Что называется вакуумом. Что такое вакуум

Диаметр вакуумного трубопровода и т. д. В зависимости от величины соотношения λ/d различают низкий ( λ / d ≪ 1 {\displaystyle \lambda /d\ll 1} ), средний ( λ / d ∼ 1 {\displaystyle \lambda /d\sim 1} ) и высокий () вакуум.

Энциклопедичный YouTube

  • 1 / 5

    На практике сильно разреженный газ называют техническим вакуумом . В макроскопических объёмах идеальный вакуум недостижим на практике, поскольку при конечной температуре все материалы обладают ненулевой плотностью насыщенных паров. Кроме того, многие материалы (в частности толстые металлические, стеклянные и иные стенки сосудов) пропускают газы. В микроскопических объёмах, однако, достижение идеального вакуума в принципе возможно.

    Мерой степени разрежения вакуума служит длина свободного пробега молекул газа , связанной с их взаимными столкновениями в газе, и характерного линейного размера d {\displaystyle d} сосуда, в котором находится газ.

    Строго говоря, техническим вакуумом называют газ в сосуде или трубопроводе с давлением ниже, чем в окружающей атмосфере. Согласно другому определению, когда молекулы или атомы газа перестают сталкиваться друг с другом, и газодинамические свойства сменяются вязкостными (при давлении около 1 ), говорят о достижении низкого вакуума ( λ ≪ d {\displaystyle \lambda \ll d} ; 10 16 молекул на 1 см³ ). Обычно между атмосферным воздухом и высоковакуумным насосом стоит так называемый форвакуумный насос, создавая предварительное разрежение, поэтому низкий вакуум часто называют форвакуум . При дальнейшем понижении давления в камере увеличивается средняя длина свободного пробега λ {\displaystyle \lambda } молекул газа. При λ / d ≫ 1 {\displaystyle \lambda /d\gg 1} молекулы газа гораздо чаще сталкиваются со стенками, чем друг с другом. В этом случае говорят о высоком вакууме (10 −5 мм рт.ст. ; 10 11 молекул на 1 см³ ). Сверхвысокий вакуум соответствует давлению 10 −9 мм рт.ст. и ниже. В сверхвысоком вакууме, например, обычно проводятся эксперименты с использованием сканирующего туннельного микроскопа . Для сравнения, давление в космосе на несколько порядков ниже - 10 9 молекул на 1 см³ (миллиард молекул в кубическом сантиметре), в дальнем же космосе и вовсе может достигать 10 −16 мм рт.ст. и ниже (1 молекула на 1 см³ ) .

    Высокий вакуум в микроскопических порах некоторых кристаллов достигается уже при атмосферном давлении, поскольку диаметр поры гораздо меньше длины свободного пробега молекулы.

    Стоит отметить, что даже в идеальном вакууме при конечной температуре всегда имеется некоторое тепловое излучение (газ фотонов). Таким образом, тело, помещённое в идеальный вакуум, рано или поздно придёт в тепловое равновесие со стенками вакуумной камеры за счёт обмена тепловыми фотонами.

    Вакуум является хорошим термоизолятором; перенос тепловой энергии в нём происходит лишь за счёт теплового излучения, конвекция и теплопроводность исключены. Это свойство используется для теплоизоляции в термосах (сосудах Дьюара), состоящих из ёмкости с двойными стенками, пространство между которыми вакуумировано.

    Вакуум широко применяется в электровакуумных приборах - радиолампах (например, магнетронах микроволновых печей), электронно-лучевых трубках и т. п.

    Физический вакуум

    Под физическим вакуумом в квантовой физике понимают низшее (основное) энергетическое состояние квантованного поля, обладающее нулевыми импульсом, моментом импульса и другими квантовыми числами. При этом такое состояние вовсе не обязательно соответствует пустоте: поле в низшем состоянии может быть, например, полем квазичастиц в твёрдом теле или даже в ядре атома, где плотность чрезвычайно высока. Физическим вакуумом называют также полностью лишённое вещества пространство, заполненное полем в таком состоянии . Такое состояние не является абсолютной пустотой . Квантовая теория поля утверждает, что, в согласии с принципом неопределённости , в физическом вакууме постоянно рождаются и исчезают виртуальные частицы : происходят так называемые нулевые колебания полей. В некоторых конкретных теориях поля вакуум может обладать нетривиальными топологическими свойствами. В теории могут существовать несколько различных вакуумов, различающихся плотностью энергии или другими физическими параметрами (в зависимости от применяемых гипотез и теорий). Вырождение вакуума при спонтанном нарушении симметрии приводит к существованию непрерывного спектра вакуумных состояний, отличающихся друг от друга числом голдстоуновских бозонов . Локальные минимумы энергии при разных значениях какого-либо поля, отличающиеся по энергии от глобального минимума, носят название ложных вакуумов ; такие состояния метастабильны и стремятся распасться с выделением энергии, перейдя в истинный вакуум или в один из нижележащих ложных вакуумов.

