Что значит u f x y. Обозначение функций

Выберем на плоскости прямоугольную систему координат и будем откладывать на оси абсцисс значения аргумента х , а на оси ординат - значения функции у = f (х) .

Графиком функции y = f(x) называется множество всех точек, у которых абсциссы принадлежат области определения функции, а ординаты равны соответствующим значениям функции.

Другими словами, график функции y = f (х) - это множество всех точек плоскости, координаты х, у которых удовлетворяют соотношению y = f(x) .



На рис. 45 и 46 приведены графики функций у = 2х + 1 и у = х 2 - 2х .

Строго говоря, следует различать график функции (точное математическое определение которого было дано выше) и начерченную кривую, которая всегда дает лишь более или менее точный эскиз графика (да и то, как правило, не всего графика, а лишь его части, расположенного в конечной части плоскости). В дальнейшем, однако, мы обычно будем говорить «график», а не «эскиз графика».

С помощью графика можно находить значение функции в точке. Именно, если точка х = а принадлежит области определения функции y = f(x) , то для нахождения числа f(а) (т. е. значения функции в точке х = а ) следует поступить так. Нужно через точку с абсциссой х = а провести прямую, параллельную оси ординат; эта прямая пересечет график функции y = f(x) в одной точке; ордината этой точки и будет, в силу определения графика, равна f(а) (рис. 47).



Например, для функции f(х) = х 2 - 2x с помощью графика (рис. 46) находим f(-1) = 3, f(0) = 0, f(1) = -l, f(2) = 0 и т. д.

График функции наглядно иллюстрирует поведение и свойства функции. Например, из рассмотрения рис. 46 ясно, что функция у = х 2 - 2х принимает положительные значения при х < 0 и при х > 2 , отрицательные - при 0 < x < 2; наименьшее значение функция у = х 2 - 2х принимает при х = 1 .

Для построения графика функции f(x) нужно найти все точки плоскости, координаты х , у которых удовлетворяют уравнению y = f(x) . В большинстве случаев это сделать невозможно, так как таких точек бесконечно много. Поэтому график функции изображают приблизительно - с большей или меньшей точностью. Самым простым является метод построения графика по нескольким точкам. Он состоит в том, что аргументу х придают конечное число значений - скажем, х 1 , х 2 , x 3 ,..., х k и составляют таблицу, в которую входят выбранные значения функции.

Таблица выглядит следующим образом:



Составив такую таблицу, мы можем наметить несколько точек графика функции y = f(x) . Затем, соединяя эти точки плавной линией, мы и получаем приблизительный вид графика функции y = f(x).

Следует, однако, заметить, что метод построения графика по нескольким точкам очень ненадежен. В самом деле поведение графика между намеченными точками и поведение его вне отрезка между крайними из взятых точек остается неизвестным.

Пример 1 . Для построения графика функции y = f(x) некто составил таблицу значений аргумента и функции:




Соответствующие пять точек показаны на рис. 48.



На основании расположения этих точек он сделал вывод, что график функции представляет собой прямую (показанную на рис. 48 пунктиром). Можно ли считать этот вывод надежным? Если нет дополнительных соображений, подтверждающих этот вывод, его вряд ли можно считать надежным. надежным.

Для обоснования своего утверждения рассмотрим функцию

.

Вычисления показывают, что значения этой функции в точках -2, -1, 0, 1, 2 как раз описываются приведенной выше таблицей. Однако график этой функции вовсе не является прямой линией (он показан на рис. 49). Другим примером может служить функция y = x + l + sinπx; ее значения тоже описываются приведенной выше таблицей.

Эти примеры показывают, что в «чистом» виде метод построения графика по нескольким точкам ненадежен. Поэтому для построения графика заданной функции,как правило, поступают следующим образом. Сначала изучают свойства данной функции, с помощью которых можно построить эскиз графика. Затем, вычисляя значения функции в нескольких точках (выбор которых зависит от установленных свойств функции), находят соответствующие точки графика. И, наконец, через построенные точки проводят кривую, используя свойства данной функции.

Некоторые (наиболее простые и часто используемые) свойства функций, применяемые для нахождения эскиза графика, мы рассмотрим позже, а сейчас разберем некоторые часто применяемые способы построения графиков.


График функции у = |f(x)|.

