Что определяют в результате измерения. Зависимость от способов выражения результатов

Измерение - идентификация величины во множестве еѐ качественных и количественных проявлений.

Измерения выполняют с целью:
- получения информации о величине;
- установления взаимосвязи между величинами;
- оценки качества продукции;
- определения или подтверждения характеристик средств измерений и методик выполнения измерений.

Измерение это нахождение значения физической величины опытным путем с помощью специальных технических средств.

Это определение содержит четыре признака данного понятия:

1. Измерять можно только физические величины (т. е. свойства материальных объектов, явлений или процессов). Поэтому социологические, экономические, психологические, филологические и другие количественные оценки нефизических величин остаются за пределами метрологии.

2. Измерение — это оценивание величины опытным путем , т. е. это всегда эксперимент. Следовательно, измерением нельзя называть расчетное определение величины по формуле и известным исходным данным, статистическую оценку показателей качества изделия на основании социологического исследования и другие подобные процедуры.

3. Измерение осуществляется с помощью специальных технических средств — носителей размеров единиц или шкал, называемых средствами измерений. Следовательно, под это определение непопадают другие способы оценивания, не использующие технические средства (в частности, органолептические и экспертные способы оценивания).

Необходимо отметить, что широкое распространение аналитических измерений и повышение значимости этой области измерений привело к необходимости расширения трактовки этого признака. Многие аналитические измерения проводятся путем выполнения последовательности операций, среди которых операция применения средства измерений является, с точки зрения точности результата, далеко не определяющей. Например, лабораторные измерения показателей качества газа, находящегося в газопроводе, включают следующие обязательные операции:

  • отбор пробы,
  • доставка пробы в лабораторию,
  • подготовка пробы,
  • измерение.

Качество выполнения каждой из этих операций влияет на точность измерения, ошибка при выполнении любой из них может быть решающей.

Жесткие правила проведения этих операций излагаются в метрологическом документе, называемом методикой выполнения измерений (МВИ) . По аналогии с медицинской терминологией можно сказать, что МВИ — это «пропись» процедур измерения, которая должна соблюдаться самым неукоснительным образом. Очевидно, что в таких измерениях не столько средство измерений, сколько МВИ в целом играет решающую роль в обеспечении необходимой точности измерений. Поэтому в таких случаях под «специальным техническим средством» логично понимать МВИ в целом (включая и применяемые в ней средства измерений).

4. Измерение — это определение значения величины. Следовательно, измерение — это сопоставление величины с ее единицей или шкалой. Такой подход выработан практикой измерений, исчисляемой сотнями лет. Он вполне соответствует содержанию понятия «измерение», определенному более 200 лет назад великим математиком Л. Эйлером: «Невозможно определить или измерить одну величину иначе, как приняв в качестве известной другую величину этого же рода и указав соотношение, в котором она находится к ней».

Физика - это модель нашего мира.

Суть физики бегло можно выразить так: Наблюдение → Создание модели → Математическое описание

Физика и математика - "неразлей-друзья". Однако, всегда надо помнить, что сначала реальный мир, а математика уже потом.

1. Как мы измеряем мир? Системы измерения

Измерение - вот начальная точка физики!

Исторически сложилось так, что существует множество мер одного и того же параметра: длины, веса, времени… Чтобы не запутаться во всем этом многообразии, физики и математики сгруппировали меры в системы единиц измерения. Наиболее известные системы измерения: СИ (система интернациональная) и СГС (сантиметр-грамм-секунда).

Ниже представлены основные единицы измерения в этих системах:

При решении любой физической (математической) задачи надо очень внимательно подходить к используемым единицам измерения. Ни в коем случае их нельзя "смешивать" при решении одной задачи. Если вы начали решать задачу в системе СИ, то надо ее придерживаться до конца решения задачи. В противном случае вместо правильного ответа вы получите "винегрет" из разных величин.