    Некоторые из этих предсказаний теории поля уже были успешно подтверждены экспериментом. Так, эффект Казимира и лэмбовский сдвиг атомных уровней объясняется нулевыми колебаниями электромагнитного поля в физическом вакууме. На некоторых других представлениях о вакууме базируются современные физические теории. Например, существование нескольких вакуумных состояний (упомянутых выше ложных вакуумов) является одной из главных основ инфляционной теории Большого взрыва .

    Ложный вакуум

    Ложный вакуум - состояние в квантовой теории поля , которое не является состоянием с глобально минимальной энергией , а соответствует её локальному минимуму. Такое состояние стабильно в течение определённого времени (метастабильно), но может «туннелировать » в состояние истинного вакуума.

    Эйнштейновский вакуум

    Эйнштейновский вакуум - иногда встречающееся название для решений уравнений Эйнштейна в общей теории относительности для пустого, без материи, пространства-времени . Синоним - пространство Эйнштейна .

    Уравнения Эйнштейна связывают метрику пространства-времени (метрический тензор g μν ) с тензором энергии-импульса. В общем виде они записываются как

    G μ ν + Λ g μ ν = 8 π G c 4 T μ ν , {\displaystyle G_{\mu \nu }+\Lambda g_{\mu \nu }={8\pi G \over c^{4}}T_{\mu \nu },}

    где тензор Эйнштейна G μν является определённой функцией метрического тензора и его частных производных, R - скалярная кривизна , Λ - космологическая постоянная , T μν - тензор энергии-импульса материи, π - число пи , c - скорость света в вакууме, G - гравитационная постоянная Ньютона.

    Вакуумные решения этих уравнений получаются при отсутствии материи, то есть при тождественном равенстве нулю тензора энергии-импульса в рассматриваемой области пространства-времени: T μν = 0 . Часто лямбда-член также принимается равным нулю, особенно при исследовании локальных (некосмологических) решений. Однако при рассмотрении вакуумных решений с ненулевым лямбда-членом (лямбда-вакуум ) возникают такие важные космологические модели, как модель Де Ситтера (Λ > 0 ) и модель анти-Де Ситтера (Λ < 0 ).

    Тривиальным вакуумным решением уравнений Эйнштейна является плоское пространство Минковского , то есть метрика, рассматриваемая в специальной теории относительности .

    Другие вакуумные решения уравнений Эйнштейна включают в себя, в частности, следующие случаи:

    • Космологическая модель Милна (частный случай метрики Фридмана с нулевой плотностью энергии)
    • Метрика Шварцшильда , описывающая геометрию вокруг сферически симметричной массы
    • Метрика Керра , описывающая геометрию вокруг вращающейся массы
    • Плоская гравитационная волна (и другие волновые решения)

    Космическое пространство

    Космическое пространство имеет очень низкую плотность и давление и является наилучшим приближением физического вакуума. Но космический вакуум не является действительно совершенным, даже в межзвёздном пространстве есть несколько атомов водорода на кубический сантиметр.

    Звёзды, планеты и спутники держат свои атмосферы силой притяжения, и как таковой у атмосферы нет чётко очерченной границы: плотность атмосферного газа просто уменьшается с расстоянием от объекта. Атмосферное давление Земли падает до примерно 3,2×10 −2 Па на 100 км высоты - на так называемой линии Кармана , которая является общим определением границы с космическим пространством. За этой линией изотропное давление газа быстро становится незначительным по сравнению с давлением излучения от Солнца и динамическим давлением солнечного ветра , поэтому определение давления становится трудно интерпретировать. Термосфера в этом диапазоне имеет большие градиенты давления, температуры и состава, и сильно варьируется в связи с космической погодой.

    Плотность атмосферы в течение первых нескольких сотен километров выше линии Кармана всё ещё достаточна для оказания значительного сопротивления движению искусственных спутников Земли . Большинство спутников работают в этой области, называемой низкой околоземной орбитой, и должны подрабатывать двигателями каждые несколько дней для поддержания стабильной орбиты.

