Черенкова -вавилова излучение. Школьная энциклопедия

) в 1880-х, но этот эффект был обнаружен случайно, возможно, Марией и Пьером Кюри. Его тщательно изучал Павел Черенков в 1930-е годы, а через несколько лет эффект подробно объяснили Илья Михайлович Франк и Игорь Евгеньевич Тамм . Три этих физика получили за изучение этого явления нобелевскую премию в 1958 году.

Прим. перев.: в англоязычных источниках почти всегда при описании излучения Черенкова авторы спешат упомянуть чету Кюри и то, что они ещё в начале XX века вроде бы наблюдали некое голубое свечение в своих опытах с радием. При этом обычно источника этой информации они не указывают; в редких случаях пишут, что информация получена на основании прочтения художественной книги, биографией четы Кюри, написанной их дочерью, Евой.

А в самой биографии о голубом свечении сказано только вот что:

«И среди темного сарая стеклянные сосудики с драгоценными частицами радия, разложенные, за отсутствием шкафов, просто на столах, на прибитых к стенам дощатых полках, сияют голубоватыми фосфоресцирующими силуэтами, как бы висящими во мраке.» // «Пьер и Мария Кюри», пер. с французского С. А. Шукарев, Евгений Федорович Корш, изд. 1959 г.

Что это было за наблюдение? Черенков изучал голубой свет, появлявшийся в тот момент, когда радиоактивные объекты (содержащие атомы, чьё ядро распадается на другие ядра, выплёвывая частицы высокой энергии, среди которых встречаются электроны и позитроны) размещались рядом с водой и другими прозрачными материалами. Сейчас мы знаем, что любая электрически заряженная частица, такая, как электрон, движущаяся с достаточно высокой энергией через воду, воздух или другую прозрачную среду, будет испускать голубой свет. Свет этот движется от частицы под определённым углом к направлению её движения.

Что происходит? Как поняли Франк и Тамм, это фотонный удар, аналогичный звуковому удару, происходящему, когда сверхзвуковой летательный аппарат движется быстрее скорости звука, или волнению, которое создаёт судно, идущее по воде. Свет в прозрачной среде будет двигаться со скоростью, отличающейся от скорости света в вакууме из-за взаимодействия между светом и заряженными частицами (электронами и ядрами атомов), составляющими эту среду. К примеру, в воде свет перемещается примерно на 25% медленнее, чем в вакууме! Поэтому электрону высокой энергии легче перемещаться быстрее, чем свет перемещается в воде, и при этом не превышать скорости света в вакууме. Если такая частица идёт через воду, она создаёт электромагнитную взрывную волну, похожую на взрывную волну, создаваемую сверхзвуковым самолётом в плотном воздухе. Эта волна исходит от частицы, так же, как звуковая волна исходит от самолёта, и переносит в себе энергию во многих формах (длинах волн) электромагнитного излучения, включая и видимый свет. На фиолетовом конце радуги энергии создаётся больше, чем на красном, поэтому свет для наших глаз и мозга выглядит в основном голубым.

Такое излучение чрезвычайно полезно в физике частиц, ибо оно даёт прекрасный способ обнаружения частиц высокой энергии! Мы не только можем видеть присутствие заряженных частиц высокой энергии благодаря испускаемому ими свету, мы можем постичь гораздо больше, изучая подробности этого света. Точная схема излучения может помочь определить (а) по какому пути частица следует в среде, (б) сколько энергии она переносит, и даже (в) кое-что по поводу её массы (поскольку электроны будут рассеиваться в среде, а более тяжёлые частицы будут вести себя по-другому). Несколько очень важных экспериментов, включая и те, что впоследствии получили нобелевку, основываются на этом излучении. Среди них эксперименты, сыгравшие главную роль в изучении нейтрино, например, Супер-Камиоканде .

