Что такое модель в информатике? Виды, примеры. Модели и моделирование

Невозможно представить себе современную науку без широкого применения математического моделирования, суть которого состоит в замене исходного объекта его образом - математической моделью и дальнейшем изучении модели с помощью реализуемых на компьютерах вычислительно-логических алгоритмов. Этот метод сочетает в себе достоинства, как теории, так и эксперимента, поскольку работа не с самим объектом (явлением, процессом), а с его моделью дает возможность относительно быстро и без существенных затрат исследовать его свойства и поведение в различных ситуациях. В то же время вычислительные эксперименты с моделями объектов позволяют, опираясь на мощь современных вычислительных методов и технических средств информатики, подробно и глубоко изучать объекты в достаточной полноте, недоступной чисто теоретическим подходам.

Вышесказанное является актуальным в условиях постоянного роста требований к эффективности устройств, применяемых в системах передачи и обработки информации, к сокращению сроков исследования и разработки новых телекоммуникационных систем и сетей.

Моделирование можно рассматривать как замещение исследуемого объекта (оригинала) его условным образом, описанием или другим объектом, именуемым моделью и обеспечивающим близкое к оригиналу поведение в рамках некоторых допущений и приемлемых погрешностей. Моделирование обычно выполняется с целью познания свойств оригинала путем исследования его модели, а не самого объекта. Разумеется, моделирование оправдано в том случае когда оно проще создания самого оригинала или когда последний по каким-то причинам лучше вообще не создавать.

МОДЕЛЬ ("модель" от лат. "modelus", что означает "мера") - мысленно предста-вимая или материально реализованная система, которая, отражая и воспроиз-водя объ-ект исследования, способна замещать его при определенных условиях так, что изуче-ние ее дает новую информацию об этом объекте . М. в самом широком смысле - это любой мысленный или знаковый образ моделируемого объекта (оригинала).

Таким образом , под моделью мы будем понимать совокупность объектов (понятий, свойств, признаков, знаков, геометрических элементов, материальных предметов) и отношений между ними (называемых моделирующими), которые выражают существенные с точки зрения цели моделирования стороны изучаемого объекта, явления или процесса . Короче, модель - это некоторое упрощённое подобие реального объекта, процесса или явления.

М. строится для достижения определенной цели, однако для одного и того же объ-екта можно построить, преследуя одну и ту же цель, разные модели. Поэтому можно считать, что М. некоторого объекта А (оригинала, прототипа) - это объект В, в каком-то отноше-нии подобный (аналогичный) оригиналу А, но отличающийся от него, вы-бранный или по-строенный, по крайней мере, для одной из следующих целей:


1) замена оригинала А моделью B в некотором реальном или воображаемом дейст-вии, ис-ходя из того, что В более удобна для осуществления этого действия в данных условиях (т.н. называемая модель-заместитель );

2) создание наглядного представления об объекте А (реально существующем или вообра-жаемом) с помощью объекта В (т.н. называемая модель-представление );

3) истолкование (интерпретация) объекта А в виде модели В (т.н. называемая мо-дель-ин-терпретация );

4) исследование (изучение) объекта А посредством изучения объекта В (т.н. назы-ваемая исследовательская модель).

Пример.1 . В курсе математики представлены все перечис-ленные виды мо-делей. Так, уравне-ние, со-ставленное по условию текстовой задачи, вы-сту-пает как модель-заместитель исходной задачи; чер-теж некоторого геометрического объекта, построенный для доказательства утверждения, в кото-ром идет речь в этом утверждении, яв-ляется моде-лью-представлением рассматриваемого объекта; урав-нение (x -a ) 2 + (y - b ) 2 = R 2 является моделью-интерпретацией окружности.

М. обычно обладает не одним каким-либо признаком, соответствующим одной из указанных целей, а несколькими, и поэтому она пригодна, как правило, и для других целей. Например, модель-заместитель может использоваться и как модель-представ-ление, и как мо-дель-интерпретация, и как исследовательская модель. Так, модель-ин-терпретация окружно-сти вполне пригодна для исследования свойств окружности, а, значит, она является и моде-лью исследовательской.

По способу построения модели бывают материальные и идеальные . В качестве ма-тери-альных моделей могут выступать копии оригинала (уменьшенные или увеличен-ные), причем они могут быть динамические и статические ; в качестве идеальных - изображения, описа-ния, схемы, чертежи, графики, уравнения, планы, карты, компью-тер-ные программы и т.д.

Пример 2. В медицине многие лекарственные препараты, разрабатывае-мые для лечения людей, первоначально испытывают на животных, которые в этом случае и выступают в качестве модели че-ловека; моделью некоторой местности может служить географическая карта, пользуясь которой, мы получаем нужную нам информацию об этой местности; моделью прямолиней-ного равномерного движения служит уравнение s = v 0 +vt , исследование ко-торого дает воз-можность устанавливать ос-новные закономерности данного вида движения; моделью неко-торого предмета, явления, процесса или ситуации (как реальных, так и «вирту-альных») могут служить компьютерные программы, пре-доставляющие в распоряжение ис-следователя прак-тически неограниченные возможности для их изу-чения и прогнозирования развития; и т.п.

М. всегда является лишь ото-бражением оригинала, и она в каком-либо отношении должна быть не только удобна для изучения свойств исследуемого объекта, но и по-зволяет перенести по-лученные при этом знания на исходный объект. Например, когда в начальных школе учитель намеревается более наглядно продемонстрировать способ сложения нату-ральных чисел, то он использует для этого различные модели этих чи-сел: реальные пред-меты или их изображения, абак, русские счеты, и др. Многие дет-ские игрушки, пред-ставляющие собой модели реальных объектов (автомобилей, по-ездов, животных и т.п.), позволяют ребенку познавать определенные свойства окру-жающих его предметов.

М. строится с тем расчетом, чтобы охватить только те свойства ориги-нала, которые существенны в данной ситуации и являются объектом изучения. Например, сущест-вует разнообразные модели обучения математике; одни из них позволяют исследо-вать сте-пень усвоения материала, другие - познавательную активность, третьи - твор-ческую матема-тическую деятельность, и т.д. Для изучения поведения проектируемого самолета в воздухе строят уменьшенную во много раз его модель и помещают ее в аэродинамическую трубу. Затем по поведению этой модели в различных воздушных потоках, создаваемых в трубе, судят о том, как будет вести себя в полете настоящий самолет.

М., полностью воспроизводящая оригинал, перестает быть моделью.

Существует ряд общих требований к моделям:

1. Адекватность - достаточно точное отображение свойств объекта;

2. Полнота - предоставление получателю всей необходимой информации об объекте;

3. Гибкость - возможность воспроизведения различных ситуаций во всем диапазоне изменения условий и параметров;

4. Трудоемкость разработки должна быть приемлемой для имеющегося времени и программных средств.

Моделирование - это процесс построения модели объекта и исследования его свойств путем исследования модели.

Таким образом, моделирование предполагает 2 основных этапа:

1. Разработка модели;

2. Исследование модели и получение выводов.

При этом на каждом из этапов решаются разные задачи и используются отличающиеся по сути методы и средства.