Но, как же быть, если в условии задачи присутствуют данные, выраженные через различные системы измерения? Ответ прост и очевиден: надо все данные привести к одной системе измерения! Ниже представлены преобразования единиц различных систем измерения .

2. Экспоненциальное представление чисел

Мир настолько многообразен, что, используемые для его описания, единицы измерения, могут иметь очень большие или очень малые значения. Пользоваться обычной записью таких значений очень неудобно, поскольку они очень громоздки. Поэтому, для более удобной работы с очень большими или очень малыми величинами используют экспоненциальное представление чисел . В этом представлении нули выражаются в степенях числа 10. Чтобы определить степень, нужно подсчитать все цифры справа налево до первой цифры.

Для очень малых величин степень числа 10 имеет отрицательный знак. В этом случае надо подсчитать кол-во цифр слева направо от десятичной запятой до места после первой ненулевой цифры.

Если число больше 10, то в экспоненциальном представлении оно будет иметь положительную степень, если меньше 1 - отрицательную.

3. Точность измерений

Одним из важных факторов успешного решения задачи является точность измерений (не путать с точностью вычислений).

Из этого сообщения мы имеем два измерения (расстояние и время), в каждом из которых по три значащих цифры.

Чтобы определить среднюю скорость мирового рекорда, надо разделить путь на время. Получим 10,4384133611 м/с . Казалось бы, мы получили очень точный результат средней скорости атлета. Однако, это не совсем так, а вернее, совсем не так. Поскольку после измерения расстояния и времени были получены по три значащие цифры, то точность измерений не может возрасти до пяти-семи-десяти… значащих цифр. Ведь нельзя же при помощи простой миллиметровой линейки получить результат измерения до микрон!

В нашем примере следует ограничиться тремя значащими цифрами, т.е., средняя скорость У.Болта будет равна 10,4 м/с .

Здесь следует упомянуть еще об одном существенном нюансе вычислений - округлении числа .

А что изменится, если сказать, что У.Болт пробежал 100,00 м за 9,58 с? Вроде бы, ничего не изменилось. Но! В измерении расстояния теперь указано пять значащих цифр ! Как теперь (до какой точности) правильно вычислить среднюю скорость спортсмена? В этом случае надо придерживаться следующих правил определения чисел с разным кол-вом значащих цифр.

  • При умножении или делении чисел результат будет иметь то же кол-во значащих цифр, что и исходное число с наименьшим кол-вом значащих цифр.
  • При сложении или вычитании чисел нужно расположить их в столбик и выровнять по положению десятичной запятой - самая последняя значащая цифра в результате будет соответствовать самой правой значащей цифре в том столбце, в котором все числа в столбике имеют значащие цифры.

Например:


Округляем до 8,4

4. Немного алгебры и тригонометрии

В физике, как и в любой точной науке, используется очень много уравнений. Чтобы правильно производить вычисления надо свободно пользоваться приемами манипулирования частями уравнения. Правила очень просты и их несложно запомнить:

Левую и правую части равенства можно менять местами: (Z=XY) ≡ (XY=Z)

Левую и правую части равенства можно делить на одно и то же число, умножать на одно и то же число, прибавлять одно и то же число, вычитать одно и то же число, возводить в одну и ту же степень:

(Y=2X) ≡ (Y/2=X) ≡ (1/2=X/Y)

(Y=2+X) ≡ (Y-X=2) ≡ (X=Y-2)

Измерение – нахождение истинного значения физической величины опытным путём с использованием специальных технологических устройств, имеющих нормированные характеристики.

Существует 4 основных вида измерений:

1)Прямое измерение – измерение, при котором искомое значение физической величины находят непосредственно из опытных данных или с помощью технического средства измерения непосредственно отсчитывающего значение измеряемой величины по шкале. В этом случае уравнение измерения имеет вид: Q=qU .

2)Косвенное измерение – измерение, при котором значение физической величины находят на основании известной функциональной зависимости между этой величиной и величинами, подлежащими прямым измерениям. В этом случае уравнение измерения имеет вид: Q=f(x1,x2,…,xn) , где x1 - xn – физические величины, полученные путём прямых измерений.