Нередко приходится строить график функции y = |f(x) |, где f(х) - заданная функция. Напомним, как это делается. По определению абсолютной величины числа можно написать

Это значит, что график функции y =|f(x)| можно получить из графика, функции y = f(x) следующим образом: все точки графика функции у = f(х) , у которых ординаты неотрицательны, следует оставить без изменения; далее, вместо точек графика функции y = f(x) , имеющих отрицательные координаты, следует построить соответствующие точки графика функции у = -f(x) (т. е. часть графика функции
y = f(x) , которая лежит ниже оси х, следует симметрично отразить относительно оси х ).



Пример 2. Построить график функции у = |х|.

Берем график функции у = х (рис. 50, а) и часть этого графика при х < 0 (лежащую под осью х ) симметрично отражаем относительно оси х . В результате мы и получаем график функции у = |х| (рис. 50, б).

Пример 3 . Построить график функции y = |x 2 - 2x|.


Сначала построим график функции y = x 2 - 2x. График этой функции - парабола, ветви которой направлены вверх, вершина параболы имеет координаты (1; -1), ее график пересекает ось абсцисс в точках 0 и 2. На промежутке (0; 2) фукция принимает отрицательные значения, поэтому именно эту часть графика симметрично отразим относительно оси абсцисс. На рисунке 51 построен график функции у = |х 2 -2х| , исходя из графика функции у = х 2 - 2x

График функции y = f(x) + g(x)

Рассмотрим задачу построения графика функции y = f(x) + g(x). если заданы графики функций y = f(x) и y = g(x) .

Заметим, что областью определения функции y = |f(x) + g(х)| является множество всех тех значений х, для которых определены обе функции y = f{x) и у = g(х), т. е. эта область определения представляет собой пересечение областей определения, функций f{x) и g{x).

Пусть точки (х 0 , y 1 ) и (х 0 , у 2 ) соответственно принадлежат графикам функций y = f{x) и y = g(х) , т. е. y 1 = f(x 0), y 2 = g(х 0). Тогда точка (x0;. y1 + y2) принадлежит графику функции у = f(х) + g(х) (ибо f(х 0) + g(x 0 ) = y1 +y2 ),. причем любая точка графика функции y = f(x) + g(x) может быть получена таким образом. Следовательно, график функции у = f(х) + g(x) можно получить из графиков функций y = f(x) . и y = g(х) заменой каждой точки (х n , у 1) графика функции y = f(x) точкой (х n , y 1 + y 2), где у 2 = g(x n ), т. е. сдвигом каждой точки (х n , у 1 ) графика функции y = f(x) вдоль оси у на величину y 1 = g(х n ). При этом рассматриваются только такие точки х n для которых определены обе функции y = f(x) и y = g(x) .

Такой метод построения графика функции y = f(x) + g(х ) называется сложением графиков функций y = f(x) и y = g(x)

Пример 4 . На рисунке методом сложения графиков построен график функции
y = x + sinx .

При построении графика функции y = x + sinx мы полагали, что f(x) = x, а g(x) = sinx. Для построения графика функции выберем точки с aбциссами -1,5π, -, -0,5, 0, 0,5,, 1,5, 2. Значения f(x) = x, g(x) = sinx, y = x + sinx вычислим в выбранных точках и результаты поместим в таблице.


>>Математика:Что означает в математике запись у = f(x)

Что означает в математике запись у = f(x)

Изучая какой-либо реальный процесс, обычно обращают внимание на две величины, участвующие в процессе (в более сложных процессах участвуют не две величины, а три, четыре и т.д., но мы пока такие процессы не рассматриваем): одна из них меняется как бы сама по себе, независимо ни от чего (такую переменную мы обозначили буквой х), а другая величина принимает значения, которые зависят от выбранных значений переменной х (такую зависимую переменную мы обозначили буквой у). Математической моделью реального процесса как раз и является запись на математическом языке зависимости у от х, т.е. связи между переменными х и у. Еще раз напомним, что к настоящему моменту мы изучили следующие математические модели: у = b, у = kx, y = kx + m, у = х 2 .

Есть ли у этих математических моделей что-либо общее? Есть! Их структура одинакова: у = f(x).

Эту запись следует понимать так: имеется выражение f(x) с переменной х, с помощью которого находятся значения переменной у.

Математики предпочитают запись у = f(x) не случайно. Пусть, например, f(x) = х 2 , т. е. речь идет о функции у = х 2 . Пусть нам надо выделить несколько значений аргумента и соответствующих значений функции. До сих пор мы писали так:

если х = 1, то у = I 2 = 1;
если х = - 3, то у = (- З) 2 = 9 и т. д.