Метод моделирования во многих науках является средством, позволяющим ус-та-навли-вать более глубокие и сложные взаимосвязи между теорией и опытом и способ-ным заменить эксперимент.

Целый ряд исследований вообще невозможен без моде-лирования, по-тому, что:

а) эксперименты могут проводиться лишь на ныне существующих объектах, т.к. невоз-можно распространить эксперимент в область прошлого;

б) вмешательство в некоторые системы иногда имеет такой характер, что невоз-можно ус-тановить причины появившихся изменений (вследствие вмешательства или по другим при-чинам);

в) некоторые теоретически возможные эксперименты неосуществимы вследствие низ-кого уровня развития экспериментальной техники или ее высокой стоимости;

г) большую группу экспериментов, связанных с человеком, сле-дует отклонить по мо-рально-этическим соображениям.

Однако М. находит широкое применение не только из-за того, что может за-менить эксперимент.

Оно имеет большое самостоятельное значение и свои преимущества:

1. С помощью метода моделирования на одном комплексе данных можно разрабо-тать целый ряд различных моделей, по-разному интерпретировать исследуемое явле-ние, и вы-брать наи-более плодотворную из них для теоретического истолкования.

2. В процессе построения модели можно сделать различные дополнения к иссле-дуемой ги-потезе и получить ее упрощение.

3. В случае сложных моделей можно применять компьютерную технику.

4. Существует возможность проведения модельных экспериментов. И др.

На практике применяют различные методы моделирования. В зависимости от способа реализации, все модели можно разделить на два больших класса: физические и математические.

Математическое моделирование принято рассматривать как средство исследования процессов или явлений с помощью их математических моделей.

Под физическим моделированием понимается исследование объектов и явлений на физических моделях, когда изучаемый процесс воспроизводят с сохранением его физической природы или используют другое физическое явление, аналогичное изучаемому. При этом физические модели предполагают, как правило, реальное воплощение тех физических свойств оригинала, которые являются существенными в конкретной ситуации. Например, при проектировании нового самолета создается его макет, обладающий теми же аэродинамическими свойствами; при планировании застройки архитекторы изготавливают макет, отражающий пространственное расположение ее элементов. В связи с этим физическое моделирование называют также макетированием.

Полунатурное моделирование представляет собой исследование управляемых систем на моделирующих комплексах с включением в состав модели реальной аппаратуры. Наряду с реальной аппаратурой в замкнутую модель входят имитаторы воздействий и помех, математические модели внешней среды и процессов, для которых неизвестно достаточно точное математическое описание. Включение реальной аппаратуры или реальных систем в контур моделирования сложных процессов позволяет уменьшить априорную неопределенность и исследовать процессы, для которых нет точного математического описания. С помощью полунатурного моделирования исследования выполняются с учетом малых постоянных времени и нелинейностей, присущих реальной аппаратуре. При исследовании моделей с включением реальной аппаратуры используется понятие динамического моделирования, при исследовании сложных систем и явлений - эволюционного, имитационного и кибернетического моделирования.

Очевидно, действительная польза от моделирования может быть получена только при соблюдении двух условий:

1. Модель обеспечивает корректное (адекватное) отображение свойств оригинала, существенных с точки зрения исследуемой операции;

2. Модель позволяет устранить перечисленные выше проблемы, присущие проведению исследований на реальных объектах

МАТЕМАТИЧЕСКАЯ МОДЕЛЬ - приближенное описание ка-кого-либо явле-ния внешнего мира, выраженное с помощью математической сим-волики . Ма-тематиче-ские модели описываются с помощью средств самой математики: языка , понятий , отно-шений , теорий . В отличие от есте-ственнонауч-ных и гуманитарных дисциплин М.м. обычно не требует создания ма-териали-зованных объектов. Кроме то-го, если все дру-гие науки изу-чают модели, то ма-тематика изучает «модели моделей ». Потому ее мате-риал в наилуч-шей степени соответствует задаче овладения методом моделиро-вания.

Примером М.м. достаточно сложно-го оригинала служит система уравне-ний (и не-равенств) в самом широком понимании. Система может содержать обыкновен-ные дифферен-циальные уравнения, уравнения в частных производных, интегральные уравнения, алгебраи-ческие и трансцендентные уравнения (и неравенства), набор ве-роятностно-статистических данных и т.д. К математическим моделям относят и про-граммы, составленные для ком-пьютеров, которые моделирую (отражают) оп-ределен-ные процессы, описанные средст-вами математики, положенными в основу ал-горит-мов.

Пример 3. Развитие ЭВМ и методологии системного анализа дало возможность для изуче-ния широкомас-штабных социальных процессов. Возникло так называемое глобальное моде-лирование и на его основе - прогно-зирование мировых социальных явлений.

Основоположником и «идейным отцом» такого рода исследований считается Дж. Форре-стер . В своей ра-боте “Мировая динамика” (1971 г.) он сделал успешную попытку использо-вать математиче-ские методы и ЭВМ для создания варианта модели экономического развития общества с учетом двух важнейших факторов - числен-ности населения и загрязнения окру-жающей среды. Расчеты показали, что при сохранении тенденций развития общества неиз-бежен серьезный кризис во взаимодействии человека и окружающей среды. Этот кризис объяс-няется проти-воречием между ограниченностью земных ресурсов, конечностью пригод-ных для сельскохо-зяйст-венной обработки площадей и все рас-тущими темпами потребления увеличивающегося населения. Рост насе-ления, промышленного и сельскохозяйственного производства приводит к кризису: быстрому загрязнению окру-жающей среды, истощению природных ресурсов, упадку производства и повышению смертности. На основа-нии анализа этих результатов де-лается вывод о необходимости стабилизации промышленного роста и материаль-ного по-требления.

В 80-х годах XX века появляются оригинальные работы в области глобального модели-рования в Советском Союзе. Группой ученых под руководством академика Н.Н. Моисеева в Вычисли-тельном Центре АН СССР была сделана попытка проанализировать математиче-скими мето-дами структуру международной конфликтной ситуа-ции. Основной вывод, кото-рый сле-довал из анализа составлен-ной модели, состоял в следующем. Несмотря на сложную зависи-мость целевой функции, общей для всех партнеров (функции риска ядерной войны), в дейст-виях участников конфликта, в такой сверх-сложной и сверхопасной ситуации, какой является гонка ядерных воо-ружений, существует взаимо-выгодный и эффективный компромисс.

М.м. отдельного элемента относительно проще - она может ока-заться геометриче-ским образом, функцией или ее графиком, вектором, матрицей, числовой табли-цей, скалярной величиной или даже конкретным чис-лом.

Построение мо-дели, адекватно отра-жающей объект, - дело непростое и требует специ-альных знаний и хорошей математиче-ской подготовки.

МЕТОД МАТЕМАТИЧЕСКОГО МОДЕЛИРОВАНИЯ сводит исследование внешнего мира к мате-ма-тическим задачам.