    Космическое пространство заполнено большим количеством фотонов, так называемым реликтовым излучением , а также большим количеством реликтовых нейтрино, пока не поддающихся обнаружению. Текущая температура этих излучений составляет около 3 К, или −270 °C или −454° по Фаренгейту.

    История изучения вакуума

    Идея вакуума (пустоты) была предметом споров ещё со времён древнегреческих и древнеримских философов. Атомисты - Левкипп (ок. 500 г. до н. э.), Демокрит (около 460-370 гг. до н. э.), Эпикур (341-270 гг. до н. э.), Лукреций (ок. 99-55 гг. до н. э.) и их последователи - предполагали, что всё существующее - атомы и пустота между ними, причём без вакуума не было бы и движения, атомы не могли бы двигаться, если бы между ними не было пустого пространства. Стратон (ок. 270 г. до н. э.) и многие философы в более поздние времена полагали, что пустота может быть «сплошной» (vacuum coacervatum ) и «рассеянной» (в промежутках между частицами вещества, vacuum disseminatum ).

    Вакуумный насос Герике был значительно усовершенствован Робертом Бойлем , что позволило ему выполнить ряд экспериментов для выяснения свойств вакуума и его влияния на различные объекты. Бойль обнаружил, что в вакууме гибнут мелкие животные, огонь потухает, а дым опускается вниз (и, следовательно, так же подвержен влиянию силы тяжести, как и другие тела). Бойль выяснил также, что поднятие жидкости в капиллярах происходит и в вакууме, и тем самым опроверг господствовавшее тогда мнение, что в этом явлении участвует давление воздуха. Напротив, перетекание жидкости через сифон в вакууме прекращалось, чем было доказано, что это явление обусловлено атмосферным давлением. Он показал, что при химических реакциях (таких, как гашение извести), а также при взаимном трении тел тепло выделяется и в вакууме.

    Влияние на людей и животных

    Люди и животные, подвергшиеся воздействию вакуума, теряют сознание через несколько секунд и умирают от гипоксии в течение нескольких минут, но эти симптомы, как правило, не похожи на те, которые показывают в популярной культуре и СМИ. Снижение давления понижает температуру кипения, при которой кровь и другие биологические жидкости должны закипеть, но упругое давление кровеносных сосудов не позволяет крови достичь температуры кипения 37 °С . Хотя кровь не вскипает, эффект образования газовых пузырьков в ней и других жидкостях тела при низких давлениях, известный как эбуллизм (воздушная эмфизема), является серьёзной проблемой. Газ может раздувать тело в два раза больше его нормального размера, но ткани достаточно эластичны, чтобы предотвратить их разрыв . Отёки и эбуллизм можно предотвратить специальным лётным костюмом. Астронавты шаттлов носили специальную эластичную одежду под названием Crew Altitude Protection Suit (CAPS), которая предотвращает эбуллизм при давлении более 2 кПа (15 мм рт.ст. ) . Быстрое испарение воды охлаждает кожу и слизистые оболочки до 0 °С, особенно во рту, но это не представляет большой опасности.

    Эксперименты на животных показывают, что после 90 секунд нахождения организма в вакууме обычно происходит быстрое и полное восстановление организма, однако более долгое пребывание в вакууме фатально и реанимация бесполезна . Имеется лишь ограниченный объем данных о влиянии вакуума на человека (как правило, это происходило при попадании людей в аварию), но они согласуются с данными, полученными в экспериментах на животных. Конечности могут находиться в вакууме гораздо дольше, если дыхание не нарушено . Первым показал, что вакуум смертелен для мелких животных, Роберт Бойль в 1660 году .

    Измерение

    Степень вакуума определяется количеством вещества, оставшимся в системе. Вакуум, в первую очередь, определяется абсолютным давлением , а полная характеристика требует дополнительных параметров, таких как температура и химический состав. Одним из наиболее важных параметров является средняя длина свободного пробега (MFP) остаточных газов, которая указывает среднее расстояние, которое частица пролетает за время свободного пробега от одного столкновения до следующего. Если плотность газа уменьшается, MFP увеличивается. MFP в воздухе при атмосферном давлении очень короткий, около 70 нм , а при 100 мПа (~1×10 −3 торр ) MFP воздуха составляет примерно 100 мм . Свойства разреженного газа сильно изменяются, когда длина свободного пробега становится сравнима с размерами сосуда, в котором находится газ.

