Что делает лёд настолько скользким. Павел корнев "скользкий"

Что лед скользок, знают все, а вот почему лед скользкий - не всякий сумеет объяснить.

Трение между льдом и сталью конька порождает тепло

Лед плавится под давлением

Один английский ученый утверждал, что лед скользок потому, что он обладает замечательной способностью плавиться под давлением - таять.

Конькобежец тяжел, а скользкая поверхность конька мала,

Говорил этот ученый. -

От сильного давления лед слегка плавится, подтаивает. Между скользящей поверхностью конька и льдом образуется тончайшая пленка воды. Эта вода служит естественной смазкой и делает лед скользким.

Такое объяснение в течение долгого времени считалось общепризнанным и правильным. Так было напечатано в старых учебниках и в популярных книгах. Но это объяснение оказалось не совсем верным. Между поверхностью льда и коньком действительно образуется пленка воды, но получить ее одним только давлением нельзя, даже если на коньки поставить слона.

Трение ведет к выделению теплоты

Ошибку разъяснил советский ученый В. Б. Вейнберг . На коньках катаются не только взрослые и толстые люди, обладающие солидным весом. Это любимая забава малышей. Они прекрасно скользят на коньках, хотя давление на лед, оказываемое ими, совсем невелико. Если бы лед под коньком действительно плавился от давления, то кататься на катке можно было бы только при температуре не свыше одного градуса мороза.

От этого тепла и плавится лед, а образовавшаяся при этом водяная пленка создает смазку и облегчает движение конькобежца. Во время очень сильных морозов теплоты, развивающейся от трения, оказывается уже недостаточно, чтобы расплавить лед под коньком. Тогда кататься на катке неприятно - спортсмены говорят, что лед «сухой».

Россия — это страна, в любой точке которой температура зимой может опуститься ниже нуля. Это значит, что все, живущие здесь, не понаслышке знают о том, что по льду ходить нужно осторожно — дабы не поскользнуться и не шлёпнуться на пятую точку. Это в лучшем случае. Худшими занимается травматология, и, поверьте, зимой там не скучают.

Учёные сходятся во мнении, что «скользкость» вызывается очень тонким слоем воды на поверхности льда. Однако они не могут прийти к консенсусу относительно того, почему он там образуется. У большинства твердых материалов этот слой отсутствует, но лёд не является типичным представителем этого класса веществ. В этой связи учёные рассматривают варианты, связанные с давлением, трением и особыми способами взаимодействия молекул.

Традиционно считалось, что для того чтобы растопить верхнюю кромку льда, на неё надо немного надавить.

Это хорошо иллюстрируется с помощью коньков и может объясняться одним странным свойством H2O — лёд не такой плотный, как жидкая вода. Когда вы оказываете давление на лёд — например, лезвием конька — система взаимодействия стремится снизить давление, уменьшив объём. Так как вода компактнее, чем лёд, её точка плавления опускается, образуется жидкость, по которой, собственно, и скользит лезвие. После того как визжащий от восторга обладатель спортинвентаря проедет, вода вновь превращается в лёд.

Всё вроде бы очень логично, однако вопросы, тем не менее, остаются. Даже для более тяжёлого конькобежца точка плавления опускается всего на несколько градусов, и это означает, что очень холодный лёд должен оставаться замороженным всегда. Кроме того, люди, ходящие по льду в нормальной обуви и создающие гораздо меньшее давление на него, всё равно поскальзываются. Так что существует и другая возможность — трение обуви по льду создаёт достаточно тепла, чтобы расплавить его. Это действительно правда, но ведь лёд не перестаёт быть скользким, если стоять на нём неподвижно? Так что это объяснение также отвечает не на все вопросы.

Есть и третья гипотеза, основанная на наблюдениях Майкла Фарадея. Он прижал два кусочка льда и заметил, что они слиплись друг с другом. Это позволило ему сделать вывод, что жидкие прослойки на поверхности этих кусков перестали быть таковыми и стали твёрдым льдом, когда потеряли контакт с воздухом. Благодаря этому уже современные учёные выдвинули идею о поверхностном таянии — возможно, молекулы воды движутся на оболочке более свободно, так как ничто не придавливает их сверху. Из-за меньшей стабильности они обладают энергией, достаточной для создания жидкой прослойки даже при отрицательной температуре. Другими словами физика гласит, что поверхность льда скользкая, потому что лед скользкий по своей природе.