Процесс математического моделирования состоит из четырех эта-пов:

1) формализации , т. е. перехода от реальной практической задачи (исследуемой си-туа-ции) к по-строению аде-к-ватной математической модели и формулировки на ее ос-нове абст-рактной математической задачи;

2) решения задачи путем преоб-разования модели (проведение математического иссле-дования ), т.е. получение в результате анализа и исследования модели выходных данных (теоретических сведений);

3) интерпретации полученного результата , когда решение формальной математи-че-ской задачи исследуется на предмет его соответствия с исходной ситуацией, истол-ковыва-ется в терминах исходной ситуации и применяется к ней;

4) модернизации модели , т.е. построение новой более совершенной модели в связи с на-коплением данных об изучаемом объекте или процессе.

Пример 4. Разработка модели Сол-нечной системы . Наблюдения звездного неба, начавшиеся еще в глубокой древности, при-вели к тому, что из всего многообразия небесных светил были выде-лены планеты, которые и стали объектом изучения. Следующим ша-гом явилось изучение закономер-ностей их дви-жений, т.е. построение моделей и получение конкретных резуль-татов. Модели Солнеч-ной системы в процессе своего развития прошли через ряд усовершенствований по мере накоп-ления экспе-риментальных данных и развития науки. Первой была модель Птолемея, создан-ная во II веке нашей эры, исходила из положения, что планеты и Солнце совершают движе-ния вокруг Земли (т.н. геоцентриче-ская модель).

В XVI веке появилась модель Н. Коперника , принципи-ально отличающаяся от предыдущей, пола-гающая, что планеты вращаются вокруг Солнца по окружности (т.н. гелиоцен-три-ческая модель). Затем появи-лась модели И. Кеплера (начало XVII века), И. Ньютона (вторая поло-вина XVII века), описывающие движения пла-нет на ма-тематическом языке. Модель Ньютона , осно-ванная на законе всемирного тяготения, вполне удовлетворительно описывала движение известных планет и давала возможность вы-чис-лять их положение на небо-своде.

Но вот к 40-м годам XIX в. не-которые результаты этой мо-дели стали тоже не согласовываться с экспе-риментальными данными: наблюдаемое движе-ние Урана уклонялось от теоретически вычисляемого движения. Французский ученый-ас-троном У. Леверье расширил систему наблюдаемых планет новой гипотетической плане-той (он на-звал ее Нептуном) и, пользуясь новой математической моделью, определил все ос-нов-ные па-раметры этой планеты. В указанное время и на предсказанном им месте в 1846 году астро-номы убедились в реальном существовании еще одной планеты Солнечной сис-темы. По-добные вычисле-ния, сделанные П. Лоуэлом, при-вели в 1930 году к открытию де-вятой пла-неты, получившей название Плутон.

В ходе многовекового исторического развития математики сконст-руированы осо-бые мо-дели количественных отношений и пространственных форм ок-ружаю-щего мира. Это такие математические понятия, как число, функция, уравнение, гео-метриче-ская фигура и др. Хотя математическая модель и создается человеческим разумом, в даль-нейшем она во многих случаях становится предметом объективного изучения. Познавая ее свойства, мы тем самым познаем и свойства отраженной моделью реаль-но-стей, т.е. абст-рактные математические открытия обнаруживают ранее неизвестные свойства окружающего мира.

Например, представле-ние, что числа бывают только, скажем, до миллиарда (а дальше чисел нет!) прямым наблюдением вряд ли может быть опро-вергнуто. Только создание мате-матиками древности такого понятия нату-рального числа (такой модели), при ко-тором нату-ральных чисел оказывалось беско-нечно много, позволяет это сделать. С помощью модели геометрии Лобачевского че-ловечество пришло к пониманию искрив-ленности пространства, абстрактные функ-циональные зависимости дают возможность пред-сказывать развитие тех или иных процессов, модели геометрических тел позволяют на прак-тике определять количе-ст-венные характеристики окружающих нас предметов и т.д.

Для исследования существующих и построения новых моделей в математике раз-рабо-таны специальные методы. Среди них методы теории графов, теории вероятно-стей и математической статистики, математической логики и комбинаторики, ак-сио-матический метод, методы иссле-дования элементарных функций, решения уравнений, доказательства утверждений, построения геометрических фигур, измерения величин и т.д. Так, идеи метода моделирования находят свое примене-ние при решении тексто-вых задач: во-первых, само понятие текстовой задачи можно ввести, пользуясь поня-тием «модель», во-вторых, понятия мо-дели позволяет строго определить понятия «метода решения» и «способа решения» тексто-вой задачи.

В математике разработаны и особые методики использования на практике матема-тиче-ских моде-лей, например, приемы решения задач с помощью уравнений и систем уравнений, изучение различных явлений и процессов с помощью исследования соот-ветствующих функ-ций, графов, геометрических фигур и т.д.

Пример 5. Общеизвестно, что, разрезая конус плоскостями, не проходящими через его вершину, мы полу-чаем в сечении различные кривые: окружности, эллипсы, параболы, гиперболы (рис. 4.7). Их называют коническими сече-ниями . Еще древнегреческие ученые начали зани-маться изучением этих кривых, т.к. они встречаются в различ-ных явлениях природы и в че-ловече-ской деятельности (в астро-номии, в во-енном деле, в физики и т.п.). Однако лишь, ко-гда поя-вились уравнения конических сечений, полу-ченные методом координат, изучение этих кри-вых значительно продвинулось вперед, и были ре-шены многие задачи, связанные с ними. Так, И. Кеплер (1609 г.) открыл из наблюдений, а И. Ньютон (1687 г.) теоретически обосно-вал, что планеты и кометы Солнечной сис-темы движутся по этим кривым.

Заметим, что уравнения x 2 + y 2 = r 2 , y = kx 2 и выступают в каче-стве мо-делей окружности, эллипса, параболы и гиперболы, соответственно, а эти кривые в свою очередь можно рас-сматривать как геометрические модели указанных уравнений.

ЗНАКОВЫЕ МОДЕЛИ . Большую роль в современной науке (т.е. не только в ма-тематике) играют знаковые мо-дели . Они позволяют в виде выражений, формул, урав-нений и т.п. отображать различные процессы и существенные отношения между изу-чаемыми предметами и явлениями, с помощью термина (слова) или знака - вводить новое понятие. Например, вы-ражение a +b служит моделью суммы двух чисел; фор-мула m =2k , где k ÎN , задает четные на-туральные числа; уравнения Zn - 2e = Zn 2+ и 2H + + 2e = H 2 описывают реакции с отдачей и приемом электронов. Каждому образо-ванному человеку не составляет труда понять, что вы-ражают формулы H 2 O, H 2 SO 4 , E =mc 2 , a 2 + b 2 = c 2 , S = a·b , и знаки «=», «+», «sin», «+», «g », «», «e », «p» соответст-венно в химии, фи-зике и математике.