3)Совокупные измерения – производятся одновременно измерение нескольких одноименных величин, при котором искомое значение находят путём решения системы уравнений, полученных при прямых измерениях различных сочетаний этих величин.

4)Совместные измерения – производимые одновременно двух или нескольких неодноимённых физических величин для нахождения функциональной зависимости между ними. Как правило, эти измерения проводятся путём клонирования эксперимента и составления таблицы матрицы рангов.

Кроме того измерения классифицируется по: условиям проведения, характеристике точности, числу выполняемых измерений, характеру измерений во времени, выражению результата измерений.

9. Метод измерений. Классификация методов измерения.

Метод измерений – совокупность приёмов использования принципов и средств измерения. Все существующие методы измерений условно делятся на 2 основных вида:Метод непосредственной оценки – значения определяемой величины определяется непосредственно по отчетному устройству прибора или измерительного устройства прямого действия.Метод сравнения с мерой – измеряется величина, сравнивающаяся с величиной заданной мерой. При этом сравнение может быть переходное, равновремённое, разновремённое и другие. Метод сравнения с мерой делится на следующие два метода:- Нулевой метод - предусматривает одновременное сравнение измеряемой величины и меры, а результирующий эффект воздействия доводится с помощью прибора сравнения до нуля.- Дифференциальный - на измерительный прибор воздействует разность измеряемой величины и известной величины, воспроизводимой мерой, пример – схема неуравновешенного моста.

Оба эти метода делятся на следующие:

1) Метод противопоставления – измеряемая величина и величина, воспроизводимая мерой, одновременно воздействуют на прибор сравнения с помощью которого устанавливаются соотношения между этими величинами. (во сколько раз?)

2) Метод замещения – измеряемую величину замещают известной величиной, воспроизводимой мерой. Широко применяется при измерении неэлектрических величин, при этом методе одновременно или периодически сравнивается измеряемая величина с мерной величиной, а далее измеряют разницу между ними, используя совпадение отметок шкалы или совпадение периодических сигналов по времени.

3) Метод совпадений – разность между измеряемой величиной и величиной, воспроизводимой мерой, измеряют, используя совпадения отметок шкал или периодических сигналов.

Из всех методов измерения метод сравнения с мерой является более точным по сравнению с методом непосредственной оценки, причём дифференциальный метод измерения является более точным, чем нулевой метод измерения.

Недостатком нулевого метода измерения является необходимость иметь большой число мер, различных сочетаний для воспроизведения мерных величин кратных измеряемым. Разновидностью нулевого метода является компенсационный метод измерения, при котором происходит измерения физической величины без нарушения процесса в котором она участвует.

Физика является экспериментальной наукой. Ее законы базируются на фактах, установленных опытным путем. Однако, только экспериментальных методов физических исследований недостаточно, чтобы получить полное представление об изучаемых физикой явлениях.

Современная физика широко использует теоретические методы физических исследований, которые предусматривают анализ данных, полученных в результате экспериментов, формулировку законов природы, объяснение конкретных явлений на основе этих законов, а главное - предсказания и теоретическое обоснование (с широким использованием математических методов) новых явлений.

Теоретические исследования проводятся не с конкретным физическим телом, а с его идеализированным аналогом - физической моделью, которая имеет небольшое количество основных свойств исследуемого тела. Например, в ходе изучения некоторых видов механического движения используют модель физического тела - материальную точку.

Эта модель применяется, если размеры тела не являются существенными для теоретического описания его движения, то есть в модели «материальная точка» учитывают только массу тела, а форму тела и его размеры во внимание не берут.

Как измерить физическую величину

Определение 1

Физическая величина - это характеристика, которая является общей для многих материальных объектов или явлений в качественном отношении, но может приобретать индивидуальное значение для каждого из них.

