химические элементы, формирующие одноименные соединения, характерны для каждого представителя периодической системы. Но не все они одинаковы по проявляемым свойствам. Так, существуют простые вещества металлы и неметаллы. Первые образуют главные подгруппы с 1-3 группу и все побочные подгруппы в таблице. Неметаллы же формируют главные подгруппы 4-7 групп. В восьмую основную входят особые элементы - благородные или инертные газы.

Среди всех открытых на сегодня простых элементов известны при обычных условиях 11 газов, 2 жидких вещества (бром и ртуть), все остальные - твердые.

Сложные соединения

К таковым принято относить все, которые состоят из двух и более химических элементов. Примеров масса, ведь химических соединений известно более 2 миллионов! Это соли, оксиды, основания и кислоты, сложные комплексные соединения, все органические вещества.

Химический элемент - это собирательный термин, описывающий совокупность атомов простого вещества, т. е. такого, которое не может быть разделено на какие-либо более простые (по структуре их молекул) составляющие. Представьте себе, что вы получаете кусок чистого железа с просьбой разделить его на гипотетические составляющие с помощью любого устройства или метода, когда-либо изобретенного химиками. Однако вы ничего не сможете сделать, никогда железо не разделится на что-нибудь попроще. Простому веществу - железу - соответствует химический элемент Fe.

Теоретическое определение

Отмеченный выше экспериментальный факт может быть объяснен с помощью такого определения: химический элемент - это абстрактная совокупность атомов (не молекул!) соответствующего простого вещества, т. е. атомов одного и того же вида. Если бы существовал способ смотреть на каждый из отдельных атомов в куске чистого железа, упомянутого выше, то все они были бы однаковыми - атомами железа. В противоположность этому, химическое соединение, например, оксид железа, всегда содержит по меньшей мере два различных вида атомов: атомы железа и атомы кислорода.

Термины, которые следует знать

Атомная масса : масса протонов, нейтронов и электронов, которые составляют атом химического элемента.

Атомный номер : число протонов в ядре атома элемента.

Химический символ : буква или пара латинских букв, представляющих обозначение данного элемента.

Соединение химическое : вещество, которое состоит из двух или более химических элементов, соединенных друг с другом в определенной пропорции.

Металл : элемент, который теряет электроны в химических реакциях с другими элементами.

Металлоид : элемент, который реагирует иногда как металл, а иногда и как неметалл.

Неметалл : элемент, который стремится получить электроны в химических реакциях с другими элементами.

Периодическая система химических элементов : система классификации химических элементов в соответствии с их атомными номерами.

Синтетический элемент : тот, который получен искусственно в лаборатории, и, как правило, не встречается в природе.

Природные и синтетические элементы

Девяносто два химических элемента встречаются в природе на Земле. Остальные были получены искусственно в лабораториях. Синтетический химический элемент - это, как правило, продукт ядерных реакций в ускорителях частиц (устройствах, используемых для увеличения скорости субатомных частиц, таких как электроны и протоны) или ядерных реакторах (устройствах, используемых для управления энергией, выделяющейся при ядерных реакциях). Первым полученным синтетическим элементом с атомным номером 43 стал технеций, обнаруженный в 1937 году итальянскими физиками К. Перрье и Э. Сегре. Кроме технеция и прометия, все синтетические элементы имеют ядра большие, чем у урана. Последний получивший свое название синтетический химический элемент - это ливерморий (116), а перед ним был флеровий (114).

Два десятка распространенных и важных элементов

Название Символ Процент всех атомов *

Свойства химических элементов

(при обычных комнатных условиях)

Во вселенной В земной коре В морской воде

В человеческом организме

Алюминий Al - 6,3 - - Легкий, серебристый металл
Кальций Ca - 2,1 - 0,02

Входит в состав природных минералов, ракушек, костей

Углерод С - - - 10,7 Базис всех живых организмов
Хлор Cl - - 0,3 - Ядовитый газ
Медь Cu - - - - Только красный металл
Золото Au - - - - Только желтый металл
Гелий He 7,1 - - - Очень легкий газ
Водород Н 92,8 2,9 66,2 60,6 Самый легкий из всех элементов; газ
Йод I - - - -

Неметалл; используется в качестве антисептического средства

Железо Fe - 2,1 - -

Магнитный металл; используется для производства чугуна и стали

Свинец Pb - - - - Мягкий, тяжелый металл
Магний Mg - 2,0 - - Очень легкий металл
Ртуть Hg - - - -

Жидкий металл; один из двух жидких элементов

Никель Ni - - - -

Устойчивый против коррозии металл; используют в монетах

Азот N - - - 2,4 Газ, основной компонент воздуха
Кислород О - 60,1 33,1 25,7

Газ, второй важный

компонент воздуха

Фосфор Р - - - 0,1 Неметалл; важен для растений
Калий К - 1.1 - -

Металл; важен для растений; обычно называют "поташ"

* Если величина не указана, то элемент составляет менее 0,1 процента.