Излучение Черенкова также очень полезно при проверках правильности описания природы эйнштейновской теорией относительности. Космические лучи – частицы, летящие из глубокого космоса (часто сталкивающиеся с чем-нибудь в атмосфере и порождающие каскады частиц, которые можно обнаружить детекторами на земле), в редких случаях могут обладать чрезвычайно высокой энергией – в 100 миллионов раз большей, чем энергия протонов в Большом Адронном Коллайдере. Эти частицы (насколько мы знаем) были созданы на расстоянии многих световых лет от Земли в таких мощных астрономических событиях, как сверхновые. Предположим, что скорость света была бы не универсальным ограничением скорости, и эти частицы перемещались бы быстрее света в вакууме космоса. Тогда эти высокоэнергетические частицы также вызывали бы излучение Черенкова. А поскольку их путь был таким долгим, они потеряли бы много энергии на это излучение. Оказывается, что эта потеря энергии может происходить очень быстро, и что эти частицы в таком случае не могли бы преодолеть астрономические расстояния и сохранить такие высокие уровни энергии, если только их скорость не оставалась меньше, чем скорость света.

Короче говоря, если бы космические лучи сверхвысоких энергий могли двигаться быстрее света, тогда мы не могли бы наблюдать никаких космических лучей с такой энергией, ибо они должны были бы растерять всю свою энергию до того, как достигнут Земли. Но мы их наблюдаем.

Тут есть небольшой подвох: мы почти уверены, что большая часть их обладает зарядом: их свойства говорят о том, что они участвуют в сильном ядерном взаимодействии, а единственные стабильные частицы, способны пройти такие расстояния – это протоны, и вообще, ядра атомов, и все они обладают электрическим зарядом. Если даже воспользоваться этим подвохом, но ограничения можно немного ослабить, но они всё равно останутся довольно сильными.

Из этого можно заключить: космические лучи сверхвысоких энергий (а также вообще все космические лучи низких энергий) не могут двигаться быстрее скорости света, по крайней мере, сильно быстрее. И если это опережение существует, то его оценки, сделанные в конце 1990-х знаменитыми физиками Сидни Коулманом и Шелдоном Глэшоу , говорят, что эта величина может быть равной десяти частям из триллиона триллионов. С тех пор эти ограничения, вероятно, были улучшены благодаря данным экспериментов.

Точно так же, то, что мы можем наблюдать высокоэнергетические электроны, накладывает ограничение на их скорость по отношению к скорости света. Одно из последних заявлений, о которых я читал, говорит, что из наблюдений за электронами с энергиями до 0,5 ТэВ следует, что электроны не могут превышать скорость света больше, чем на одну часть из тысячи триллионов.

Эффект Вавилова-Черенкова был открыт в 1934 г. советским физиком Павлом Алексеевичем Черенковым, работавшим в лаборатории, возглавляемой академиком Сергеем Ивановичем Вавиловым.

История открытия

Павел Алексеевич Черенков

Во время эксперимента по исследованию люминесценции («холодного» свечения) жидкостей под воздействием гамма-излучения молодой учёный обнаружил красивое голубое свечение, которое было довольно слабым. Его можно было наблюдать у всех чистых прозрачных жидкостей. Причём, в отличие от люминесценции, яркость этого свечения практически не зависела от химического состава жидкости. И ни температура, ни добавление примесей не влияли на его интенсивность. Кроме того, если люминесценция происходит равномерно во все стороны, то новое излучение было поляризовано и направлено вдоль пучка электронов. Обобщив свои наблюдения, Черенков пришёл к выводу, что свет излучается не жидкостью, а движущимися в ней быстрыми электронами. Открытое излучение было названо эффектом Вавилова-Черенкова .

Природу этого явления объяснили в 1937 г. советские физики Игорь Евгеньевич Тамм и Илья Михайлович Франк.

Игорь Евгеньевич Тамм

Илья Михайлович Франк

Излучение Вавилова-Черенкова

Нажать на изображение

Как же объяснить эффект Вавилова-Черенкова?