    Вакуум подразделяется на диапазоны в соответствии с технологией, необходимой для его достижения или измерения. Эти диапазоны не имеют общепризнанных определений, но типичное распределение выглядит следующим образом :

    Давление () Давление (Па)
    Атмосферное давление 760 1,013×10 +5
    Низкий вакуум от 760 до 25 от 1×10 +5 до 1×10 +1
    Средний вакуум от 25 до 1×10 −3 от 1×10 +1 до 1×10 −3
    Высокий вакуум от 1×10 −3 до 1×10 −9 от 1×10 −3 до 1×10 −6
    Сверхвысокий вакуум от 1×10 −9 до 1×10 −12 от 1×10 −6 до 1×10 −10
    Экстремальный вакуум <1×10 −12 <1×10 −10
    Космическое пространство от 1×10 −6 до <3×10 −17 от 1×10 −4 до <3×10 −15
    Абсолютный вакуум 0 0

    См. также

    • Диэлектрическая проницаемость вакуума

    Слово «вакуум» происходит от латинского «vacuum», что означает «пустота». Это такое состояние пространства, когда в нем находится очень мало молекул газа, значительно меньше, чем в обычном воздухе. Даже разреженный газ с давлением меньше атмосферного уже называют вакуумом. Глубокий вакуум царит в космическом пространстве, да и на Земле его научились создавать искусственно.

    Искусственный вакуум создается с помощью специального оборудования. Это так называемые вакуумные насосы различных конструкций, которыми откачивают воздух из какой-либо емкости. Однако абсолютного вакуума достичь невозможно. Ведь даже металлические стенки сосуда имеют в себе некоторое количество газов, которые выделяются из них. Кроме того, любое вещество хоть немного, но пропускает сквозь себя молекулы газа извне. Поэтому невозможно удалить их полностью, всегда некоторое количество остается, но оно так мало, что термин «вакуум» вполне применим.

    Интересно, что если поместить предмет в вакуумную камеру, чтобы он не касался стенок, то его температура, казалось бы, должна сохраняться все время одной и одинаковой. На самом деле этого не происходит – даже в очень глубоком вакууме все предметы излучают так называемые тепловые фотоны. Обмениваясь ими со стенками емкости, наш предмет со временем сравняет свою температуру с ними, хотя времени это займет гораздо больше, чем в воздушном пространстве.

    Этот принцип положен в основу некоторых привычных нам приспособлений. Например, все видели стеклянную колбу в термосе. Между ее стенками создан вакуум, а сами стенки окрашены серебристой краской, хорошо отражающей те только свет, но и тепловое излучение. Налитая в термос жидкость долго не остывает или не нагревается потому, что отделена от обычной среды вакуумом. За счет серебристого покрытия колбы, ее наружная стенка еще меньше реагирует на тепло оставшегося в ней воздуха.

    Еще один всем знакомый предмет с вакуумом – обычная электрическая лампочка. За счет отсутствия кислорода в ней электрическая спираль служит гораздо дольше, ведь она не окисляется. Стоит вакууму нарушиться – спираль перегорает практически мгновенно. Многие это наблюдали, купив лампочку с плохо запаянным цоколем или поврежденную. Видимо, от качества вакуума зависит и долговечность лампочки – нормальный срок ее работы должен быть не менее пяти лет.

    Считается, что в космическом пространстве нет ничего – только пустота. Но это неверно. Даже в межзвездном пространстве находится газ – в основном водород. Его плотность очень низка – примерно одна молекула на кубический сантиметр. Однако существует еще множество других частиц – фотонов, электронов и т.д. Все это создает некоторое количество вещества, пусть и очень разреженного, но все-таки оно есть.

    Еще один интересный факт – если вакуумом считать газ с давлением меньше атмосферного, то некоторые звезды состоят из него. Да, эти огромные светящиеся газовые шары состоят практически из пустоты! Известно, что звезды – сверхгиганты имеют маленькую плотность. Это особенно касается красных сверхгигантов, которые завершают свой жизненный путь. Чем больше звезда – тем меньше плотность. Лишь в ядре плотность вещества позволяет поддерживать термоядерную реакцию, но размер его – мелочь по сравнению со всей звездой.

    Когда мы говорим "вакуум", то чаще всего подразумеваем космическое пространство - невообразимое количество пустоты, в котором изредка попадаются островки материи в виде отдельных звезд, планетарных систем, а также образованные из них галактики и другие надсистемы. На самом деле космическое пространство и вакуум - понятия разные, хоть и имеющие друг к другу прямое отношение.