Большой взрыв как первопричина образования материи

Какой химический элемент был самым первым во Вселенной? Ученые считают, что ответ на этот вопрос лежит в звездах и в процессах, с помощью которых формируются звезды. Вселенная, как полагают, возникла в какой-то момент времени от 12 до 15 миллиардов лет назад. До этого момента ничего сущего, кроме энергии, не мыслится. Но что-то произошло, что превратило эту энергию в огромный взрыв (так называемый Большой взрыв). В следующие секунды после Большого взрыва начала формироваться материя.

Первыми появившимися простейшими формами материи были протоны и электроны. Некоторые из них объединяются в атомы водорода. Последний состоит из одного протона и одного электрона; это самый простой атом, который может существовать.

Медленно, в течение длительных периодов времени атомы водорода стали собираться вместе в определенных областях пространства, образуя плотные облака. Водород в этих облаках стягивался в компактные образования гравитационными силами. В конце концов эти облака водорода стали достаточно плотными, чтобы сформировать звезды..

Звезды как химические реакторы новых элементов

Звезда - просто масса вещества, которая генерирует энергию ядерных реакций. Наиболее распространенная из этих реакций представляет комбинацию четырех атомов водорода, образующих один атом гелия. Как только звезды начали формироваться, то гелий стал вторым элементом, появившимся во Вселенной.

Когда звезды становятся старше, они переходят от водородно-гелиевых ядерных реакций на другие их типы. В них атомы гелия образуют атомы углерода. Позже атомы углерода образуют кислород, неон, натрий и магний. Еще позже неон и кислород соединяются друг с другом с образованием магния. Поскольку эти реакции продолжаются, то все более и более химических элементов образуются.

Первые системы химических элементов

Более 200 лет назад химики начали искать способы их классификации. В середине девятнадцатого века были известны около 50 химических элементов. Один из вопросов, который стремились разрешить химики. сводился к следующему: химический элемент - это полностью отличное от любого другого элемента вещество? Или некоторые элементы, связанные с другими в некотором роде? Есть ли общий закон, их объединяющий?

Химики предлагали различные системы химических элементов. Так, например, английский химик Уильям Праут в 1815 г. предположил, что атомные массы всех элементов кратны массе атома водорода, если принять ее равной единице, т. е. они должны быть целыми числами. В то время атомные массы многих элементов уже были вычислены Дж. Дальтоном по отношению к массе водорода. Однако если для углерода, азота, кислорода это примерно так, то хлор с массой 35,5 в эту схему никак не вписывался.

Немецкий химик Иоганн Вольфганг Доберайнер (1780 — 1849) показал в 1829 году, что три элемента из так называемой группы галогенов (хлор, бром и йод) могут классифицироваться по их относительным атомным массам. Атомный вес брома (79,9) оказался почти точно средним из атомных весов хлора (35,5) и йода (127), а именно 35,5 + 127 ÷ 2 = 81,25 (близко к 79,9). Это был первый подход к построению одной из групп химических элементов. Доберайнер обнаружил еще две таких триады элементов, но сформулировать общий периодический закон ему не удалось.

Как появилась периодическая система химических элементов

Большинство ранних классификационных схем было не очень успешными. Затем, около 1869 года, двумя химиками было сделано почти одно открытие и почти в одно время. Русский химик Дмитрий Менделеев (1834-1907) и немецкий химик Юлиус Лотар Мейер (1830-1895) предложили организовать элементы, которые имеют аналогичные физические и химические свойства, в упорядоченную систему групп, рядов и периодов. При этом Менделеев и Мейер указывали, что свойства химических элементов периодически повторяются в зависимости от их атомных весов.

Сегодня Менделеев, как правило, считается первооткрывателем периодического закона, потому что он сделал один шаг, который Мейер не сделал. Когда все элементы были расположены в периодической таблице, в ней появились некоторые пробелы. Менделеев предсказал, что это места для элементов, которые еще не были обнаружены.

Однако он пошел еще дальше. Менделеев предсказал свойства этих еще не открытых элементов. Он знал, где они расположены в периодической таблице, так что мог прогнозировать их свойства. Примечательно, что каждый предсказанный химический элемент Менделеева,будущие галлий, скандий и германий, были обнаружены менее чем через десять лет после опубликования им периодического закона.

Короткая форма периодической таблицы

Были попытки подсчитать, сколько вариантов графического изображения периодической системы предлагалось разными учеными. Оказалось, больше 500. Причем 80% общего числа вариантов - это таблицы, а остальное - геометрические фигуры, математические кривые и т. д. В итоге практическое применение нашли четыре вида таблиц: короткая, полудлинная, длинная и лестничная (пирамидальная). Последняя была предложена великим физиком Н. Бором.