Мы знаем, что в вакууме свет движется с наивысшей скоростью, которой можно достичь. Согласно теории относительности, ни одно материальное тело, включая быстрые элементарные частицы (например, протоны или электроны), не может двигаться со скоростью, превышающей скорость света. Но в любой другой прозрачной среде свет распространяется с меньшей скоростью. Например, скорость света в воде на треть меньше его скорости в вакууме. Поэтому скорость протонов или электронов может превысить скорость света в этой среде.

Как раз такая ситуация и наблюдалась в опыте Черенкова. Быстрые электроны, выбитые из атомов среды под воздействием гамма-излучения, двигались со скоростью, превышающей скорость света в этой среде.

Согласно принципу Гюйгенса, в каждой точке поверхности, достигнутой сферической волной, возникает новая волна. Таким образом, каждую точку траектории электрона можно считать источником волны, возникающей в момент в момент её прохождения им. Все эти волны распространяются с одинаковой скоростью u = c/n , где u - скорость распространения волны; с - скорость света; n - показатель преломления среды.

Если частица движется быстрее световых волн, то она обгоняет волны и за время t пройдёт путь от точки А до точки Е, равный v·t , где v - скорость частицы. Радиус сферической волны, испущенной из точки А, будет равен R = u·t , или c/n·t . Пики амплитуд этих волн образуют волновой фронт (волновую поверхность, до которой дошли колебания). Его называют волновым фронтом Черенкова. Он выглядит, как конус с вершиной в точке Е. Нормали к образующим конуса показывают направление движения световых волн.

Угол между нормалью и направлением движения частиц зависит от скорости частицы и от скорости света в среде. Поэтому вычислив этот угол, можно вычислить и скорость частицы.

Связь между величиной этого угла и скоростью частицы определяет формула:

Практическое применение эффекта Вавилова-Черенкова

Свечение Черенкова довольно слабое. И, чтобы его увидеть, Черенкову приходилось подолгу сидеть в темноте, чтобы самый чувствительный в то время «фотоэлемент» - его глаз - смог это излучение разглядеть. Но в середине ХХ века были созданы фотоумножители, которые позволили фиксировать даже отдельные фотоны. Это дало толчок к практическому применению открытого учёным явления. В итоге появились черенковские детекторы, которые начали использовать для регистрации релятивистских частиц (частиц, движущихся со скоростью, сравнимой со скоростью света).

Задача черенковкого детектора , или детектора черенковского излучения, - отделить тяжёлые частицы от более лёгких, косвенным образом определив их массы. Для этого определяют угол излучения черенковского света и вычисляют скорость частицы. Затем по искривлению траектории движения частицы в электромагнитном поле получают величину её импульса, что даёт возможность вычислить её массу и идентифицировать саму частицу.

По черенковскому излучению определяют содержание радионуклидов в воде напрямую, без применения специальных детекторов.

Эффект Вавилова-Черенкова широко применяется в ядерной физике и физике элементарных частиц.

Детекторы Черенкова установлены в обсерваториях. Они используются во всём мире. Например, в Японии в лаборатории г. Камиока функционирует детектор «Супер-Камиоканде», вмещающий 50 тысяч тонн воды и 11 000 светочувствительных элементов.

Излучение Черенкова наблюдается в охлаждающей жидкости ядерного реактора. Его используют для контроля работы ядерных реакторов.

В 1958 г. Вавилов, Тамм и Франк стали лауреатами Нобелевской премии по физике, которая была присуждена им «за открытие и истолкование эффекта Черенкова».

Мировая научная общественность уже не первое десятилетие спорит о вреде и пользе воздействия синего света на человеческий организм. Представители одного лагеря заявляют о серьезной угрозе и разрушительном действии синего света, а их оппоненты приводят веские доводы в пользу оздоровительного эффекта от него. В чем причина этих разногласий? Кто прав и, как разобраться, нужен ли людям синий свет для поддержания здоровья? Или природа что-то перепутала, включив его в доступный человеческому восприятию видимый спектр…

Рисунок 1. Электромагнитное излучение в диапазоне длин волн от 380 до 760 нм

Особую актуальность все эти вопросы имеют для людей, страдающих катарактой и задумавшихся об имплантации интраокулярных линз (ИОЛ) . Многие производители предлагают ИОЛ, изготовленные из материалов, не пропускающих электромагнитное излучение в диапазоне длин волн 420–500 нм, характерном для синего света (узнать такие линзы легко, они имеют желтоватый оттенок).