Измерение физических величин называют последовательность экспериментальных операций для нахождения физической величины, характеризующей объект или явление. Измерить - значит сравнить измеряемую величину с другой, однородной с ней величиной, принятой за эталон.

Завершается измерения определением степени приближения найденного значение к истинному или к истинно среднему. Истинным средним характеризуются величины, которые носят статистический характер, например, средний рост человека, средняя энергия молекул газа и тому подобное. Такие параметры, как масса тела или его объем, характеризуются истинным значением. В этом случае можно говорить о степени приближения найденного среднего значения физической величины к ее истинному значению.

Измерения могут быть как прямыми, когда искомую величину находят непосредственно по опытным данным, так и косвенным, когда окончательный ответ на вопрос находят через известные зависимости между физической величиной. Нас интересует и величины, которые можно получить экспериментально с помощью прямых измерений.

Путь, масса, время, сила, напряжение, плотность, давление, температура, освещенность - это далеко не все примеры физических величин, с которыми многие познакомились в ходе изучения физики. Измерить физическую величину - это значит сравнить ее с однородной величиной, взятой за единицу.

Измерение бывают прямые и косвенные. В случае прямых измерений величину сравнивают с ее единицей (метр, секунда, килограмм, ампер и т.д.) с помощью измерительного прибора, проградуированный в соответствующих единицах.

Основными экспериментально измеряемыми величинами являются расстояние, время и масса. Их измеряют, например, с помощью рулетки, часов и весов (или весов) соответственно. Существуют также приборы для измерения сложных величин: для измерения скорости движения тел используют спидометры, для определение силы электрического тока - амперметры и т. д.

Основные типы погрешностей измерений

Несовершенство измерительных приборов и органов чувств человека, а часто - и природа самой измеряемой величины приводят к тому, что результат при любом измерении получают с определенной точностью, то есть эксперимент дает не истинное значение измеряемой величины, а довольно близкое.

Точность измерения определяется близостью этого результата к истинному значение измеряемой величины или к истинному среднего, количественной мерой точности измерения является погрешность. В общем указывают абсолютную погрешность измерения.

Основные типы погрешностей измерений включают в себя:

  1. Грубые ошибки (промахи), которые возникают в результате небрежности или невнимательности экспериментатора. Например, отсчет измеряемой величины случайно проведенный без необходимых приборов, неверно прочитана цифра на шкале и тому подобное. Этих погрешностей легко избежать.
  2. Случайные ошибки возникают по разным причинам, действие которых различны в каждом из опытов, они не могут быть предусмотрены заранее. Эти погрешности подчиняются статистическим закономерностям и высчитываются с помощью методов математической статистики.
  3. Систематические ошибки возникают в результате неправильного метода измерения, неисправности приборов и т.д. Один из видов систематических погрешностей – погрешности приборов, определяющих точность измерения приборов. При считывании результат измерений неизбежно округляется, учитывая цену деления и, соответственно, точность прибора. Этих видов ошибок невозможно избежать и они должны быть учтены наряду со случайными ошибками.

В предложенных методических указаниях приведены конечные формулы теории погрешностей, необходимые для математической обработки результатов измерений.

Площадь в системе СИ

Площадь, объем и скорость являются производными единицами, их размерности происходят от основных единиц измерения.

В расчетах используют также кратные единицы, в целую степень десятки превышают основную единицу измерения. К примеру: 1 км = 1000 м, 1 дм = 10 см (сантиметров), 1 м = 100 см, 1 кг = 1000 г. Или частные единицы, в целый степень десятки меньше установленной единицы измерения: 1 см = 0,01 м, 1 мм = 0,1 см.

С единицами времени несколько иначе: 1 мин. = 60 с, 1 ч. = 3600 с. Частных является лишь 1 мс (миллисекунда) = 0,001 с и 1 мкс (микросекунда) = 10-6с.