На рисунке ниже показана короткая форма.

В ней химические элементы расположены по возрастанию их атомных номеров слева направо и сверху вниз. Так, первый химический элемент периодической таблицы водород имеет атомный номер 1 потому, что ядра атомов водорода содержит один и только один протон. Аналогично и кислород имеет атомный номер 8, так как ядра всех атомов кислорода содержат 8 протонов (см. рисунок ниже).

Главные структурные фрагменты периодической системы - периоды и группы элементов. В шести периодах все клетки заполнены, седьмой еще не завершен (элементы 113, 115, 117 и 118 хотя и синтезированы в лабораториях, однако еще официально не зарегистрированы и не имеют названий).

Группы подразделяются на главные (A) и побочные (B) подгруппы. Элементы первых трех периодов, содержащих по одному ряду-строке, входят исключительно в A-подгруппы. Остальные четыре периода включают по два ряда-строки.

Химические элементы в одной группе, как правило, имеют схожие химические свойства. Так, первую группу составляют щелочные металлы, вторую - щелочноземельные. Находящиеся в одном периоде элементы имеют свойства, медленно изменяющиеся от щелочного металла до благородного газа. Рисунок ниже показывает, как одно из свойств - атомный радиус - изменяется для отдельных элементов в таблице.

Длиннопериодная форма периодической таблицы

Она показана на рисунке ниже и делится в двух направлениях, по строкам и по столбцам. Есть семь строк-периодов, как и в короткой форме, и 18 столбцов, называемых группами или семьями. По сути, увеличение числа групп с 8 в короткой форме до 18 в длинной получено путем размещения всех элементов в периодах, начиная с 4-го, не в две, а в одну строку.

Две разных системы нумерации используются для групп, как показано в верхней части таблицы. Система на основе римских цифр (IA, IIA, IIB, IVB и т. д.) традиционно была популярна в США. Другая система (1, 2, 3, 4 и т. д.) традиционно используется в Европе, а несколько лет назад была рекомендована для использования в США.

Вид периодических таблиц на рисунках выше немного вводит в заблуждение, как и в любой такой опубликованной таблице. Причиной этого является то, что две группы элементов, показанных в нижней части таблиц, на самом деле должны быть расположены внутри них. Лантаноиды, например, принадлежат к периоду 6 между барием (56) и гафнием (72). Кроме того, актиноиды принадлежат периоду 7 между радием (88) и резерфордием (104). Если бы они были вставлены в таблицу, то она стала бы слишком широкой, чтобы поместиться на листе бумаги или настенной диаграмме. Поэтому принято эти элементы размещать в нижней части таблицы.

В таблице Менделеева, принятой у нас, приводятся русские названия элементов. У подавляющего числа элементов они фонетически близки к латинским: аргон - argon, барий - barium, кадмий - cadmium и т.д. Аналогично называются эти элементы и в большинстве западноевропейских языков. У некоторых же химических элементов названия в разных языках совершенно различны.

Всё это не случайно. Наибольшие отличия в названиях тех элементов (либо их самых распространённых соединений), с которыми человек познакомился в древности или в начале средних веков. Это семь металлов древних (золото, серебро, медь, свинец, олово, железо, ртуть, которые сопоставлялись с известными тогда планетами, а также сера и углерод). Они встречаются в природе в свободном состоянии, и многие получили названия, соответствующие их физическим свойствам.

Вот наиболее вероятное происхождение этих названий:

Золото

С древнейших времен блеск золота сопоставлялся с блеском солнца (sol). Отсюда - русское «золото». Слово gold в европейских языках связано с греческим богом Солнца Гелиосом. Латинское aurum означает «жёлтое» и родственно с «Авророй» (Aurora) - утренней зарёй.

Серебро

По-гречески серебро - «аргирос», от «аргос» - белый, блистающий, сверкающий (индоевропейский корень «арг» - пылать, быть светлым). Отсюда - argentum. Интересно, что единственная страна, названная по химическому элементу (а не наоборот), - это Аргентина. Слова silver, Silber, a также серебро восходят к древнегерманскому silubr, происхождение которого неясно (возможно, слово пришло из Малой Азии, от ассирийского sarrupum - белый металл, серебро).

Железо

Происхождение этого слова доподлинно неизвестно; по одной из версий, оно родственно слову «лезвие». Европейские iron, Eisen происходят от санскритского «исира» - крепкий, сильный. Латинское ferrum происходит от fars - быть твёрдым. Название природного карбоната железа (сидерита) происходит от лат. sidereus - звёздный; действительно, первое железо, попавшее в руки людям, было метеоритного происхождения. Возможно, это совпадение не случайно.