Но один из лидеров рынка искусственных хрусталиков - компания Abbott Medical Optics (АМО) - осознанно плывет против течения, борясь со стереотипами и отстаивая свою принципиальную и обоснованную позицию. АМО создает прозрачные линзы, подобно естественным хрусталикам молодых здоровых глаз полностью пропускающие синий свет в видимом диапазоне.

Отвечая на этот вопрос, чем обусловлен столь серьезный выбор, возможно, нам удастся развеять миф о вреде синего света, прежде принимавшийся большинством в качестве неопровержимого постулата.

Осторожно! Синий свет

Цвета всех видимых объектов, обусловлены различными длинами волн электромагнитного излучения. Попадая в глаза, отражённый от этих от этих объектов свет вызывает реакцию светочувствительных клеток сетчаски, инициирующую формирование нервных импульсов, переправляемых по зрительному нерву в мозг, где и формируется привычная "карптина мира" - изображение, каким мы его видим. Наши глаза воспринимают электромагнитное излучение в диапазоне длин волн от 380 до 760 нм.
Так как коротковолновое излучение (в данном случае синий свет) сильнее рассеивается в структурах глаза, оно ухудшает качество зрения и провоцирует возникновение симптомов зрительного утомления. Но основные опасения относительно синего света связаны не с этим, а с его действием на сетчатку. Помимо сильного рассеяния, коротковолновое излучение обладает большой энергией. Оно вызывает фотохимическую реакцию в клетках сетчатки, в ходе которой продуцируются свободные радикалы, оказывающие повреждающее воздействие на фоторецепторы - колбочки и палочки.

Эпителий сетчатки не способен утилизировать продукты метаболизма, образующиеся вследствие данных реакция. Эти продукты накапливаются и вызывают дегенерацию сетчатки . В результате длительных экспериментов, проводимых независимыми группами ученых в разных странах, таких как Швеция, США, Россия, Великобритания, удалось установить, что наиболее опасной является полоса длин волн, расположенная в сине-фиолетовой части спектра примерно от 415 до 455 нм.

Однако нигде не сказано и на практике не подтверждено, что синий свет с длиной волны из данного диапазона может моментально лишить человека здорового зрения. Лишь продолжительное, избыточное его воздействие на глаза может способствовать возникновению негативных эффектов. Наиболее опасным является даже не солнечный, а искусственный свет, исходящий от энергосберегающих ламп и экранов различных электронных устройств. В спектрах такого искусственного света преобладает опасный набор длин волн от 420 до 450 нм.


Рисунок 2. Воздействие коротковолнового излучения на структуру глаза

Не весь спектр синего света вреден для глаз!

Было доказано, что определенная часть диапазона синего света отвечает за правильное функционирование биоритмов, иначе говоря, за регуляцию «внутренних часов». Несколько лет назад в моде была теория замены утреннего кофе пребыванием в помещении с синими лампами . Действительно, результаты многих экспериментов демонстрируют, что синий свет помогает людям проснуться, заряжает энергией, улучшает внимание и активизирует мыслительный процесс, влияя на психомоторные функции. Такой эффект связан с воздействием синего света с длиной волны порядка (450–480 нм) на выработку жизненно важного гормона мелатонина, отвечающего за регуляцию суточного ритма, а также за изменение биохимического состава крови, улучшение работы сердца и легких, стимуляцию иммунной и эндокринной системы, влияющего на процессы адаптации при смене часовых поясов и даже на замедление процессов старения,.

Также стоит отметить незаменимую роль синего света в обеспечении высокой цветовой контрастной чувствительности и в поддержании высокой остроты зрения в сумеречное время, а также в условиях плохой освещенности.

Доказано самой природой!