Часто одна и та же знаковая модель описывает различные объекты или процессы. На-пример, знаковая модель «A » может отображать точку, множество, высказывание, объект; модель «y = k·x » - зависимость между ценой, стоимостью и количеством то-вара; или между работой, производительностью труда и временем выполнения ра-боты и др. С другой сто-роны, один и тот же процесс можно описать разными моде-лями. Например, реакцию взаимо-действия цинка с уксусной кислотой в молекуляр-ном виде задают уравнением Zn + 2CH 3 COOH = Zn(CH 3 COO) 2 + H 2 , в молекулярно-ионном - уравнением Zn+2CH 3 COOH = Zn 2+ + 2CH 3 COO - + H 2 .

З.м. понятия «число» . Понятие числа явля-ется одним из важнейших в математике и центральным понятием курса математики в на-чальной. Появившись в простейшем виде еще в первобытном об-ществе из потребностей счета, понятие числа совершенст-вова-лось на протяжении всего последующего развития человеческой цивилизации. В вузе сту-денты, в силу выбранной профессии, изучают большинство известных число-вых множеств, и они знают, что развитие понятия числа происходило под влиянием двух факторов: прак-тиче-ской деятельности человека и внутренних потребностей ма-тематики. В процессе обучения у них формируется представление о том, что бывают порядковые числа, ко-личественные числа, числа как меры величин и числа как ком-понент вычислений.

Однако многие из них не видят разницы между понятием числа и его названием (за-писью), для большинства из них эти понятия тождественны. На во-прос: «Какие числа называются натуральными?», - обычно следует ошибочный ответ: «1, 2, 3 и т.д. - это натуральные числа». Ответ неправильный, по-тому что студенты в данной ситуации подменяют само понятие его обозначением: 1, 2, 3 и т.д. - это не на-туральные числа, а их обозначения, их символы, их знаковые модели . Понятие числа, возникшее как ма-тематическая модель операции пересчета предметов, само стано-вится основой для построения новых математических моделей.

Системы счисления и нумерации - это способы знаково-сим-воличе-ского модели-рования натуральных чисел. Например, любое натуральное число s в десятич-ной сис-теме счисления можно представить в виде:

s = a n 10 n + a n -1 10 n -1 + a 1 10 1 + a 0 = a n a n -1 a 1 a 0 , где a i < 10, i = 0,1,2, n , a n ≠ 0.

Числа a i называются однозначными числами , а их обозначения (символы 1, 2, 3, 9, т.е. знаковые модели) называются цифрами . Следовательно, и запись a n a n -1 . a 1 a 0 есть знаковая модель числа s . Другими знаковыми моделями натуральных чисел яв-ляются их представле-ния цифрами римской нумерации, старославянской нумерации и др.

Большое разнообразие знаковых моделей представляют в наше распоряжение ра-цио-нальные числа, которые можно записать в виде:

а) обыкновенной дроби, например, 12/7, 2/3;

б) десятичной конечной или десятичной бесконечной периодической дроби, на-пример, 3,5; 2,(36); 12,17(3);

в) конечной непрерывной (или цепной дроби), например,

г) систематической дроби, например,

В зависимости от целей, которые стоят перед исследователем, используется та или иная знаковая модель рационального числа. Так, при проведении теоретических ис-следований предпочтении отдают непрерывным дробям, при выполнении практиче-ских вычислений - десятичным и обыкновенным, и т.д.

Универсальной моделью действительного числа является бесконечная десятичная дробь. При этом, если эта дробь периодическая, то изображаемое ею действительное число является рациональным; если же эта дробь непериодическая, то изображаемое ею действительное число является иррациональным. Другими знаковыми моделями действительных чисел яв-ляются непрерывные дроби (конечные и бесконечные), ир-рациональные числа, которые изо-бражаются с помощью знаков корней (, , и др.), трансцендентные числа (p = 3,141592, e = 2,718281 и др.).

АКСИОМАТИЧЕСКИЙ МЕТОД И МОДЕЛИРОВАНИЕ . Особая роль принад-лежит модели-рованию в установлении истинности той или иной формы теоретиче-ского знания (ак-сиоматической теории, гипотезы и т.д.). Модель здесь можно рас-сматривать как ору-дие проверки того, действительно ли существуют такие связи, от-ношения, структуры, закономерности, которые формулируются в данной теории и выполняются в модели, а ус-пешная работа модели - это практическое доказательство истинно-сти теории, т.е. это часть экспериментального доказательства истинности этой теории.

Сформулировав основные по-нятия (объекты и отношения), а так же ак-сиомы неко-торой теории, мы имеем лишь ло-ги-че-скую схему , в кото-рой все понятия счита-ются «пустыми» (не имеющими конкретный смысл). Требование только одно: данные по-ня-тия должны формально удовлетворять аксиомам. Ос-тальные свой-ства этих и новых понятий (т.е. тех, которые будут введены в дальнейшем) должны быть ло-гически вы-ведены из ак-сиом.

Придав основным объектам и отношениям аксиоматики конкретный смысл, мы по-лучим ее модель. Ценность моделей в этом случае заключается в том, что они дают возможность прове-рить логическую стройность аксиоматики . При этом, как только понятиям аксиоматики при-дан конкретный смысл, ее ак-сиомы становятся теоремами , которые уже нужно доказы-вать.

Так, моделями булевой алгебры являются алгебра множеств и ал-гебра вы-сказыва-ний, моделью числового поля - множество действительных чисел с заданными на нем операциями сложения и умножения. Интересные модели предоставляют в наше рас-поряжение аксиоматики евклидовой гео-метрии и геомет-рии Лобачевского.

Пример 6 . Модель №1 евклидовой геометрии. Условимся под словами «точка», «прямая» и т.д. подразуме-вать следующее (другими словами, придадим конкретный смысл основным понятиям). «Точка » - любая точка обыкновенной плоскости, кроме одной точки O ; «прямая » - окружность в широком смысле, проходящая через точку O , т.е. любая окруж-ность или прямая, проходящая через точку O (можно считать, что обыкновенная прямая - это окружность с бесконечно большим радиу-сом.); «принадлежит » - в обычном смысле. Чтобы не услож-нять пример, истолкование других слов («между », «конгруэнтен » и т.д.) приводить не бу-дем.

Можно показать, что для таких «точек» и «прямых» выпол-няются все ак-сиомы евклидо-вой гео-метрии. Например, аксиома «Через две раз-личные точки проходит одна и толь-ко одна пря-мая » ста-новится в на-шей модели теоремой «Через три точки проходит единствен-ная ок-ружность в широ-ком смысле ». Дока-жем ее. Пусть «точки» B и C (рис. 4.8) таковы, что точка O не лежит на пря-мой BC .

Из планиметрии Евк-лида известно, что через три точки (B , C и O ), не лежащие на одной прямой, проходит единственная окружность. Если же «точки» B и C таковы, что BC проходит через O , то B и C определяют единст-венную прямую, прохо-дя-щую через O . Что и требовалось доказать.