Сера

Происхождение латинского sulfur неизвестно. Русское название элемента обычно производят от санскритского «сира» - светло-желтый. Интересно было бы проследить, нет ли родства у серы с древнееврейским серафим - множительным числом от сераф; буквально «сераф» означает «сгорающий», а сера хорошо горит. В древнерусском и старославянском сера - вообще горючее вещество, в том числе и жир.

Свинец

Происхождение слова неясно; во всяком случае, ничего общего со свиньей. Самое удивительное здесь то, что на большинстве славянских языков (болгарском, сербско-хорватском, чешском, польском) свинец называется оловом! Наш «свинец» встречается только в языках балтийской группы: svinas (литовский), svin (латышский).

Английское название свинца lead и голландское lood, возможно, связаны с нашим «лудить», хотя лудят опять же не ядовитым свинцом, а оловом. Латинское же plumbum (тоже неясного происхождения) дало английское слово plumber - водопроводчик (когда-то трубы зачеканивали мягким свинцом), и название венецианской тюрьмы со свинцовой крышей - Пьомбе. Из этой тюрьмы по некоторым данным ухитрился бежать Казанова. А вот мороженое здесь ни при чём: пломбир произошёл от названия французского курортного городка Пломбьер.

Олово

В Древнем Риме олово называли «белым свинцом» (plumbum album), в отличие от plumbum nigrum - чёрного, или обыкновенного, свинца. По-гречески белый - алофос. По-видимому, от этого слова и произошло «олово», что указывало на цвет металла. В русский язык оно попало в XI веке и означало как олово, так и свинец (в древности эти металлы плохо различали). Латинское stannum связано с санскритским словом, означающим стойкий, прочный. Происхождение английского (а также голландского и датского) tin неизвестно.

Ртуть

Латинское hydrargirum произошло от греческих слов «хюдор» - вода и «аргирос» - серебро. «Жидким» (или «живым», «быстрым») серебром ртуть называется также в немецком (Quecksilber) и в староанглийском (quicksilver) языках, а по-болгарски ртуть - живак: действительно, шарики ртути блестят, как серебро, и очень быстро «бегают» - как живые. Современное английское (mercury) и французское (mercure) названия ртути произошли от имени латинского бога торговли Меркурия. Меркурий был также вестником богов, и его обычно изображали с крылышками на сандалиях или на шлеме. Так что бог Меркурий бегал так же быстро, как переливается ртуть. Ртути соответствовала планета Меркурий, которая быстрее других передвигается по небосводу.

Русское название ртути, по одной из версий, - это заимствование из арабского (через тюркские языки); по другой версии, «ртуть» связана с литовским ritu - качу, катаю, происшедшим от индоевропейского рет(х) - бежать, катиться. Литва и Русь были тесно связаны, а во 2-й половине XIV века русский язык был языком делопроизводства великого княжества Литовского, а также языком первых письменных памятников Литвы.

Углерод

Международное название происходит от латинского carbo - уголь, связанного с древним корнем kar - огонь. Этот же корень в латинском cremare - гореть, а возможно, и в русском «гарь», «жар», «угореть» (в древнерусском «угорати» - обжигать, опалять). Отсюда - и «уголь». Вспомним здесь также игру горелки и украинскую горшку.

Медь

Слово того же происхождения, что и польское miedz, чешское med. У этих слов два источника - древненемецкое smida - металл (отсюда немецкие, английские, голландские, шведские и датские кузнецы - Schmied, smith, smid, smed) и греческое «металлон» - рудник, копь. Так что медь и металл - родственники сразу по двум линиям. Латинское cuprum (от него произошли и другие европейские названия) связано с островом Кипр, где уже в III веке до н.э. существовали медные рудники и производилась выплавка меди. Римляне называли медь cyprium aes - металл из Кипра. В позднелатинском cyprium перешло в cuprum. С местом добычи или с минералом связаны названия многих элементов.

Кадмий

Открыт в 1818 году немецким химиком и фармацевтом Фридрихом Штромейером в карбонате цинка, из которого на фармацевтической фабрике получали медицинские препараты. Греческим словом «кадмейа» с древних времён называли карбонатные цинковые руды. Название восходит к мифическому Кадму (Кадмосу) - герою греческой мифологии, брату Европы, царю Кадмейской земли, основателю Фив, победителю дракона, из зубов которого выросли воины. Кадм будто бы первым нашёл цинковый минерал и открыл людям его способность изменять цвет меди при совместной выплавке их руд (сплав меди с цинком - латунь). Имя Кадма восходит к семитскому «Ка-дем» - Восток.