Еще одним подтверждением пользы синего света является факт, связанный с возрастными изменениями естественного хрусталика. С годами хрусталик становиться более плотным и приобретает желтоватый оттенок. В результате этого происходит изменение светопропускания глаз - в них происходит заметная фильтрация синей области спектра. Корреляция между данными изменениями и нарушением циркадных ритмов у пожилых людей была замечена давно. Установлено, что у таких людей гораздо чаще возникают проблемы со сном: они без видимых причин просыпаются среди ночи, не могут надолго погружаться в глубокий сон, при этом в дневное время испытывают сонливость и дремлют. Это происходит за счет снижения восприимчивости их глаз к синему свету, а значит и к уменьшению выработки мелатонина в дозах, необходимых для регуляции здорового суточного ритма.

Фильтрация должна быть разумной!

Современные технические возможности и постоянно расширяющие научные сведения позволяют создавать специальные очковые покрытия, уменьшающие пропускание вредной части спектра видимого излучения. Такие решения доступны всем, кто следит за сохранением здоровья глаз. Что же касается людей с установленными интраокулярными линзами, для них действуют те же правила предосторожности. Чрезмерное пребывание на солнце или под влиянием искусственных источников света, содержащих коротковолновую синюю составляющую, может наносить вред их организму. Но это не означает, что их ИОЛ должны полностью блокировать попадание в глаза синего света. Люди с искусственными хрусталиками, так же, как и все остальные могут и должны пользоваться внешними средствами оптической защиты.

Но начисто лишать их возможности воспринимать видимый (и в том числе полезный!) синий свет, значит, подвергать их здоровье серьезной опасности. Проще говоря, человек всегда может надеть солнцезащитные очки, но вынуть из глаза интраокулярную линзу при всем желании сам не сможет.

Рисунок 3. Люди с ИОЛ должны пользоваться внешними средствами оптической защиты

Все вышесказанное относится к ответу на вопрос о выборе ИОЛ, о пользе тех из них, свойства которые максимально приближены к свойствам естественных хрусталиков, а еще о том, как важно не забывайте следить за своим здоровьем каждый день!

Куда смотрят разрушители мифов?!

В завершении хочется добавить еще несколько слов уже не о медицинской, а о маркетинговой составляющей спора о синем свете. Практика имплантации интраокулярных линз берет свое начало с середины прошлого века. По мере развития технологий, расширения научных знаний и совершенствования материалов, ИОЛ становились все более эффективными и безопасными.

Однако изначально существовал целый ряд трудностей, которые только предстояло преодолеть. Одной из них являлась разработка стабильного прозрачного биосовместимого полимера, пригодного для производства искусственных хрусталиков. Как раз для стабилизации к этому полимеру примешивали специальные вещества, имевшие желтоватый цвет. По естественным физическим причинам такие ИОЛ не пропускали синий свет внутрь глаза.

И производителям, которые в большинстве своем параллельно занимались созданием специальных защитных покрытий для очковых линз, необходимо было каким-то образом объяснить «необходимость» такой фильтрации, так как устранить ее они еще не могли. Тогда и возникло учение о вреде синего света для сетчатки, получившее широкую известность и до сих пор пугающее непосвященных страшными мифами, так до конца и не доказанными.

Литература:

  1. Журнал «Веко», № 4/2014, «Осторожно, синий свет!», О.Щербакова.
  2. A Comparison of Blue Light and Caffeine Effects on Cognitive Function and Alertness in Humans, C. Martyn Beaven, Johan Ekström PLOS ONE journal, October 7, 2013.
  3. Руководство для врачей «Фототерапия», В. И. Крандашов, Е. Б. Петухов, М.: Медицина 2001.
  4. Журнал «Наука и жизнь», № 12/ 2011.

Эффект Вавилова - Черенкова (излучение Вавилова - Черенкова) - свечение, вызываемое в прозрачной среде заряженной частицей, которая движется со скоростью, превышающей фазовую скорость распространения света в этой среде.