Ни одна из описанных гипотез не доказана и не опровергнута полностью, поэтому можно предполагать, что окончательное объяснение, которое, несомненно, будет когда-то получено, явит собой некую их комбинацию. А пока давайте помнить, что лёд — это не только травмпункты и отбитые мягкие ткани, но и множество замечательных видов спорта, веселье и богатырское здоровье. Зима — отличное время года, радуйтесь ей. И берегите себя.

Для жителей холодных районов зима открывает перспективы веселого времяпрепровождения. Люди стремятся прогуляться на каток, скользят по льду замерзших водоемов и даже опасных скользких дорог и тротуаров. Но далеко не все из них задаются вопросом, почему же лед настолько скользкий.

Любопытный вопрос

Оказывается, ученые и сами до недавнего времени не знали ответа на данный вопрос. Новые исследования показали, что эта скользкость может быть вызвана "лишними" молекулами на самой поверхности льда.

Как выяснилось, старые теории уже не имеют смысла. Ранее считалось, что именно давление, оказываемое на лед, заставляет его быть скользким. Поскольку лед не настолько плотный, как вода, то его температура плавления снижается под действием высоких давлений. То есть верхний слой льда подтаивает под давлением вашего веса. Эта тонкая водяная прослойка между льдом и предметом, оказывающим на него давление, и вызывает скольжение. Но этот слой воды настолько тонкий, что его невозможно увидеть невооруженным глазом.

Опровержение

Ученые уже готовы опровергнуть теорию, которую годами считали справедливой, потому что другого объяснения у них просто не было. Теперь же они утверждают, что для подтаивания льда необходимо оказывать на него слишком большое давление, больше веса слона.

Исследователи опровергли и другую теорию, гласящую о том, что тонкий слой воды может создаваться во время трения, когда вы передвигаетесь по льду. Но его скользкость ведь ощущается все время - не только при движении, но и под действием первого прикосновения. К тому же не все ученые считают, что вода могла бы объяснить скольжение на льду.

Пролитая на пол вода может заставить поверхность скользить, но на полу не будет так сколько, как на льду. Нельзя пояснить это свойство ледяной поверхности и ее гладкостью. Стекло более гладкое, однако его поверхность не такая скользкая, в то время как шероховатый лед и снежная корка скользят порою значительней, чем самый гладкий лед.

Настоящая причина

Открытие удалось сделать двум братьям - Мише и Даниэлю Бонн. Свою статью, описывающую поверхность льда, они опубликовали в научном журнале. Вместо воды на его поверхности оказались свободные молекулы. А скольжение обеспечивается тем, что объект будто катится по множеству мелких шаров.

Сам лед имеет аккуратную закрепившуюся структуру, где каждая молекула прикреплена к трем другим. Но молекулы на его поверхности могут присоединяться только лишь к двум другим. Слабо связанные с остальной прочной поверхностью, они падают, отделяются друг от друга и прикрепляются к другим по мере своего перемещения.

Совсем не вода

Скольжение на льду обеспечивается прокатыванием этих молекул, однако они представляют собой вовсе не воду. Существуя при температурах, которые значительно ниже точки замерзания воды, они больше похожи на газ.

По словам профессора физики из Аляски, лед необычен тем, что мы сталкиваемся с ним близко к точке его плавления. Это единственный материал, который может иметь твердую, жидкую и газообразную фазу в обычный климатических условиях. Изучая лед, ученый испытывал его при температуре -40 °C. В таких условиях его поверхность становилась похожей на наждачную бумагу.

Эти наблюдения подтверждают открытие братьев Бонн. При значительном снижении температуры молекулы уже не имеют столько энергии, чтобы двигаться, разрушая и создавая связи. Поэтому поверхность льда становится шероховатой.

Лучшей температурой, обеспечивающей льду максимальное скольжение, считается -7 °C. Эта информация известна давно. Поэтому большинство катков в течение многих лет используют именно это значение для обеспечения лучшего скольжения по льду.


Первый приходящий на ум ответ – потому что он гладкий. И правда, отсутствие повреждений и шероховатостей уменьшает трение между поверхностями. Однако именно лед, а не более экономичное синтетическое покрытие по сей день используют для катания на коньках.

Значительно снижает трение смазка между поверхностями. В машиностроении это – индустриальные масла, в кулинарии - растительные и животные жиры, а в катании на льду – вода. Однако температура замерзания воды известна каждому - это 00С, а кататься на коньках можно и в -100С, и в -200С. Казалось бы, воде взяться неоткуда.