Пример 7 . Модель №2 евклидовой геометрии. Введем словарь по-нятий. «Точка » - всякая упо-рядоченная пара чисел (х,у) ; «прямая » - множе-ство точек, координаты которых удовле-творяют урав-не-нию вида

Ax + By + С = 0; «при-надле-жит » - «точка» (x 0 ,y 0) лежит на «пря-мой» Ax + By + С = 0, если Ax 0 + By 0 + С = 0; «между» - точка B (x 2 ,y 2) лежит между A (x 1 ,y 1) и C (x 3 ,y 3), если выполняется хотя бы одно из сле-дующих отношений: x 1 <x 2 <x 3 , x 3 <x 2 <x 1 , y 1 <y 2 <y 3 или y 3 <y 2 <y 1 ; «конгруэнтен» (для отрезков) - отрезок A (x 1 ,y 1)B (x 2 ,y 2) кон-груэнтен от-резку C (x 3 ,y 3)D (x 4 ,y 4), если (x 1 -x 2) 2 + (y 1 -y 2) 2 = (x 3 -x 4) 2 + (y 3 -y 4) 2 и т.д.

Геометрия Лобачевского, не получившая признания при жизни ее автора, стала из-вест-ной только после того, как появилась ее первая модель.

Пример 8. Модель Кели-Клейна геометрии Лобачевского. Введем словарь понятий. «Плос-кость » - фик-си-рованный круг; «точка » - обычная точка, находящаяся внутри круга, «пря-мая » - хорда окружнос-ти (без концов); «лежать », «между » - в обычном смысле. Чтобы не усложнять пример, истолкование дру-гих слов приводить не будем.

Можно показать, что на этой модели выполняются все аксиомы геометрии Евклида кроме ак-сиомы IV о па-раллельных. Вместо нее выполняется аксиома Лобачевского: «Через точку вне прямой проходит более одной прямой, не пересекающей данную». На рис 9а через точку O проходят три «прямые» d 1 , d 2 и d 3 , параллельные «прямой» a .

Пример 9 . Модель Пуанкаре геометрии Лобачевского. Введем словарь понятий. «Точка » - обыч-ная точка, находящаяся в верхней полуплоскости (x >0), «пря-мая » - луч, перпендику-лярный оси X, а также полуокружности, опирающиеся на ось X (см. рис. 9б); «лежать », «между » - в обычном смысле. Чтобы не усложнять пример, ис-толкование других слов при-водить не будем. На рис. 9б через точку O проходят три «прямые» d 1 , d 2 и d 3 , парал-лельные «прямой» a .

Наличие моделей доказывает, что сис-тема ак-сиом Лобачевского является непро-тиворечивой.

Построение моделей геометрий Евклида и Лобачевского позволило решить про-блему 2000-летней дав-ности: можно ли доказать аксиому о параллельных, т.е. вы-вести ее из дру-гих аксиом? Те-перь ясно, что нельзя, потому что эта аксиома не зави-сит от остальных ак-сиом. Независи-мость вытекает из того факта, что после замены аксио-мы параллельности Евклида на ак-сиому параллельности Лобачевского мы вновь получаем непротиворечивую си-стему аксиом.

Открытие неевклидовой геометрии показывает, что появление новых математиче-ских мо-делей нередко означает не только принципиальный поворот в развитии самой математики, но и меняет существующие знания об окружающем нас мире.

МОДЕЛИ В ОБУЧЕНИИ. Модели помимо всего прочего являются тем учебным средством, без кото-рого невоз-можно полно-цен-ное обучение. На уроках математике в начальной школе находят применение как материальные, так и идеальные модели. К ним относятся, например, наглядные пособия, которые воспроизводят реальные и идеальные объекты, передают их структуру, существенные свойства, связи и от-ноше-ния, допуская при этом уменьшение или увеличение раз-мера, схематическое изобра-же-ние. По способу предъявления учащимся такие модели делятся на демонстрацион-ные и раз-даточные (индивидуальные ).

МОДЕЛЬ [дэ], -и, ж. 1. Образец какого-н. изделия или образец для изготовления чего-н., а также предмет, с к-рого воспроизводится изображение. Новая м. платья. М. для литья. Модели для скульптур. 2. Уменьшенное (или в натуральную величину) воспроизведение или макет чего-н. М. корабля. Летающая м. самолета. 3. Тип, марка конструкции. Новая м. автомобиля. 4. Схема какого-н. физического объекта или явления (спец.). М. атома. М. искусственного языка. 5. Манекенщик или манекенщица, а также (устар.) натурщик или натурщица. * Это не модель (прост.) - так делать не годится. || прил. модельный, -ая, -ое (к 1, 2, 3 и 5 знач.).


Смотреть значение МОДЕЛЬ в других словарях

Модель — (дэ), модели, ж. (фр. modele). 1. образец, образцовый экземпляр какого-н. изделия (спец.). товара. платья. 2. Воспроизведенный, обычно в уменьшенном виде, образец какого-и. сооружения........
Толковый словарь Ушакова

Топ-модель Ж. — 1. Манекенщица самого высокого класса; супермодель.
Толковый словарь Ефремовой

Вестминстерская Модель — - одно из распространенных названий парламентской системы правления. Термин происходит от названия резиденции английского парламента (Вестминстерское аббатство).
Политический словарь

Граф-модель Объекта Прогнозирования — Прогнозная модель в виде графа.
Политический словарь

Модель — - логический аналог сущностных отношений между предметами.
Политический словарь

Модель Хоманса — - теория группового поведения, изучающая причины образования неформальных групп в рабочей обстановке. Основными элементами являются взаимодействие, чувства, действия.
Политический словарь

Прогноз, Предсказание; Предположение; Прогностическая Модель — Научно обоснованное суждение о возможных состояниях объекта в будущем и (или) об альтернативных путях и сроках их осуществления. Примечания. 1. Когда этот объект рассматривается........
Политический словарь

Прогнозная Модель — Модель объекта прогнозирования, исследование которой позволяет получить информацию о возможных состояниях объекта в будущем и (или) путях и сроках их осуществления.
Политический словарь

Американская Модель Ипотеки — - так называемая двухуровневая
схема ипотечного кредитования, при которой ипотечные
кредиты, выданные на первичном ипотечном рынке, переуступаются специально........
Экономический словарь

Балансовая Модель — экономико-математическая
модель, построенная в виде уравнения или системы уравнений, представляющих балансовые соотношения и характеризующих
равенство поступившего........
Экономический словарь

Модель — [дэ́], -и; ж. [франц. modèle]
1. Образец какого-л. нового изделия, служащий наглядным примером для кого-, чего-л. Последние модели обуви. Выставка моделей детской одежды.
2.........
Толковый словарь Кузнецова

Бестарифная Модель Оплаты Труда — -
заработная плата
работника, определяемая четырьмя факторами: количеством отработанного рабочего времени, коэффициентом квалификационного уровня, коэффициентом........
Экономический словарь

Биноминальная Модель Назначения Цены Опциона — Модель назначения
цены
опциона, подразумевающая, что
активы, обеспечивающие опцион, могут принимать только два дискретных значения стоимости в следующем........
Экономический словарь

Бюджетная Модель — См. Модель бюджетная
Экономический словарь

Вероятностная Модель — математическая
модель экономического
процесса, учитывающая
факторы случайной природы.
Экономический словарь

Вестминстерская Модель — - в науке конституционного
права одно из распространенных названий парламентарной системы правления (см.
ПАРЛАМЕНТАРИЗМ)
Термин произошел от названия резиденции........
Экономический словарь