Кобальт

В XV веке в Саксонии среди богатых серебряных руд обнаруживали блестящие, как сталь, белые или серые кристаллы, из которых не удавалось выплавить металл; их примесь к серебряной или медной руде мешала выплавке этих металлов. «Нехорошая» руда получила у горняков имя горного духа Коболда. По всей видимости, это были содержащие мышьяк кобальтовые минералы - кобальтин CoAsS, или сульфиды кобальта скуттерудит, сафлорит или смальтин. При их обжиге выделяется летучий ядовитый оксид мышьяка. Вероятно, имя злого духа восходит к греческому «кобалос» - дым; он образуется при обжиге руд, содержащих сульфиды мышьяка. Этим же словом греки называли лживых людей. В 1735 году шведский минералог Георг Бранд сумел выделить из этого минерала не известный ранее металл, который и назвал кобальт. Он выяснил также, что соединения именно этого элемента окрашивают стекло в синий цвет - этим свойством пользовались ещё в древних Ассирии и Вавилоне.

Никель

Происхождение названия сходно с кобальтом. Средневековые горняки называли Никелем злого горного духа, а «купферникелем» (Kupfernickel, медный чёрт) - фальшивую медь. Эта руда внешне походила на медную и применялась в стекловарении для окрашивания стекол в зелёный цвет. А вот медь из неё никому получить не удавалось - её там не было. Эту руду - медно-красные кристаллы никелина (красного никелевого колчедана NiAs) в 1751 году исследовал шведский минералог Аксель Кронштедт и выделил из неё новый металл, назвав его никелем.

Ниобий и тантал

В 1801 году английский химик Чарлз Хатчет проанализировал чёрный минерал, хранившийся в Британском музее и найденный ещё в 1635 году на территории современного штата Массачусетс в США. Хатчет обнаружил в минерале оксид неизвестного элемента, который получил название Колумбии - в честь страны, где он был найден (в то время США ещё не имели устоявшегося названия, и многие называли их Колумбией по имени первооткрывателя континента). Минерал же назвали колумбитом. В 1802 году шведский химик Андерс Экеберг выделил из колумбита ещё один оксид, который упорно не хотел растворяться (как тогда говорили - насыщаться) ни в одной кислоте. «Законодатель» в химии тех времён шведский химик Йене Якоб Берцелиус предложил назвать содержащийся в этом оксиде металл танталом. Тантал - герой древнегреческих мифов; в наказание за свои противоправные действия он стоял по горло в воде, к которой склонялись ветви с плодами, но не мог ни напиться, ни насытиться. Аналогично и тантал не мог «насытиться» кислотой - она отступала от него, как вода от Тантала. По свойствам этот элемент настолько был похож на колумбий, что в течение длительного времени шли споры о том, являются ли Колумбий и тантал одним и тем же или всё же разными элементами. Только в 1845 году немецкий химик Генрих Розе разрешил спор, проанализировав несколько минералов, в том числе и колумбит из Баварии. Он установил, что на самом деле существуют два близких по свойствам элемента. Колумбий Хатчета оказался их смесью, а формула колумбита (точнее, манганоколумбита) - (Fe,Mn)(Nb,Ta)2O6. Второй элемент Розе назвал ниобием, по имени дочери Тантала Ниобы. Однако символ Cb до середины XX века оставался в американских таблицах химических элементов: там он стоял на месте ниобия. А имя Хатчета увековечено в названии минерала хатчита.

Прометий

Его много раз «открывали» в различных минералах при поисках недостающего редкоземельного элемента, который должен был занимать место между неодимом и самарием. Но все эти открытия оказались ложными. Впервые недостающее звено в цепи лантанидов обнаружили в 1947 году американские исследователи Дж. Маринский, Л. Гленденин и Ч. Кориэлл, разделив хроматографически продукты деления урана в ядерном реакторе. Жена Кориэлла предложила назвать открытый элемент прометием, по имени Прометея, похитившего у богов огонь и передавшего его людям. Этим подчеркивалась грозная сила, заключенная в ядерном «огне». Жена исследователя оказалась права.

Торий

В 1828 году Й.Я. Берцелиус обнаружил в редком минерале, присланном ему из Норвегии, соединение нового элемента, который он назвал торием - в честь древнескандинавского бога Тора. Правда, название это Берцелиус придумал ещё в 1815 году, когда ошибочно «открыл» торий в другом минерале из Швеции. Это был тот редкий случай, когда сам исследователь «закрыл» якобы обнаруженный им элемент (в 1825 году, когда оказалось, что ранее у Берцелиуса был фосфат иттрия). Новый же минерал назвали торитом, это был силикат тория ThSiO4. Торий радиоактивен; период его полураспада 14 млрд. лет, конечный продукт распада - свинец. По количеству свинца в ториевом минерале можно определить его возраст. Так, возраст одного из минералов, найденного в штате Вирджиния, оказался равным 1,08 млрд. лет.