    Вакуум космический и бытовой

    Итак, что такое вакуум? Если мы как следует поищем на просторах интернета, мы выясним, что это понятие используют для названия двух определенно разных вещей. Первый, тот самый, привычный нам «космовакуум», который иначе называют техническим вакуумом. И под ним подразумевается или полное отсутствие воздуха, а также других газов, или просто пониженное атмосферное давление.

    Является ли в таком случае космическое пространство вакуумом? Конечно, хотя несколько атомов водорода на квадратный метр межзвездного пространства все равно найдутся. При этом абсолютный вакуум (полное отсутствие атомов какого-либо вещества) является величиной скорее абстрактной - получить его даже в крайне малых объемах на данный момент невозможно.

    Возможно, в будущем это и не будет составлять проблемы, например, если для его создания использовать магнитное или иное поле. Вакуум не антигравитация и вполне укладывается в современную научную картину.

    Кстати, для того чтобы «увидеть» технический вакуум, необязательно становиться участником космической программы. Достаточно будет приобрести в супермаркете упакованный с помощью откачки воздуха продукт или поставить жене банки на спину - что такое вакуум, как не помощник человека?

    Вакуум как первооснова Вселенной

    Во втором значении вакуум предстает перед нами как некий фундамент, на котором базируется и функционирует наш с вами материальный мир. Такой вакуум принято называть физическим. Физический вакуум, в отличие от технического, крайне сложно загнать в рамки определений и науки вообще. Грубо говоря, это даже не параллельная, а перпендикулярная вселенная - невообразимое нечто, не имеющее материи, но обладающее удивительными энергетическими аномалиями с крайне высоким потенциалом.

    Научись мы получать эту энергию, и атомные станции вместе с гидроэлектростанциями отправятся на свалку истории. Что такое вакуум? Возможно, это тот самый эфир, та таинственная сила, о которой говорил невероятный серб Тесла, на десятилетия, а может и на века опередивший свое время.

    Бесконечная энергия

    Представим себе, что буквально на расстоянии вытянутой руки лежит океан удивительной, нескончаемой и крайне дешевой в получении энергии. Максимально упрощая - электрический вакуум. Сумей мы овладеть возможностью широкого применения возможностей физического вакуума, и задачи, которые на данный момент кажутся на грани невозможного, перейдут в раздел повседневных. Освоение Солнечной системы, на данный момент ограниченное робкими вылазками беспилотных аппаратов и замороженными проектами пилотируемых экспедиций, может превратиться в экономически прибыльное дело. А где прибыль, туда и устремляются ресурсы.

    Вполне возможными стали бы экспедиции за пределы орбиты Плутона, особенно в том случае, если бы утопические мечты фантастов о путешествиях в мифическом «подпространстве» воплотились за счет использования подпространства вполне реального - вакуума. И скорость света, которую мы привыкли считать абсолютом, перестала бы иметь определяющее значение. Скорость в вакууме, скорей всего, стала бы такой же условностью, что и линейное время. Можно учесть, а можно и подвинуть.

    И да, что такое вакуум? Это мечта. Голубая греза человечества о золотом веке науки и высоких технологий. Воплотимая ли? Вполне. Еще полсотни лет назад современный планшетный компьютер показался бы истинной магией, а сегодня он обыденность. Все зависит только от нас.

    Два вакуума - выбирай по вкусу

    Итак, мы с вами выяснили, что под одним и тем же термином "вакуум" подразумеваются две совершенно разные вещи. Вакуум технический - в большей или меньшей степени разреженная среда, которую можно обнаружить как за пределами земной атмосферы, так и в тривиальном водном насосе, поливающем ваш огород за счет разницы в давлении.

    Второй вакуум, физический, представляет собой некую среду, не имеющую аналогов в нашей материальной Вселенной, возможно, первооснову всякой материи, потенциальный источник бесконечной энергии. Эфир Теслы и сила древних магов - обладая некоторой долей фантазии, этот список можно продолжить.

    Что можно сказать напоследок? К чему бы ни относился термин "вакуум", он таит в себе манящую загадку.

    Где мы получим ответы - в бескрайних просторах космоса или в «соседнем измерении»? Это покажет только время.

    Молекул газа λ и характерным размером среды d . Под d может приниматься расстояние между стенками вакуумной камеры, диаметр вакуумного трубопровода и т. д. В зависимости от величины соотношения λ/d различают низкий (), средний () и высокий () вакуум.

    Следует различать понятия физического вакуума и технического вакуума .