Двухфакторная Модель — Разработанная Фишером Блэком
версия модели определения стоимости
капитала при
коэффициенте "
бета", равном нулю.
Экономический словарь

Двухфакторная Модель Герцберга — - модель, согласно которой вся мотивация распадается на две большие категории: гигиенические факторы и мотивы.
Экономический словарь

Двухфакторная Модель Экономического Роста — модель
роста экономики, построенная на предположении, что только два
фактора -
капитал и
труд участвуют в создании валового национального
продукта.........
Экономический словарь

Дисконтная Дивидендная Модель — Формула оценки действительной (внутренней) стоимости компании, предполагающая вычисление текущей стоимости всех ожидаемых в будущем дивидендных выплат.
Экономический словарь

Ж-образная Модель — Модель технического
графика, отражающего
цены на
акции,
облигации или товарно-сырьевую продукцию, которая показывает, что цены достигли уровня поддержки........
Экономический словарь

Индексная Модель — Модель доходности акций, использующая для представления обыкновенных коэффициентов или коэффициентов систематического риска рыночные индексы, такие как индекс S&P 500.
Экономический словарь

Кейнсианская Модель — См.
Модель кейнсианская
Экономический словарь

Креативная Модель Экономического Поведения Предпринимателя — (от лат. creatio - созидание) - основана на новаторстве, использовании нововедений.
Экономический словарь

Каждый современный человек ежедневно сталкивается с понятиями «объект» и «модель». Примерами объектов являются как предметы, доступные для осязания (книга, земля, стол, ручка, карандаш), так и недоступные (звезды, небо, метеориты), предметы художественного творчества и умственной деятельности (сочинение, стихотворение, решение задачи, картина, музыка и другие). Причем каждый объект человеком воспринимается только как единое целое.

Объект. Виды. Характеристики

Исходя из вышесказанного, можно сделать вывод, что объект является частью внешнего мира, которая может быть воспринята в качестве единого целого. Каждый предмет восприятия имеет свои индивидуальные характеристики, отличающие его от других (форма, сфера использования, цвет, запах, размер и так далее). Важнейшей характеристикой объекта является название, но для полного качественного его описания одного названия недостаточно. Чем более полно и подробно описан объект, тем легче процесс его распознавания.

Модели. Определение. Классификация

В своей деятельности (образовательной, научной, художественной, технологической) человек ежедневно использует уже существующие и создает новые модели внешнего мира. Они позволяют сформировать впечатление о процессах и объектах, недоступных для непосредственного восприятия (очень маленькие или, наоборот, очень большие, очень медленные или очень быстрые, очень далекие и так далее).

Итак, модель - это некоторый объект, отражающий важнейшие особенности изучаемого явления, объекта либо процесса. Может существовать несколько вариаций моделей одного и того же объекта, также как несколько объектов могут быть описаны одной единственной моделью. Например, подобная ситуация возникает в механике, когда различные тела с материальной оболочкой могут быть выражены то есть одинаковой моделью (человек, автомобиль, поезд, самолет).

Важно помнить, что ни одна модель не способна полноценно заменить изображаемый объект, так как она отображает только некоторые из его свойств. Но порой при решении определенных задач различных научных и промышленных течений описание внешнего вида модели может быть не просто полезным, но единственной возможностью представить и изучить особенности характеристик объекта.

Сфера применения предметов моделирования

Модели играют важную роль в различных сферах жизни человека: в науке, образовании, торговле, проектировании и других. Например, без их применения невозможны проектирование и сборка технических устройств, механизмов, электрических цепей, машин, зданий и так далее, так как без предварительных расчетов и создания чертежа выпуск даже простейшей детали невозможен.

Часто используются модели в образовательных целях. Они носят названия наглядных. Например, из географии представление о Земле как о планете человек получает, изучая глобус. Также актуальными наглядные модели являются и в других науках (химии, физике, математике, биологии и других).

В свою очередь, теоретические модели востребованы при изучении естественных и (биологии, химии, физики, геометрии). Они отражают свойства, поведение и строение объектов, подвергающихся изучению.

Моделирование как процесс

Моделирование - метод познавания, включающий в себя исследование существующих и создание новых моделей. Предметом познания данной науки является модель. ранжируются в зависимости от различных свойств. Как известно, любой объект имеет множество характеристик. При создании определенной модели выделяются лишь наиболее важные для решения поставленной задачи.

Процессом создания моделей является художественное творчество во всем своем разнообразии. В связи с этим фактически каждое художественное или литературное произведение можно рассматривать в качестве модели реального объекта. Например, картины являются моделями реальных пейзажей, натюрмортов, людей, литературные произведения - моделями человеческих жизней и так далее. Например, при создании модели самолета с целью изучения его аэродинамических качеств важно отразить в ней геометрические свойства оригинала, но абсолютно неважен его цвет.

Одни и те же объекты различными науками изучаются с разных точек зрения, а соответственно, их виды моделей для изучения будут также отличаться. Например, физика изучает процессы и результаты взаимодействия объектов, химия - химический состав, биология - поведение и строение организмов.

Модель относительно временного фактора

Относительно времени модели делятся на два вида: статические и динамические. Примером первого вида является единоразовое обследование человека в клинике. Оно отображает картину его состояния здоровья на данный момент, в то время как его медицинская карта будет моделью динамической, отражающей изменения, происходящие в организме на протяжении определенного периода времени.

Модель. Виды моделей относительно формы

Как уже понятно, модели могут различаться по разным характеристикам. Так, все ныне известные виды моделей данных можно условно разделить на два основных класса: материальные (предметные) и информационные.

Первый вид передает физические, геометрические и иные свойства объектов в материальной форме (анатомический муляж, глобус, макет здания и так далее).

Виды разнятся по форме реализации: знаковая и образная. Образные модели (фотографии, рисунки и другое) являются зрительными реализациями объектов, зафиксированными на определенном носителе (фото-, кинопленке, бумажном или цифровом).

Они широко применяются в образовательном процессе (плакаты), при изучении различных наук (ботаника, биология, палеонтология и других). Знаковые модели - это реализации объектов в виде символов одной из известных языковых систем. Они могут быть представлены в виде формул, текста, таблиц, схем и так далее. Существуют случаи, когда, создавая знаковую модель (виды моделей передают конкретно то содержание, которое требуется для изучения определенных характеристик объекта), используют сразу несколько известных языков. Примером в данном случае выступают различные графики, диаграммы, карты и подобное, где используются как графические символы, так и символы одной из языковых систем.

С целью отражения сведений из различных сфер жизни применяются три основных вида информационных моделей: сетевые, иерархические и табличные. Из них наиболее популярным является последний, применяемый для фиксации различных состояний объектов и характерных для них данных.

Табличная реализация модели

Данный вид информационной модели, как уже было сказано выше, является наиболее известным. Выглядит он следующим образом: это обычная, состоящая из строк и столбцов таблица прямоугольной формы, графы которой заполнены символами одного из известных знаковых языков мира. Применяются табличные модели с целью характеристики объектов, обладающих одинаковыми свойствами.