Рисунок 1. Список физических величин. Автор24 - интернет-биржа студенческих работ

Измерения и измерительные приборы

Измерения и измерительные приборы включает в себя:

  1. Измерительные приборы - устройства, с помощью которых измеряют физические величины.
  2. Скалярные физические величины - физические величины, которые задают только числовыми значениями.
  3. Физическая величина - физическое свойство материального объекта, физического явления, процесса, который может быть охарактеризовано количественно.
  4. Векторные физические величины - физические величины, характеризующие числовым значением и направлением. Значение векторной величины называют ее модулем.
  5. Длина - расстояние от точки до точки.
  6. Площадь - величина, определяющая размер поверхности, одна из основных свойств геометрических фигур.
  7. Объем - вместимость геометрического тела, или части пространства, ограниченной замкнутыми поверхностями.
  8. Перемещение тела - направленный отрезок, проведенный из начального положения тела в его конечное положение.
  9. Масса - физическая величина, являющаяся одной из основных характеристик тела, обычно обозначается латинской буквой m.
  10. Сила притяжения - сила, с которой Земля притягивает предметы.

Задачей физического эксперимента является установление и изучение связей между различными физическими величинами. При этом в процессе эксперимента часто бывает необходимо измерять эти физические величины. Измерить физическую величину – это значит сравнить её с идентичной физической величиной, принятой за эталон.

Измерением называют экспериментальное определение значения физической величины с помощью средств измерений. К средствам измерения относятся: 1) меры (гири, линейки, мерные стаканы и т.п.); 2) измерительные приборы, имеющие шкалу или цифровое табло (секундомеры, амперметры, вольтметры и т.п.); 3) измерительно-вычислительные комплексы, включающие измерительные приборы и вычислительную технику.

Чтобы измерить физическую величину, необходимо: 1) установить единицу измерения этой величины (выбрать эталон); 2) иметь проградуированные в требуемых единицах с необходимой точностью средства измерения; 3) выбрать наиболее целесообразную методику измерений; 4) провести с помощью имеющихся средств измерения экспериментальное сравнение измеряемой величины с выбранным эталоном; 5) дать оценку допущенной при измерениях погрешности.

В зависимости от способа получения результата измерения делятся на прямые и косвенные . Прямые измерения осуществляются с помощью средств измерений, которыми непосредственно определяется исследуемая величина (например, измерение длины с помощью линейки, веса тела с помощью весов, времени с помощью секундомера). Однако не всегда прямые измерения осуществимы, удобны или имеют необходимую точность и надёжность. В этих случаях используют косвенные измерения, при которых искомое значение величины находится по известной зависимости между этой величиной и величинами, значения которых могут быть найдены в прямых измерениях. Например, объём можно высчитать по измеренным линейным размерам объекта, массу тела – по известной плотности и объёму и т.д. Таким образом, значение какой-либо величины может быть получено как при прямых измерениях, так и с помощью косвенных измерений. Так, скажем, величину сопротивления провода можно определить впрямую прибором – омметром, а можно и высчитать по измеренным величине тока, протекающего через проводник, и величине падения напряжения на нём. Выбор способа измерений физической величины для каждого конкретного случая решается отдельно с учётом удобства, быстроты получения результата, необходимой точности и надёжности.

Каждый физический эксперимент состоит из подготовки исследуемого объекта и средств измерений, наблюдения за ходом эксперимента и показаниями приборов, записи отсчётов и результатов измерений.

Последовательность размещения приборов и их связь друг с другом должна быть такой, чтобы обеспечить максимальную точность и удобство проведения эксперимента. При этом правильная градуировка приборов, установка их нулевых значений на шкале или цифровом табло прибора имеет первостепенное значение для получения точного результата измерений. Работа на неисправных приборах не допускается! О неисправности приборов следует немедленно сообщить преподавателю или лаборанту! Перед включением приборов необходимо удостовериться в правильности их соединения и получить разрешение на их включение у преподавателя.

Наблюдения за показаниями приборов следует проводить так, чтобы шкала или табло прибора были хорошо видны экспериментатору под нужным углом (часто для ликвидации таких ошибок измерений в приборах вводится зеркальная шкала: стрелка прибора и её отражение при измерении должны быть совмещены).