    На практике сильно разреженный газ называют техническим вакуумом . В макроскопических объёмах идеальный вакуум недостижим на практике, поскольку при конечной температуре все материалы обладают ненулевой плотностью насыщенных паров. Кроме того, многие материалы (в том числе толстые металлические, стеклянные и иные стенки сосудов) пропускают газы. В микроскопических объёмах, однако, достижение идеального вакуума в принципе возможно.

    Мерой степени разрежения вакуума служит длина свободного пробега молекул газа , связанной с их взаимными столкновениями в газе, и характерного линейного размера сосуда, в котором находится газ.

    Строго говоря, техническим вакуумом называют газ в сосуде или трубопроводе с давлением ниже, чем в окружающей атмосфере. Согласно другому определению, когда молекулы или атомы газа перестают сталкиваться друг с другом, и газодинамические свойства сменяются вязкостными (при давлении около 1 торр ) говорят о достижении низкого вакуума () (10 16 молекул на 1 см³ ). Обычно между атмосферным воздухом и высоковакуумным насосом стоит так называемый форвакуумный насос, создавая предварительное разрежение, поэтому низкий вакуум часто называют форвакуум . При дальнейшем понижении давления в камере увеличивается средняя длина свободного пробега λ молекул газа. При молекулы газа гораздо чаще сталкиваются со стенками, чем друг с другом. В этом случае говорят о высоком вакууме (10 −5 торр ) (10 11 молекул на 1 см³ ). Сверхвысокий вакуум соответствует давлению 10 −9 торр и ниже. В сверхвысоком вакууме, например, обычно проводятся эксперименты с использованием сканирующего туннельного микроскопа . Для сравнения, давление в космосе на несколько порядков ниже, в дальнем же космосе и вовсе может достигать 10 −16 торр и ниже (1 молекула на 1 см³ ).

    Высокий вакуум в микроскопических порах некоторых кристаллов достигается уже при атмосферном давлении, поскольку диаметр поры гораздо меньше длины свободного пробега молекулы.

    Аппараты, используемые для достижения и поддержания вакуума, называются вакуумными насосами . Для поглощения газов и создания необходимой степени вакуума используются геттеры . Более широкий термин вакуумная техника включает также приборы для измерения и контроля вакуума, манипулирования предметами и проведения технологических операций в вакуумной камере и т. д. Высоковакуумные насосы являются сложными техническими приборами. Основные типы высоковакуумных насосов - это диффузионные насосы, основанные на увлечении молекул остаточных газов потоком рабочего газа, геттерные, ионизационные насосы, основанные на внедрении молекул газа в геттеры (например титан) и криосорбционные насосы (в основном для создания форвакуума).

    Стоит отметить, что даже в идеальном вакууме при конечной температуре всегда имеется некоторое тепловое излучение (газ фотонов). Таким образом, тело, помещённое в идеальный вакуум, рано или поздно придёт в тепловое равновесие со стенками вакуумной камеры за счёт обмена тепловыми фотонами.

    Вакуум является хорошим термоизолятором; перенос тепловой энергии в нём происходит лишь за счёт теплового излучения, конвекция и теплопроводность исключены. Это свойство используется для теплоизоляции в термосах (сосудах Дьюара), состоящих из ёмкости с двойными стенками, пространство между которыми вакуумированно.

    Вакуум широко применяется в электровакуумных приборах - радиолампах (например, магнетронах микроволновых печей), электронно-лучевых трубках и т. п.

    Физический вакуум

    Под физическим вакуумом в квантовой физике понимают низшее (основное) энергетическое состояние квантованного поля, обладающее нулевыми импульсом, моментом импульса и другими квантовыми числами. При этом такое состояние вовсе не обязательно соответствует пустоте: поле в низшем состоянии может быть, например, полем квазичастиц в твёрдом теле или даже в ядре атома, где плотность чрезвычайно высока. Физическим вакуумом называют также полностью лишённое вещества пространство, заполненное полем в таком состоянии. Такое состояние не является абсолютной пустотой . Квантовая теория поля утверждает, что, в согласии с принципом неопределённости , в физическом вакууме постоянно рождаются и исчезают виртуальные частицы : происходят так называемые нулевые колебания полей. В некоторых конкретных теориях поля вакуум может обладать нетривиальными топологическими свойствами. В теории могут существовать несколько различных вакуумов, различающихся плотностью энергии или другими физическими параметрами (в зависимости от применяемых гипотез и теорий). Вырождение вакуума при спонтанном нарушении симметрии приводит к существованию непрерывного спектра вакуумных состояний, отличающихся друг от друга числом голдстоуновских бозонов. Локальные минимумы энергии при разных значениях какого-либо поля, отличающиеся по энергии от глобального минимума, носят название ложных вакуумов ; такие состояния метастабильны и стремятся распасться с выделением энергии, перейдя в истинный вакуум или в один из нижележащих ложных вакуумов.