Титан

Считается, что этот элемент открыл немецкий химик Мартин Клапрот. В 1795 году он обнаружил в минерале рутиле оксид неизвестного металла, который назвал титаном. Титаны - в древнегреческой мифологии гиганты, с которыми боролись боги-олимпийцы. Через два года выяснилось, что элемент «менакин», который обнаружил в 1791 году английский химик Уильям Грегор в минерале ильмените (FeTiO3), тождествен титану Клапрота.

Ванадий

Открыт в 1830 году шведским химиком Нильсом Сефстремом в шлаке доменных печей. Назван в честь древнескандинавской богини красоты Ванадис, или Вана-Дис. В этом случае тоже выяснилось, что ванадий открывали и раньше, и даже не один раз - мексиканский минералог Андрее Мануэль дель Рио в 1801 году и немецкий химик Фридрих Вёлер незадолго до открытия Сефстрема. Но дель Рио сам отказался от своего открытия, решив, что имеет дело с хромом, а Вёлеру завершить работу помешала болезнь.

Уран, нептуний, плутоний

В 1781 году английский астроном Уильям Гершель открыл новую планету, которую назвали Ураном - по имени древнегреческого бога неба Урана, деда Зевса. В 1789 году М. Клапрот выделил из минерала смоляной обманки чёрное тяжёлое вещество, которое он принял за металл и, по традиции алхимиков, «привязал» его название к недавно открытой планете. А смоляную обманку он переименовал в урановую смолку (именно с ней работали супруги Кюри). Лишь спустя 52 года выяснилось, что Клапрот получил не сам уран, а его оксид UO2.

В 1846 году астрономы открыли предсказанную незадолго до этого французским астрономом Леверье новую планету. Её назвали Нептуном - по имени древнегреческого бога подводного царства. Когда в 1850 году в минерале, привезенном в Европу из США, обнаружили, как полагали, новый металл, его, под впечатлением открытия астрономов, предложили назвать нептунием. Однако вскоре выяснилось, что это был уже открытый ранее ниобий. О «нептунии» забыли почти на целое столетие, пока в продуктах облучения урана нейтронами не обнаружили новый элемент. И как в Солнечной системе за Ураном следует Нептун, так и в таблице элементов за ураном (№ 92) появился нептуний (№ 93).

В 1930 году была открыта девятая планета Солнечной системы, предсказанная американским астрономом Ловеллом. Её назвали Плутоном - по имени древнегреческого бога подземного царства. Поэтому было логично назвать следующий за нептунием элемент плутонием; он был получен в 1940 году в результате бомбардировки урана ядрами дейтерия.

Гелий

Обычно пишут, что его открыли спектральным методом Жансен и Локьер, наблюдая полное солнечное затмение в 1868 году. На самом деле всё было не так просто. Спустя несколько минут после окончания солнечного затмения, которое французский физик Пьер Жюль Жансен наблюдал 18 августа 1868 года в Индии, ему впервые удалось увидеть спектр солнечных протуберанцев. Аналогичные наблюдения провёл английский астроном Джозеф Норман Локьер 20 октября того же года в Лондоне, особо подчеркнув, что его способ позволяет изучать солнечную атмосферу во вне-затменное время. Новые исследования солнечной атмосферы произвели большое впечатление: в честь этого события Парижская академия наук вынесла постановление о чеканке золотой медали с профилями учёных. При этом ни о каком новом элементе речи не было.

Итальянский астроном Анджело Секки 13 ноября того же года обратил внимание на «замечательную линию» в солнечном спектре вблизи известной жёлтой D-линии натрия. Он предположил, что эту линию испускает водород, находящийся в экстремальных условиях. И только в январе 1871 года Локьер высказал идею, что эта линия может принадлежать новому элементу. Впервые слово «гелий» произнёс в своей речи президент Британской ассоциации содействия наукам Уильям Томсон в июле того же года. Название было дано по имени древнегреческого бога солнца Гелиоса. В 1895 году английский химик Уильям Рамзай собрал выделенный из уранового минерала клевеита при его обработке кислотой неизвестный газ и с помощью Локьера исследовал его спектральным методом. В результате «солнечный» элемент был обнаружен и на Земле.

Цинк

Слово «цинк» ввёл в русский язык М.В. Ломоносов - от немецкого Zink. Вероятно оно происходит от древнегерманского tinka - белый, действительно, самый распространённый препарат цинка - оксид ZnO («философская шерсть» алхимиков) имеет белый цвет.