Форма записи экспериментальных результатов должна быть чёткой и компактной. Для этого специально разрабатываются таблицы, приведённые в методических указаниях к каждой лабораторной работе и именно в эти таблицы, скопированные студентами на бланк работы, и следует производить запись результатов с учётом единиц измерений и цены деления прибора. При этом, если заранее не задаётся необходимая точность результата, то надо стараться записать результат измерения с наибольшей возможной точностью, которую даёт прибор (т.е. записывать максимально возможное число значащих цифр). Для сокращения числа нулей в полученных значениях измеряемой величины (тех нулей, которые не являются значащими цифрами), удобно для всей строки или столбца таблицы указывать десятичный множитель 10 n (например, для того чтобы не писать лишние нули в значениях плотности тел, измеренных в кг/м 3 с точностью до двух значащих цифр, для всей строки таблицы, в которую заносятся плотности тел, перед единицей измерения ставится множитель 10 3: так для плотности воды в соответствующей клеточке таблицы вместо 1000 будет стоять 1,0). Отметим, однако, что не следует при измерениях, во что бы то ни стало, добиваться большей точности, чем это необходимо в поставленной задаче. Например, если требуется знать длину досок, приготовленных для производства тары, то не требуется проводить измерения с точностью, скажем, до микрона. Или, если при проведении косвенных измерений, значение какой-либо из измеряемых величин ограничено некоторой точностью (выраженной в определённом количестве значащих цифр), то не имеет смысла стараться измерять другие величины с много большей точностью, чем эта. Так, если плотность воды известна с точностью до двух значащих цифр, то, если потом потребуется находить массу воды в стакане, следует измерять ёмкость стакана (а это приблизительно 200 см 3) только с точностью до двух-трёх значащих цифр, то есть не большей, чем 1 см 3 .

Графики функций строят на миллиметровой бумаге, причём разметка осей координат выбирается удобной по масштабу и состоит из равноотстоящих и не слишком частых отметок. Не обязательно, чтобы на осях был отмечен ноль как начало координат: следует использовать именно интервал полученных экспериментальных значений. Масштаб по осям должен соответствовать погрешностям измерений. При этом желательно добиваться того, чтобы экспериментальная кривая располагалась в центральной части графика. На осях указываются обозначения физических величин и их единицы измерений. Для больших или малых значений величин N следует откладывать их по осям без множителя 10 n , а у соответствующей оси сделать обозначение N10 - n . На графике обязательно должны быть отмечены экспериментальные точки (если кривых несколько – можно для экспериментальных точек использовать разные обозначения: крестики, кружочки, треугольники и т.д., а кривые проводить разными по цвету или виду линиями: штриховыми, штрихпунктирными и т.д.). График подписывают, определяя содержание графика и объясняя, при каких условиях получены соответствующие зависимости.



Последние материалы раздела:

Пробный ЕГЭ по русскому языку
Пробный ЕГЭ по русскому языку

Здравствуйте! Уточните, пожалуйста, как верно оформлять подобные предложения с оборотом «Как пишет...» (двоеточие/запятая, кавычки/без,...

Математические, статистические и инструментальные методы в экономике: Ключ к анализу и прогнозированию
Математические, статистические и инструментальные методы в экономике: Ключ к анализу и прогнозированию

В современном мире, где экономика становится все более сложной и взаимосвязанной, невозможно переоценить роль аналитических инструментов в...

SA. Парообразование. Испарение, конденсация, кипение. Насыщенные и ненасыщенные пары Испарение и конденсация в природе сообщение
SA. Парообразование. Испарение, конденсация, кипение. Насыщенные и ненасыщенные пары Испарение и конденсация в природе сообщение

Все газы явл. парами какого-либо вещества, поэтому принципиальной разницы между понятиями газ и пар нет. Водяной пар явл. реальным газом и широко...