    Некоторые из этих предсказаний теории поля уже были успешно подтверждены экспериментом. Так, эффект Казимира и лэмбовский сдвиг атомных уровней объясняется нулевыми колебаниями электромагнитного поля в физическом вакууме. На некоторых других представлениях о вакууме базируются современные физические теории. Например, существование нескольких вакуумных состояний (упомянутых выше ложных вакуумов) является одной из главных основ инфляционной теории Большого взрыва .

    См. также

    • Диэлектрическая проницаемость вакуума
    • Вакуумное среднее
    • Вакуумный конденсат

    Применения:

    Примечания

    Литература

    • L. B. Okun On the concepts of vacuum and mass and the search for higgs (англ.) // Modern Physics Letters A . - 2012. - Vol. 27. - P. 1230041. - DOI :10.1142/S0217732312300418 - arΧiv :1212.1031

    Wikimedia Foundation . 2010 .

    Синонимы :

    Смотреть что такое "Вакуум" в других словарях:

      Первая часть сложных слов. Обозначает отнесённость к вакууму, пространству с выкачанным воздухом; вакуумный. Вакуум аппарат, вакуум камера, вакуум измерительный, вакуум костюм, вакуум насос, вакуум процесс, вакуум установка, вакуум фильтр, вакуум … Энциклопедический словарь

      - (лат., от vacare делать пустым). Пустое безвоздушное пространство. Словарь иностранных слов, вошедших в состав русского языка. Чудинов А.Н., 1910. ВАКУУМ безвоздушное пространство. В. аппарат котел, в котором вываривают, под безвоздушным… …

      ВАКУУМ, область чрезвычайно низкого давления. В межзвездном пространстве царит высокий вакуум, со средней плотностью менее 1 молекулы на кубический сантиметр. Самый разреженный вакуум, созданный человеком, менее 100000 молекул на кубический… … Научно-технический энциклопедический словарь

      Вакуум... вакуум... (… Словарь иностранных слов русского языка

      Разрежение, пустота; пустое пространство, форвакуум, монжюс, отсутствие, недостаток Словарь русских синонимов. вакуум см. пустота Словарь синонимов русского языка. Практический справочник. М.: Русский язык. З. Е. Александрова … Словарь синонимов

      вакуум - Состояние среды, абсолютное давление которой меньше атмосферного [ГОСТ 5197 85] вакуум Состояние жидкости, характеризующееся отрицательным избыточным давлением. [СО 34.21.308 2005] вакуум разрежение Давление газа ниже атмосферного. Примечание… … Справочник технического переводчика

      - (от латинского vacuum пустота), состояние газа при давлениях p, более низких, чем атмосферное. Различают низкий вакуум (например, в вакуумных приборах), которому соответствует область давлений p>1 мм ртутного столба; средний: 10 3 мм ртутного… … Современная энциклопедия

      - (от лат. vacuum пустота) состояние газа при давлениях p, более низких, чем атмосферное. Различают низкий вакуум (в вакуумных приборах и установках ему соответствует область давлений p выше 100 Па), средний (0,1 Па p 100 Па), высокий (10 5 Па p… … Большой Энциклопедический словарь

      ВАКУУМ: ВАКУУМ... и ВАКУУМ... Первая часть сложных слов со знач. относящийся к вакууму (в 1 знач.), напр. вакуумметр, вакуум аппарат, вакуумкамера. Толковый словарь Ожегова. С.И. Ожегов, Н.Ю. Шведова. 1949 1992 … Толковый словарь Ожегова

      Вакуум... и ВАКУУМ... Первая часть сложных слов со относящийся к вакууму (в 1 знач.), напр. вакуумметр, вакуум аппарат, вакуумкамера. Толковый словарь Ожегова. С.И. Ожегов, Н.Ю. Шведова. 1949 1992 … Толковый словарь Ожегова

    Что такое вакуум ? На этот вопрос обычно отвечают: "пространство с разреженным воздухом" или "пространство внутри сосуда, из которого выкачан воздух". Но всякая ли степень разрежения это вакуум и находиться ли вакуум в какой-либо связи с ?