Иногда появление тонкой пленки воды на ледяной поверхности объясняется довольно большим давлением полозьев на лёд. Действительно, под коньками взрослого человека массой около 70 кг создается давление, в 15 раз превышающее атмосферное. Однако даже такое усилие способно расплавить лед лишь при температуре -0,10С.


Еще одна распространенная версия объясняет появление воды на поверхности катка действием силы трения при движении полозьев по льду. Но эта теория умалчивает о том, почему мы скользим даже тогда, когда пытаемся устоять на месте. Трения в такие моменты не возникает, а слой воды, тем не менее, есть.

Рациональное объяснение было получено только в конце 90-х годов ХХ века при помощи AFM-микроскопии (микроскопии рельефа поверхностей). Ученые выяснили, что скорость колебания молекул льда, находящихся у поверхности, в 100 000 раз больше скорости колебаний во внутренних слоях. Это приводит к тому, что поверхность льда уже не имеет четкой кристаллической структуры и по строению скорее напоминает жидкость, чем твердое тело.


Получается, что даже при очень низких температурах на поверхности льда присутствует тончайшая водяная пленка, делающая его скользким. Но чем ниже температура окружающей среды, тем хуже скольжение, ведь слой воды становится все тоньше и тоньше.

Так, при 50С толщина водяной пленки - около 100 нанометров (т.е. одна десятитысячная миллиметра), при -350С – около 10 нм, а при -1700С образуется слой воды толщиной всего в одну молекулу. Скользить на коньках в этих условиях было бы довольно проблематично.

Узнать, почему можно скользить по льду, учёные пытаются в течение последних 150 лет. В 1849 году братья Джеймс и Вильям Томсон (лорд Кельвин) выдвинули гипотезу, согласно которой лёд под нами плавится потому, что мы на него давим. И поэтому мы скользим уже не по льду, а по образовавшейся плёнке воды на его поверхности.

Действительно, если увеличить давление, то температура плавления льда понизится. Происходит это вот почему. Известно, что плотность льда меньше, чем воды, и поэтому, когда лёд сжимают, он, пытаясь уменьшить деформацию, вызванную ростом давления, понижает температуру плавления. Это одно из проявлений, так называемого, принципа Ле Шателье - «Внешнее воздействие, выводящее систему из термодинамического равновесия, вызывает в ней процессы, стремящиеся ослабить результаты этого воздействия».

Однако, как показали эксперименты (см. рисунок сверху), чтобы понизить температуру плавления льда на один градус необходимо давление увеличить до 121 атмосфер (12,2 МПа). Попробуем посчитать, какое давление оказывает спортсмен на лёд, когда скользит по нему на одном коньке длиной 20 см и толщиной 0,3 см. Если считать, что масса спортсмена 75 кг, то его давление на лёд составит около 12 атмосфер. Таким образом, стоя на коньках, мы едва ли сможем понизить температуру плавления льда больше, чем на 0,1 о С. Значит, объяснить скольжение по льду в коньках и, тем более, в обычной обуви, опираясь на принцип Ле Шателье, невозможно, если за окном, например, -10 о С.