Фосфор

Когда в 1669 году гамбургский алхимик Хеннинг Бранд открыл белую модификацию фосфора, он был поражён его свечением в темноте (на самом деле светится не фосфор а его пары при их окислении кислородом воздуха). Новое вещество получило название, которое в переводе с греческого означает «несущий свет». Так что «светофор» - лингвистически то же самое, что и «Люцифер». Кстати, греки называли Фосфоросом утреннюю Венеру, которая предвещала восход солнца.

Мышьяк

Русское название, наиболее вероятно, связано с ядом которым травили мышей, помимо прочего, по цвету серый мышьяк напоминает мышь. Латинское arsenicum восходит к греческому «арсеникос» - мужской, вероятно, по сильному действию соединений этого элемента. А для чего их использовали, благодаря художественной литературе знают все.

Сурьма

В химии у этого элемента три названия. Русское слово «сурьма» происходит от турецкого «сюрме» - натирание или чернение бровей в древности краской для этого служил тонко размолотый чёрный сульфид сурьмы Sb2S3 («Ты постом говей, не сурьми бровей». - М. Цветаева). Латинское название элемента (stibium) происходит от греческого «стиби» - косметического средства для подведения глаз и лечения глазных болезней. Соли сурьмяной кислоты называют антимонитами, название, возможно, связано с греческим «антемон» - цветок сростки игольчатых кристаллов сурьмяного блеска Sb2S2 похожи на цветы.

Висмут

Вероятно это искажённое немецкое «weisse Masse» - белая масса с древности были известны белые с красноватым оттенком самородки висмута. Кстати в западноевропейских языках (кроме немецкого) название элемента начинается на «b» (bismuth). Замена латинского «b» русским «в» - распространённое явление Abel - Авель, Basil - Василий, basilisk - василиск, Barbara - Варвара, barbarism - варварство, Benjamin - Вениамин, Bartholomew - Варфоломей, Babylon - Вавилон, Byzantium - Византия, Lebanon - Ливан, Libya - Ливия, Baal - Ваал, alphabet - алфавит… Возможно переводчики полагали, что греческая «бета» - это русская «в».

В химических реакциях происходят превращения одних веществ в другие. Чтобы понять, как это происходит, нужно вспомнить из курса природоведения и физики, что вещества состоят из атомов.

Существует ограниченное число видов атомов. Атомы могут различным образом соединяться друг с другом. Как при складывании букв алфавита образуются сотни тысяч разных слов, так из одних и тех же атомов образуются молекулы или кристаллы разных веществ.

Атомы могут образовать молекулы – мельчайшие частицы вещества, которые сохраняют его свойства.

Известно, например, несколько веществ, образованных всего из двух видов атомов – атомов кислорода и атомов водорода, но разными видами молекул. К числу таких веществ относятся вода, водород и кислород.

Молекула воды состоит из трех частиц, связанных друг с другом. Это и есть атомы. К атому кислорода (атомы кислорода обозначаются в химии буквой О) присоединены два атома водорода (они обозначаются буквой Н).

Молекула кислорода состоит из двух атомов кислорода; молекула водорода – из двух атомов водорода. Молекулы могут образовываться в ходе химических превращений, а могут и распадаться.

Так, каждая молекула воды распадается на два атома водорода и один атом кислорода. Две молекулы воды образуют вдвое больше атомов водорода и кислорода. Одинаковые атомы связываются попарно в молекулы новых веществ – водород и кислород. Молекулы, таким образом, разрушаются, а атомы сохраняются.

Отсюда и произошло слово «атом», что значит в переводе с древнегреческого «неделимый».

Атомы – это мельчайшие химически неделимые частицы вещества

В химических превращениях образуются другие вещества из тех же атомов, из которых состояли исходные вещества.

Как микробы стали доступны наблюдению с изобретением микроскопа, так атомы и молекулы – с изобретением приборов, дающих еще большее увеличение и даже позволяющих атомы и молекулы фотографировать. На таких фотографиях атомы выглядят в виде расплывчатых пятен, а молекулы – в виде сочетания таких пятен.

Однако существуют и такие явления, при которых атомы делятся, атомы одного вида превращаются в атомы других видов. При этом получены искусственно и такие атомы, которые в природе не найдены.

Но эти явления изучаются не химией, а другой наукой – ядерной физикой.

Как уже говорилось, существуют и другие вещества, в состав которых входят атомы водорода и кислорода. Но, независимо от того, входят эти атомы в состав молекул воды, или в состав других веществ – это атомы одного и того же химического элемента.

Химический элемент – определенный вид атомов

Сколько всего существует видов атомов? На сегодняшний день человеку достоверно известно о существовании 118 видов атомов, то есть 118 химических элементов. Из них в природе встречаются 90 видов атомов, остальные получены искусственно в лабораториях.