В 1934 году Павел Черенков проводил в лаборатории Сергея Вавилова исследования люминесценции жидкостей под воздействием гамма-излучения и обнаружил слабое голубое свечение, вызванное быстрыми электронами, выбитыми из атомов среды гамма-излучением. Позже выяснилось, что эти электроны двигались со скоростью выше скорости света в среде.

При прохождении света через прозрачный материал, например стекло, свет распространяется медленнее, чем в вакууме. Теория относительности гласит: ни одно материальное тело, включая быстрые элементарные частицы высоких энергий, не может двигаться со скоростью, равной скорости света в вакууме. Но к скорости движения в прозрачных средах это ограничение не относится. В стекле или в воде, например, свет распространяется со скоростью, составляющей 60-70% от скорости света в вакууме, и ничто не мешает быстрой частице (например, протону или электрону) двигаться быстрее света в такой среде.

Уже первые эксперименты Черенкова, предпринятые по инициативе С. И. Вавилова, выявили ряд характерных особенностей излучения: свечение наблюдается у всех чистых прозрачных жидкостей, причем яркость мало зависит от их химического состава, излучение имеет поляризацию с преимущественной ориентацией электрического вектора вдоль направления первичного пучка, при этом в отличие от люминесценции не наблюдается ни температурного, ни примесного тушения. На основании этих данных Вавиловым было сделано основополагающее утверждение, что обнаруженное явление - не люминесценция жидкости, а свет излучают движущиеся в ней быстрые электроны.

Излучение Черенкова можно наблюдать и невооруженным взглядом на небольших исследовательских ядерных реакторах, которые часто устанавливают на дне бассейна для обеспечения радиационной защиты. Сердечник реактора в этом случае окружен эффектным голубым свечением - это и есть излучение Черенкова под воздействием быстрых частиц, излучаемых в результате ядерной реакции.
Теоретическое объяснение явления было дано И. Таммом и И. Франком в 1937 году.

Интересно, что распространенное ранее представление о том, что на больших глубинах в океане царит полный мрак, так как свет с поверхности туда не доходит, является ошибочным. Как следствие распада радиоактивных изотопов в океанской воде, в частности, калия-40, даже на больших глубинах вода слабо светится из-за эффекта Вавилова - Черенкова. Существуют гипотезы, что большие глаза нужны глубоководным созданиям затем, чтобы видеть при столь слабом освещении.

Британская и американская рабочие группы 10 лет назад уже доказали о наличии фото-пигмента в глазу человека. Он сигнализирует организму, наступил день или ночь, лето или зима. Фото-пигмент реагирует, в частности, на синий свет. Синий свет показывает организму как будто это день – нужно бодрствовать.

Повышение и снижение показателей мелатонина регулируется количеством света, который захватывают наши глаза и передают в шишковидную железу (эпифиз). Когда темнеет, выработка мелатонина в эпифизе увеличивается, и нам хочется спать. Яркое освещение тормозит синтез мелатонина, сон как рукой снимает.

Сильнее всего выработка мелатонина подавляется светом с длиной волны 450-480 нанометров, то есть синим светом.

Сравнение с зелёным светом показало, что синий свет сдвигает в сторону дня стрелку биологических часов в среднем на три часа, а зелёный - только на полтора, и эффект синего света держится дольше. Поэтому, синий искусственный свет, охватывающий спектр видимых фиолетовых и собственно синих световых волн, становится угрожающе опасным в ночное время!

Поэтому учёные рекомендуют утром яркое синеватое освещение, чтобы быстрее проснуться, а вечером желательно избегать синей части спектра. Кстати, распространённые сейчас энергосберегающие, а особенно светодиодные лампы испускают очень много синих лучей.
Так получается, что проблемы здоровья человека вступают в этом вопросе в противодействие с энергосберегающими технологиями. Обычные лампы накаливания, которые сейчас повсеместно снимают с производства, выдавали куда меньше света синего спектра, чем люминесцентные или светодиодные нового поколения. И всё же при выборе ламп следует руководствоваться полученными знаниями и предпочесть синему любой другой цвет.