Сколько существует видов (фаз) льда?
Фаза Характеристики
Аморфный лёд Аморфный лёд не обладает кристаллической структурой. Он существует в трех формах: аморфный лёд низкой плотности (LDA), образующийся при атмосферном давлении и ниже, аморфный лёд высокой плотности (HDA) и аморфный лёд очень высокой плотности (VHDA), образующийся при высоких давлениях. Лёд LDA получают очень быстрым охлаждением жидкой воды («сверхохлаждённая стекловидная вода», HGW), или конденсацией водяного пара на очень холодной подложке («аморфная твёрдая вода», ASW), или путём нагрева высокоплотностных форм льда при нормальном давлении («LDA»).
Лёд I h Обычный гексагональный кристаллический лёд. Практически весь лёд на Земле относится ко льду I h , и только очень малая часть — ко льду I c .
Лёд I c Метастабильный кубический кристаллический лёд. Атомы кислорода расположены как в кристаллической решётке алмаза.
Его получают при температуре в диапазоне от -133 °C до -123 °C, он остаётся устойчивым до -73 °C, а при дальнейшем нагреве переходит в лёд I h . Он изредка встречается в верхних слоях атмосферы.
Лёд II Тригональный кристаллический лёд с высокоупорядоченной структурой. Образуется изо льда I h при сжатии и температурах от -83 °C до -63 °C. При нагреве он преобразуется в лёд III.
Лёд III Тетрагональный кристаллический лёд, который возникает при охлаждении воды до -23 °C и давлении 300 МПа. Его плотность больше, чем у воды, но он наименее плотный из всех разновидностей льда в зоне высоких давлений.
Лёд IV Метастабильный тригональный лёд. Его трудно получить без нуклеирующей затравки.
Лёд V Моноклинный кристаллический лёд. Возникает при охлаждении воды до -20 °C и давлении 500 МПа. Обладает самой сложной структурой по сравнению со всеми другими модификациями.
Лёд VI Тетрагональный кристаллический лёд. Образуется при охлаждении воды до -3 °C и давлении 1,1 ГПа. В нём проявляется дебаевская релаксация .
Лёд VII Кубическая модификация. Нарушено расположение атомов водорода; в веществе проявляется дебаевская релаксация . Водородные связи образуют две взаимопроникающие решётки. Это тугоплавкий лёд: при давлении 40 000 атм. он плавится при температуре +175 °С, при давлении 20 ГПа (200 тыс. атм.) лёд VII плавится при температуре 400°С.
Лёд VIII Более упорядоченный вариант льда VII, где атомы водорода занимают, очевидно, фиксированные положения. Образуется изо льда VII при его охлаждении ниже 5 °C.
Лёд IX Тетрагональная метастабильная модификация. Постепенно образуется изо льда III при его охлаждении от -65 °C до -108 °C, стабилен при температуре ниже -133 °C и давлениях между 200 и 400 МПа. Его плотность 1,16 г/см³, то есть, несколько выше, чем у обычного льда.
Лёд X Симметричный лёд с упорядоченным расположением протонов. Образуется при давлениях около 70 ГПа.
Лёд XI Ромбическая низкотемпературная равновесная форма гексагонального льда. Является сегнетоэлектриком.
Лёд XII Тетрагональная метастабильная плотная кристаллическая модификация. Наблюдается в фазовом пространстве льда V и льда VI. Можно получить нагреванием аморфного льда высокой плотности от -196 °C до примерно -90 °C и при давлении 810 МПа.
Лёд XIII Моноклинная кристаллическая разновидность. Получается при охлаждении воды ниже -143 °C и давлении 500 МПа. Разновидность льда V с упорядоченным расположением протонов.
Лёд XIV Ромбическая кристаллическая разновидность. Получается при температуре ниже -155 °C и давлении 1,2 ГПа. Разновидность льда XII с упорядоченным расположением протонов.
Лёд XV Разновидность льда VI с упорядоченным расположением протонов. Можно получить путём медленного охлаждения льда VI примерно до -143 °C и давлении 0,8-1,5 ГПа.
Новые исследования формирования водяного льда на ровной поверхности меди при температурах от -173 °C до -133 °C показали, что сначала на поверхности возникают цепочки молекул шириной около 1 нм не гексагональной, а пентагональной структуры.
Вымышленныйлёд-девять — материал, описанный писателем-фантастом Куртом Воннегутом в романе «Колыбель для кошки » — полиморфическая модификация воды, более стойкая, чем обычный лёд (тающий при температуре 0 градусов Цельсия). Тает при температуре 114,4 °F (~45,8 °C), а при контакте с более холодной жидкой водой ведёт себя как центр кристаллизации для соприкасающейся с ним воды, которая быстро затвердевает и тоже превращается в лёд-девять. Таким образом, попав в любой водоём, так или иначе сообщающийся с Мировым океаном (посредством ручьёв, болот, рек, подземных источников и прочего) лёд-девять мог вызывать кристаллизацию большей части воды на Земле и впоследствии — гибель жизни на планете. Воннегут придумал это вещество во время работы в General Electric. Когда он писал этот роман, было известно всего восемь кристаллических модификаций льда.
Поскольку в природе существуют различные изотопы водорода и кислорода, то существуют и различные виды воды (соответственно и льда). Формально возможных «вод» с учётом всех известных изотопов водорода (7) и кислорода (17) существует 476. Однако распад почти всех радиоактивных изотопов водорода и кислорода происходит за секунды или доли секунды (важным исключением является тритий, период полураспада которого более 12 лет). Поэтому имеет смысл говорить о 9 стабильных не радиоактивных модификациях воды и о 9 слаборадиоактивных. Тяжёлая вода D 2 O превращается в лёд при +3,81 °C, а кипит при 101,43 °C. Сверхтяжёлая слаборадиоактивная вода T 2 O замерзает при +9 °C, а кипит при 104 °C.