С их помощью в различных научных сферах могут быть созданы как динамические, так и статические модели. Например, таблицы, содержащие математические функции, различные статистические данные, расписания поездов и так далее.

Математическая модель. Виды моделей

Отдельной разновидностью информационных моделей являются математические. Все виды обычно состоят из уравнений, написанных на языке алгебры. Решение данных задач, как правило, основывается на процессе поиска равнозначных преобразований, которые способствуют выражению переменной величины в виде формулы. Существуют также для некоторых уравнений и точные решения (квадратные, линейные, тригонометрические и так далее). Как следствие, для их решения приходится применять методы решения с приближенной заданной точностью, иначе говоря, такие виды математических данных, как числовой (метод половинного деления), графический (построение графиков) и другие. Метод половинного деления целесообразно использовать лишь при условии, что известен отрезок, где функция при определенных значениях принимает полярные значения.

А метод построения графика является унифицированным. Его можно использовать как в вышеописанном случае, так и в ситуации, когда решение может быть только приближенным, а не точным, в случае так называемого "грубого" решения уравнений.

3.1. Понятие модели и классификация моделей

Решение задач, связанных с исследованием, проектированием, совершенствованием систем (особенно, сложных организационно-экономических или технических) бывает невозможно, трудно или нерационально проводить на самих этих системах.

К подобным задачам относятся, например, разработка и внедрение оптимальных вариантов бизнес-процессов на предприятии. Теоретически, можно сначала попробовать внедрить каждый из возможных вариантов бизнес-процессов и путем простого сравнения по некоторым показателям выбрать наилучший. Однако, практически это приведет к таким затратам времени и сил, после которых не всякое предприятие сможет выжить. Очевидно, что нужна некоторая предварительная оценка, «проигрывание» вариантов бизнес-процессов на каком-то упрощенном представлении самого предприятия и (или) процесса.

Другим примером может быть проведение экспериментов, позволяющим в масштабах отрасли, региона или государства внедрять новые технологии, варианты организационных структур, варианты взаимодействия предприятий и т.п. В подобных случаях, как правило, для проверки новшеств выбираются некоторые «типичные» предприятия (регионы, города), которые заменяя собой остальные предприятия (регионы, города) выступают в качестве объекта эксперимента.

В этих и других случаях исходная система заменяется некоторой другой материальной или абстрактной системой. Эта вторая система называется моделью. Первую же будем называть «объект моделирования» или «объект-оригинал». Дадим следующее определение.

Модель - это материальная или идеальная система, которая в определенных условиях может заменить объект-оригинал и служит для получения информации об объекте-оригинале и (или) других объектах, с ним связанных.

Уточняя определение, сформулируем следующие важные положения:

Модель - идеальный или материальный объект;

Модель - отображение или воспроизводство объекта-оригинала;

Модель - источник получения информации.

Можно перечислить характерные случаи, в которых требуется модель (как в научно-исследовательской, так и в производственной деятельности):

Когда объект-оригинал есть сложная система, непосредственное изучение которой затруднено, невозможно или экономически невыгодно;

Когда непосредственное эксперементирование с объектом-оригиналом может оказать разрушительное воздействие на него или другие объекты, с ним связанные;

Когда необходимо спрогнозировать возможное состояние или поведение объекта в будущем;

Когда необходимо разработать варианты и выбрать оптимальное решения, связанное с функционированием объекта-оригинала;

Когда объект-оригинал еще не существует в материальном виде, однако уже на этапе проектирования требуется представить информацию об этом объекте, оценить эффективность выбранных методов и средств его разработки;

Когда в практической деятельности необходимо упрощенное представление информации об объекте оригинале с целью информационного обеспечения людей, работающих с ним;

При обучении работе с моделируемой системой, в играх и т.п.

Термин моделирование означает исследование объектов с помощью их моделей. В более широком смысле слова моделирование понимается как процесс, включающий в себя не только исследование, но и разработку модели (рис.3.1).

Экспериментальное исследование реальных объектов на их моделях называется модельным экспериментом. В модельном эксперименте модель выступает одновременно и средством, и объектом исследования. При этом модель может применяться как для замещения самого объекта, так и быть замещением некоторых внешних условий и (или) систем, связанных с исследуемым объектом в реальном мире.

Чтобы выполнять свои функции, модель должна удовлетворять двум основным требованиям: быть достаточно простой, чтобы в отличие от оригинала ее можно было исследовать, экспериментировать с ней; быть подобной объекту-оригиналу, с необходимой полнотой воспроизводить его свойства.

Эти требования в некоторой степени противоречат друг другу. Действительно, наиболее подобной оригиналу будет модель, которая в точности воспроизводит его состав и структуру. Однако, в этом случае модель не станет упрощением объекта-оригинала. Поэтому подобие должно быть адекватным решаемой задаче. Так, если решается задача разработки оптимального плана выпуска продукции, нет смысла строить макет предприятия в масштабе один к одному. Для таких задач используются специальные математические модели, которые позволяют не только разработать план выпуска, но и определить условия, для которых он будет оптимальным.

Определение возможных видов моделей и границ их применимости позволяет заранее указать на способы и средства, с помощью которых могут быть решены те или иные задачи моделирования. Иначе говоря, для построения простых и адекватных задачам исследования моделей необходимо представлять, какие виды моделей существуют, в каких случаях они используются и какими выразительными возможностями обладают.

По средствам построения моделей они делятся на следующие обобщенные классы, которые показаны на рис.3.2. Материальные (предметные) модели являются моделями, которые воплощены в каких-то материальных объектах, имеющих искусственное или естественное происхождение. Среди них выделяют физические модели, которые представляют собой объекты той же природы, что и объекты-оригиналы. Этот вид моделей широко используется в технике при испытании и эксплуатации каких либо образцов. Например, путем физического моделирования (проведения натурных испытаний) определяются технико-экономические характеристики экспериментального образца (автомобили, станка, ЭВМ, самолета и т.п.) и затем результаты испытаний распространяются на все другие экземпляры данного типа. В экономике широко используются эксперименты на отдельных предприятиях для оценки показателей других предприятий данного класса.

В предметно-математических моделях не ставится задача воспроизвести физическое подобие с объектом-оригиналом. Главным здесь является воспроизведение закономерностей протекания процессов. Таким образом, предметно-математические модели обладают такими характерными чертами:

Они воплощаются в предмете (материальны);

Процессы, протекающие в таких моделях, отличны по природе от процессов в объекте-оригинале;

Процессы в модели и объекте-оригинале подчиняются одним и тем же закономерностям. Практически это означает, что процессы в модели и в объекте-оригинале могут быть описаны с помощью одних и тех же математических зависимостей.

Рис. 3.2. Обобщенная классификация моделей по средствам построения

Среди предметно-математических можно выделить такие виды моделей как:

Компьютерная (машинная) модель, в которой основой для моделирования процессов являются математические выражения, описывающие зависимости между их параметрами. Эти модели есть, по существу, компьютерными реализациями знаковых математических моделей (см. ниже);

Полунатурная модель, в которой наряду с ЭВМ используются отдельные блоки реальных систем, функционирующие под управлением людей или самой ЭВМ;

Модель-аналог, когда одна реальная система используется для моделирования другой системы, отличной по своей природе от первой.