    Некоторые предпосылки к эмпирическому исследованию вакуума существовали ещё в античности. Древнегреческие механики создавали различные технические устройства, основанные на разрежении воздуха. Например, водяные насосы, действующие путём создания разрежения под поршнем, были известны ещё во времена Аристотеля. Эмпирическое изучение вакуума началось лишь в 17 веке, с концом Возрождения и началом научной революции Нового времени. К этому моменту уже давно было известно, что всасывающие насосы могут поднимать воду на высоту не более 10 метров.

    На практике сильно разреженный газ называют техническим вакуумом. В макроскопических объёмах идеальный вакуум недостижим на практике, поскольку при конечной температуре все материалы обладают ненулевой плотностью насыщенных паров. Кроме того, многие материалы (в том числе толстые металлические, стеклянные и иные стенки сосудов) пропускают газы. В микроскопических объёмах, однако, достижение идеального вакуума в принципе возможно.

    Строго говоря, техническим вакуумом называют газ в сосуде или трубопроводе с давлением ниже, чем в окружающей атмосфере. Обычно между атмосферным воздухом и высоковакуумным насосом стоит так называемый форвакуумный насос, создавая предварительное разрежение, поэтому низкий вакуум часто называют форвакуум. При дальнейшем понижении давления в камере увеличивается средняя длина свободного пробега молекул газа. При этом молекулы газа гораздо чаще сталкиваются со стенками, чем друг с другом. В этом случае говорят о высоком вакууме. Высокий вакуум в микроскопических порах некоторых кристаллов достигается уже при атмосферном давлении, поскольку диаметр поры гораздо меньше длины свободного пробега молекулы.

    Космическое пространство имеет очень низкую плотность и давление, и является ближайшим приближением физического вакуума. Но космический вакуум не является действительно совершенным, даже в межзвёздном пространстве есть несколько атомов водорода на кубический сантиметр.

    Действительно, предположим, что в баллоне воздух разрежен в 10000 раз по сравнению с плотностью его при нормальном атмосферном давлении, т. е. давление внутри баллона равно 0,076 мм. рт. ст.

    Будет ли в баллоне вакуум? И можем ли мы продолжать считать, что в баллоне вакуум, если этот баллон поднят на высоту 100 км над поверхностью земли, где давление воздуха составляет всего 0,007 мм. рт. ст. Ведь в этом случае плотность воздуха внутри баллона станет в 10 раз больше, чем снаружи! Тогда, где же будет вакуум – внутри баллона или снаружи?

    Современная физика связывает вакуум не с величиной давления вне или внутри сосуда, а с длиной свободного пробега молекул газа внутри него. Молекулы газов находятся в беспрерывном хаотическом тепловом движении; при комнатной температуре скорость теплового движения молекул воздуха равна примерно 450 м/с, т. е. приближается к скорости . Двигаясь во всех направлениях, молекулы постоянно сталкиваются друг с другом. Чем плотнее воздух, тем больше молекул заключается в единице объема и тем чаще молекулы сталкиваются.

    Если воздух разредить, то молекулы будут сталкиваться менее часто. В среднем им придется пролетать больший путь между двумя столкновениями, который и называется длиной свободного пробега.

    Вакуум с физической точки зрения – это такое разрежение, при котором длина свободного пробега в среднем больше размера сосуда. Когда в сосуде вакуум столкновения молекул будут редкими, большая часть молекул в своем движении от одной стенки сосуда до другой не встретится с другими молекулами.

    Вакуум является хорошим термоизолятором; перенос тепловой энергии в нём происходит лишь за счёт теплового излучения, конвекция и теплопроводность исключены. Это свойство используется для теплоизоляции в термосах, состоящих из ёмкости с двойными стенками, пространство между которыми вакуумированно.



Последние материалы раздела:

Изменение вида звездного неба в течение суток
Изменение вида звездного неба в течение суток

Тема урока «Изменение вида звездного неба в течение года». Цель урока: Изучить видимое годичное движение Солнца. Звёздное небо – великая книга...

Развитие критического мышления: технологии и методики
Развитие критического мышления: технологии и методики

Критическое мышление – это система суждений, способствующая анализу информации, ее собственной интерпретации, а также обоснованности...

Онлайн обучение профессии Программист 1С
Онлайн обучение профессии Программист 1С

В современном мире цифровых технологий профессия программиста остается одной из самых востребованных и перспективных. Особенно высок спрос на...