В 1939 году, когда стало ясно, что понижением температуры плавления скользкость льда не объяснить, Ф.Бауден (Bowden) и Т.Хьюз (Hughes) предположили, что тепло, необходимое для плавления льда под коньком, даёт сила трения. Однако эта теория не могла объяснить, почему так тяжело бывает даже стоять на льду, не двигаясь. С начала 1950-х годов учёные стали считать, что лёд скользкий из-за тонкой плёнки воды, образовавшейся на его поверхности в силу каких-то неизвестных причин. Это вытекало из опытов, в которых изучали силу, необходимую для того, чтобы рассоединить касающиеся друг друга ледяные шарики. Оказалось, чем ниже температура, тем меньше сила нужна для этого (см. рисунок внизу). Значит, на поверхности шариков есть плёнка жидкости, толщина которой увеличивается с температурой, когда она ещё гораздо ниже температуры плавления. Кстати, так полагал и М. Фарадей ещё в 1859 году, не имея на то никаких оснований.

Только в конце 1990-х годов изучение того, как рассеивает лёд протоны, рентгеновские лучи, а также исследования с помощью AFM микроскопии показали, что его поверхность не является упорядоченной кристаллической структурой, а скорее похожа на жидкость (см. рис. внизу). К такому же результату пришли и те, кто изучал поверхность льда с помощью ЯМР. Оказалось, что молекулы воды в поверхностных слоях льда способны вращаться с частотами в 100 000 раз большими, чем те же молекулы, но в глубине кристалла. Значит, на поверхности молекулы воды уже не находятся в кристаллической решётке.

Схематическое изображение кристалла льда в его глубине (низ) и на его поверхности.

Расположенные на поверхности льда молекулы воды находятся в особых условиях, т.к. силы, заставляющие их находиться в узлах гексагональной решётки, действуют на них только снизу. Поэтому поверхностным молекулам ничего не стоит «уклониться от советов» молекул, находящихся в решётке, и если это происходит, то к такому же решению приходят сразу несколько поверхностных слоёв молекул воды. В результате, на поверхности льда образуется плёнка жидкости, служащая хорошей смазкой при скольжении. Кстати, тонкие плёнки жидкости образуются не только на поверхности льда, но и у некоторых других кристаллов, например, свинца.

Толщина жидкой плёнки растёт с ростом температуры, так как более высокая тепловая энергия молекул вырывает из гексагональных решёток больше поверхностных слоёв. По некоторым данным толщина водной плёнки на поверхности льда, равная при -5 градусах 100 нм, при -35 градусах уменьшается в десять раз - до 10 нм, а при -170 градусах она состоит вообще из одного слоя молекул. Так, жители Арктики рассказывают, что тащить по льду сани при очень низких температурах то же, что тащить их по песку (ведь смазки в этом случае мало).

Наличие примесей (молекул, отличных от воды) тоже мешает поверхностным слоям образовывать кристаллические решётки. Поэтому увеличить толщину жидкой плёнки можно, растворив в ней какие либо примеси, например, обычную соль. Этим и пользуются коммунальные службы, когда борются зимой с обледенением дорог и тротуаров.

Из книги К.Ю. Богданова "Прогулки с физикой".

Константин Богданов, Земля (Sol III).

Итак, лёд скользкий именно потому, что его молекулярная природа предусматривает наличие тонкой плёнки воды на поверхности, которая играет роль смазки. С понижением температуры лёд теряет своё “скользкое” свойство.


По материалам:



Последние материалы раздела:

Изменение вида звездного неба в течение суток
Изменение вида звездного неба в течение суток

Тема урока «Изменение вида звездного неба в течение года». Цель урока: Изучить видимое годичное движение Солнца. Звёздное небо – великая книга...

Развитие критического мышления: технологии и методики
Развитие критического мышления: технологии и методики

Критическое мышление – это система суждений, способствующая анализу информации, ее собственной интерпретации, а также обоснованности...

Онлайн обучение профессии Программист 1С
Онлайн обучение профессии Программист 1С

В современном мире цифровых технологий профессия программиста остается одной из самых востребованных и перспективных. Особенно высок спрос на...