В классе идеальных моделей выделяют мысленные (существующие в виде мысленных образов) и знаковые модели. Последние объединяет в себе довольно разнообразные модели, отличающиеся прежде всего по степени формализации действительности. Можно выделить следующие основные виды знаковых моделей:

Описательные модели (алгоритмы, программы, тексто-графические описания и т.п.);

Схематические модели (различные блок-схемы, диаграммы и т.п.);

Графоаналитические модели (построенные с помощью инструментариев различных сетей, графов);

Математические (говорят еще - логико-математические) модели.

Приведенная классификация является достаточно условной и, по-видимому, неполной. Важно отметить, что в процессе решения прикладных задач могут использоваться последовательно или даже одновременно разные модели. Так, моделирование с целью оптимизации организационной структуры и технологий бизнеса на предприятии выполняется, как правило, с использованием большого числа различных моделей. На первом этапе формируется примерный мысленный образ и описательная модель целевой системы. Для лаконичного структурированного отображения самого предприятия и процессов, в нем протекающих, используются различные варианты структурных схем и диаграмм (например, диаграммы потоков данных - DFD, диаграммы процессов в методологии IDEF0 и др., более подробно см. в ). Для количественного выражения и оптимизации критериев качества бизнес-процессов могут быть применены математические оптимизационные модели, для исследования которых, в свою очередь, применяются программно-аппаратные средства ЭВМ, т.е. предметно-математические модели. В общем случае, сначала строится комплекс знаковых моделей, которые в совокупности отображают текущее положение дел на предприятии. Потом строятся модели, которые отображают целевое состояние предприятии (организационную структуру, бизнес-процессы и функции, роли и обязанности управленческого персонала и др.). В практике реинжиниринга первый комплекс в совокупности называется информационной моделью «как есть» (as-is); второй - моделью «как должно быть» (to-be).

Предметно-математические и логико-математические модели образуют основу математического моделирования в широком смысле. По существу предметно-математические модели служат средством технической реализации моделей математических и, следовательно, предполагают существование последних. Рассмотрим математическом моделирование более подробно.

Изделия. 2) Изделие (из легкообрабатываемого материала), с которого снимается форма для воспроизведения (например, посредством литья) в другом материале; разновидности таких моделей - лекала, шаблоны и другие. 3) Позирующий художнику натурщик или изображаемые предметы ("натура"). 4) Устройство, воспроизводящее, имитирующее строение и действие какого-либо другого ("моделируемого") устройства в научных, производственных (при испытаниях) или спортивных целях. 5) В широком смысле - любой образ, аналог (мысленный или условный: изображение, описание, схема , чертеж, график, план, карта и т.п.) какого-либо объекта, процесса или явления ("оригинала" данной модели), используемый в качестве его "заместителя", "представителя". 6) В математике и логике моделью какой-либо системы аксиом называют любую совокупность (абстрактных) объектов, свойства которых и отношения между которыми удовлетворяют данным аксиомам, служащим тем самым совместным (неявным) определением такой совокупности. 7) Модель в языкознании - абстрактное понятие эталона или образца какой-либо системы (фонологической, грамматической и т.п.), представление самых общих характеристик какого-либо языкового явления; общая схема описания системы языка или какой-либо его подсистемы.

Современная энциклопедия . 2000 .

Синонимы :

Смотреть что такое "МОДЕЛЬ" в других словарях:

    модель - и, ж. modèle m., ит. modello, нем. Model, пол. model. 1. Образец, с которого снимается форма для отливки или воспроизведения в другом материале. БАС 1. Точить модель посуды, наводить резьбы, делать формы 15. 11. 1717. Контракт с Антонио Бонавери … Исторический словарь галлицизмов русского языка

    - (модель совокупного спроса и совокупного предложения) макроэкономическая модель, рассматривающая макроэкономическое равновесие в условиях изменяющихся цен в краткосрочном и долгосрочном периодах … Википедия

    1) воспроизведение предмета в уменьшенных размерах; 2) натурщик, служащий образцом при живописи или скульптуре; 3) образец, по которому изготовляют какое либо изделие. Словарь иностранных слов, вошедших в состав русского языка. Павленков Ф., 1907 … Словарь иностранных слов русского языка

    Используемая в соционике модель функционирования психики человека. Эта модель гипотетически выделяет в психике восемь функций, схематически располагаемых в виде прямоугольника 2х4 в четырёх горизонтальных уровнях и двух вертикальных блоках.… … Википедия

    - [дэ], модели, жен. (франц. modele). 1. Образец, образцовый экземпляр какого нибудь изделия (спец.). Модель товара. Модель платья. 2. Воспроизведенный, обычно в уменьшенном виде, образец какого нибудь сооружения (тех.). Модель машины. 3. Тип,… … Толковый словарь Ушакова

    См. пример … Словарь синонимов

    модель - Масштабный предметный образец объекта или его частей, отображающий их строение и действие [Терминологический словарь по строительству на 12 языках (ВНИИИС Госстроя СССР)] модель Представление системы, процесса, ИТ услуги, конфигурационной единицы … Справочник технического переводчика

    - (model) Упрощенная система, используемая для имитирования определенных аспектов реальной экономики. Экономическая теория вынуждена использовать упрощенные модели: реальная мировая экономика настолько велика и сложна, что ее просто невозможно… … Экономический словарь

    - (франц. modele, от лат. modulus мера, образец, норма), в логике и методологии науки аналог (схема, структура, знаковая система) определ. фрагмента природной или социальной реальности, порождения человеч. культуры, концептуально теоретич.… … Философская энциклопедия

    Абстрактное или вещественное отображение объектов или процессов, адекватное исследуемым объектам (процессам) в отношении некоторых заданных критериев. Напр., математическая модель слоенакопления (абстрактная модель процесса), блок диаграмма… … Геологическая энциклопедия

    - (IS LM model) Модель, которая часто используется в качестве исключительно простого примера общего равновесия (general equilibrium) в макроэкономике. Кривая IS показывает сочетания национального дохода Y и процентной ставки r, при которых… … Экономический словарь

Книги

  • Модель. Т. 3 , Ли Со ин. Юная Джей Су мечтает стать выдающимся живописцем. Приехав на учебу в Европу, она ведет рассеянную жизнь типичного студента, пока однажды вечером ее подруга не приводит к ней в дом…


Последние материалы раздела:

Изменение вида звездного неба в течение суток
Изменение вида звездного неба в течение суток

Тема урока «Изменение вида звездного неба в течение года». Цель урока: Изучить видимое годичное движение Солнца. Звёздное небо – великая книга...

Развитие критического мышления: технологии и методики
Развитие критического мышления: технологии и методики

Критическое мышление – это система суждений, способствующая анализу информации, ее собственной интерпретации, а также обоснованности...

Онлайн обучение профессии Программист 1С
Онлайн обучение профессии Программист 1С

В современном мире цифровых технологий профессия программиста остается одной из самых востребованных и перспективных. Особенно высок спрос на...