Чем опасно для здоровья ночное освещение?

Многие исследования последних лет находили связь между работой в ночную смену и воздействием искусственного света на возникновение или обострение у наблюдаемых болезней сердца, сахарного диабета, ожирения, а также рака предстательной и молочной железы. Хотя ещё не совсем понятно, отчего это происходит, но учёные считают, что всё дело в подавлении светом гормона мелатонина, который, в свою очередь, влияет на циркадный ритм человека («внутренние часы»).

Исследователи из Гарварда, пытаясь пролить свет на связь циркадного цикла с диабетом и ожирением, провели эксперимент среди 10 участников. Им постоянно смещали с помощью света сроки их циркадного цикла. В результате – уровень сахара в крови значительно возрос, вызвав преддиабетное состояние, а уровень гормона лептина, отвечающего за чувство сытости после еды, напротив, понизился (то есть человек испытывал даже при том, что организм биологически насытился).

Оказалось, даже очень тусклый свет от ночника способен разрушить сон и нарушить ход биологических часов! Кроме сердечно-сосудистых заболеваний и сахарного диабета, это приводит к началу депрессии.

Еще, обнаружено, что изменения в сетчатке глаз, по мере старения, могут привести к нарушению циркадных ритмов.

Поэтому проблемы со зрением у пожилых могут стать причиной развития многих хронических заболеваний и состояний, связанных с возрастом.

По мере старения хрусталик глаз приобретает жёлтый оттенок и пропускает меньше лучей. Да и в целом, наши глаза улавливают меньше света, особенно синей части спектра. Глаза 10-летнего ребёнка способны поглощать в 10 раз больше синего света, чем глаза 95-летнего старика. В 45 лет глаза человека поглощают лишь 50% синего спектра света, необходимого для обеспечения циркадных ритмов.

Свет с экрана компьютера мешает спать

Работа и игра на компьютере особенно отрицательно влияет на сон, так как при работе вы сильно сконцентрировались и сидите близко к яркому экрану.

Двух часов чтения с экрана устройства вроде iPad при максимальной яркости достаточно, чтобы подавить нормальную выработку ночного мелатонина.

Многие из нас каждый день по несколько часов проводят за компьютером. При этом не все знают, что правильная настройка дисплея монитора может сделать работу более эффективной и комфортной.

Программа F.lux исправляет это, делая свечение экрана адаптированным к времени суток. Свечение монитора будет плавно меняться от холодного днем к теплому ночью.

«F.lux» в переводе с английского означает течение, постоянное изменение, постоянное движение. Работать за монитором в любое время суток значительно комфортнее.

Легко ли ей пользоваться?
Благодаря низким системным требованиям, «F.lux» будет отлично работать даже на слабых компьютерах. Простая установка не займет много времени. Все, что требуется – это укать Ваше местонахождение на земном шаре. Карты Гугл помогут сделать это менее, чем за минуту. Теперь программа настроена и работает в фоновом режиме, создавая комфорт для Ваших глаз.

«F.lux» полностью бесплатна. Есть версии для Windows, Mac OS и Linux.

Настройки просмотра комментариев

Плоский список - свёрнутый Плоский список - развёрнутый Древовидный - свёрнутый Древовидный - развёрнутый

По дате - сначала новые По дате - сначала старые

Выберите нужный метод показа комментариев и нажмите "Сохранить установки".



Последние материалы раздела:

Изменение вида звездного неба в течение суток
Изменение вида звездного неба в течение суток

Тема урока «Изменение вида звездного неба в течение года». Цель урока: Изучить видимое годичное движение Солнца. Звёздное небо – великая книга...

Развитие критического мышления: технологии и методики
Развитие критического мышления: технологии и методики

Критическое мышление – это система суждений, способствующая анализу информации, ее собственной интерпретации, а также обоснованности...

Онлайн обучение профессии Программист 1С
Онлайн обучение профессии Программист 1С

В современном мире цифровых технологий профессия программиста остается одной из самых востребованных и перспективных. Особенно высок спрос на...