Символы химических элементов

В химии для обозначения химических элементов используют химическую символику. Это язык химии . Для понимания речи на любом языке необходимо знать буквы, в химии точно так же. Чтобы понимать и описывать свойства веществ, и изменения, происходящие с ними, прежде всего, необходимо знать символы химических элементов.

В эпоху алхимии химических элементов было известно намного меньше, чем сейчас. Алхимики отождествляли их с планетами, различными животными, античными божествами.

В настоящее время во всем мире пользуются системой обозначений, введенной шведским химиком Йёнсом Якобом Берцелиусом. В его системе химические элементы обозначают начальной или одной из последующих букв латинского названия данного элемента. Например, элемент серебро обозначается символом – Ag (лат. Argentum). Ниже приведены символы, произношения символов, и названия наиболее распространенных химических элементов. Их нужно заучить на память!

Периодическая Система химических элементов Д.И. Менделеева

Русский химик Дмитрий Иванович Менделеев первым упорядочил разнообразие химических элементов, и на основании открытого им Периодического Закона составил Периодическую Систему химических элементов.

Как устроена Периодическая Система химических элементов?

На рисунке 58 изображен короткопериодный вариант Периодической Системы.

Периодическая Система состоит из вертикальных столбцов и горизонтальных строк. Горизонтальные строки называются периодами. На сегодняшний день все известные элементы размещаются в семи периодах. Периоды обозначают арабскими цифрами от 1 до 7.

Периоды 1–3 состоят из одного ряда элементов – их называют малыми. Периоды 4–7 состоят из двух рядов элементов, их называют большими.

Вертикальные столбцы Периодической Системы называют группами элементов. Всего групп восемь, и для их обозначения используют римские цифры от I до VIII. Выделяют главные и побочные подгруппы.

Периодическая Система – универсальный справочник химика, с ее помощью можно получить информацию о химических элементах.

Существует еще один вид Периодической Системы – длиннопериодный.

В длиннопериодной форме Периодической Системы элементы сгруппированы иначе, и распределены на 18 групп. В данном варианте

Периодической Системы элементы сгруппированы по «семействам», то есть в каждой группе элементов расположены элементы со сходными, похожими свойствами. В данном варианте Периодической Системы , номера групп, как и периодов, обозначают арабскими цифрами.

Периодическая Система химических элементов Д.И. Менделеева

Характеристики элемента в Периодической Системе

Распространенность химических элементов в природе

Атомы элементов, встречающихся в природе, распределенные в ней очень неравномерно. В космосе самым распространенным элементом является водород – первый элемент Периодической Системы. На его долю приходится около 93% всех атомов Вселенной. Около 6,9% составляют атомы гелия – второго элемента Периодической Системы. Остальные 0,1% приходится на все остальные элементы.

Распространенность химических элементов в земной коре значительно отличается от их распространенности во Вселенной. В земной коре больше всего атомов кислорода и кремния. Вместе с алюминием и железом они формируют основные соединения земной коры. А железо и никель – основные элементы, из которых состоит ядро нашей планеты.

Живые организмы также состоят из атомов различных химических элементов. В организме человека больше всего содержится атомов углерода, водорода, кислорода и азота.

Делаем выводы из статьи про Химические элементы.

  • Химический элемент – определенный вид атомов
  • На сегодняшний день человеку достоверно известно о существовании 118 видов атомов, то есть 118 химических элементов. Из них в природе встречаются 90 видов атомов, остальные – получены искусственно в лабораториях
  • Существует два варианта Периодической Системы химических элементов Д.И. Менделеева – короткопериодный и длиннопериодный
  • Современная химическая символика образована от латинских названий химических элементов
  • Периоды – горизонтальные строки Периодической Системы. Периоды разделяют на малые и большие
  • Группы – вертикальные строки периодической таблицы. Группы разделяют на главные и побочные


Последние материалы раздела:

Пробный ЕГЭ по русскому языку
Пробный ЕГЭ по русскому языку

Здравствуйте! Уточните, пожалуйста, как верно оформлять подобные предложения с оборотом «Как пишет...» (двоеточие/запятая, кавычки/без,...

Математические, статистические и инструментальные методы в экономике: Ключ к анализу и прогнозированию
Математические, статистические и инструментальные методы в экономике: Ключ к анализу и прогнозированию

В современном мире, где экономика становится все более сложной и взаимосвязанной, невозможно переоценить роль аналитических инструментов в...

SA. Парообразование. Испарение, конденсация, кипение. Насыщенные и ненасыщенные пары Испарение и конденсация в природе сообщение
SA. Парообразование. Испарение, конденсация, кипение. Насыщенные и ненасыщенные пары Испарение и конденсация в природе сообщение

Все газы явл. парами какого-либо вещества, поэтому принципиальной разницы между понятиями газ и пар нет. Водяной пар явл. реальным газом и широко...