Если же использовать обозначение f(x) = х 2 , то запись становится более экономной:

f(1) = 1 2 =1;
f(-3) = (-3) 2 = 9.

Итак, мы познакомились еще с одним фрагментом математического языка : фраза «значение функции у = х 2 в точке х = 2 равно 4» записывается короче:

«если у = f(x), где f(x) = x 2 , то f(2) = 4».

А вот образец обратного перевода:

Если у = f(x), где f(x) = x 2 , то f(- 3) = 9. По-другому - значение функции у = х 2 в точке х = - 3 равно 9.

П р и м е р 1. Дана функция у = f(x), где f(x) = х 3 . Вычислить:

а) f(1); б) f(- 4); в) f(о); г) f(2а);
д) f(а-1); е) f(3х); ж) f(-х).

Решение. Во всех случаях план действий один и тот же: нужно в выражении f(x) подставить вместо х то значение аргумента, которое указано в скобках, и выполнить соответствующие вычисления и преобразования. Имеем:

Замечание. Разумеется, вместо буквы f можно использовать любую другую букву (в основном, из латинского алфавита): g(x), h (х), s (х) и т. д.

Пример 2. Даны две функции: у = f(x), где f(x) = х 2 , и у = g (х), где g (х) = х 3 . Доказать, что:

а) f(-x) = f(x); b) g(-x)= -g(x).

Р е ш е н и е. а) Так как f(x) = х 2 , то f(- х) = (- х) 2 = х 2 . Итак, f(x) = х 2 , f(- х) = х 2 , значит, f(- x) =f (x)

б) Так как g{x) = х 3 , то g(- x) = -x 3 , т.e. g(-x) = -g(x).

Использование математической модели вида у = f(x) оказывается удобным во многих случаях, в частности, тогда, когда реальный процесс описывается различными формулами на разных промежутках изменения независимой переменной.

Опишем с помощью построенного на рисунке 68 графика некоторые свойства функции у - f(x) - такое описание свойств обычно называют чтением графика.

Чтение графика - это своеобразный переход от геометрической модели (от графической модели) к словесной модели (к описанию свойств функции). А
построение графика - это переход от аналитической модели (она представлена в условии примера 4) к геометрической модели.

Итак, приступаем к чтению графика функции у = f(x) (см. рис. 68).

1. Независимая переменная х пробегает все значения от - 4 до 4. Иными словами, для каждого значения х из отрезка [- 4, 4] можно вычислить значение функции f(x). Говорят так: [-4, 4] - область определения функции.

Почему при решении примера 4 мы сказали, что найти f(5) нельзя? Да потому, что значение х = 5 не принадлежит области определения функции.

2. y наим = -2 (этого значения функция достигает при х = -4); У нанб. = 2 (этого значения функция достигает в любой точке полуинтервала (0, 4].

3. у = 0, если 1 = -2 и если х = 0; в этих точках график функции y = f(x) пересекает ось х.

4. у > 0, если х є (-2, 0) или если x є (0, 4]; на этих промежутках график функции y = f(x) расположен выше оси х.

5. у < 0, если же [- 4, - 2); на этом промежутке график функции у = f(x) расположен ниже оси х.

6. Функция возрастает на отрезке [-4, -1], убывает на отрезке [-1, 0] и постоянна (ни возрастает, ни убывает) на полуинтервале (0,4].

По мере того как мы с вами будем изучать новые свойства функций, процесс чтения графика будет становиться более насыщенным, содержательным и интересным.

Обсудим одно из таких новых свойств. График функции, рассмотренной в примере 4, состоит из трех ветвей (из трех «кусочков»). Первая и вторая ветви (отрезок прямой у = х + 2 и часть параболы) «состыкованы» удачно: отрезок заканчивается в к точке (-1; 1), а участок параболы начинается в той же точке. А вот вторая и третья ветви менее удачно «состыкованы»: третья ветвь («кусочек» горизонтальной прямой) начинается не в точке (0; 0), а в точке (0; 4). Математики говорят так: «функция у = f(x) претерпевает разрыв при х = 0 (или в точке х = 0)». Если же функция не имеет точек разрыва, то ее называют непрерывной. Так, все функции, с которыми мы познакомились в предыдущих параграфах (у = b, y = kx, y = kx + m, y = x2) - непрерывные.

Пример 5 . Дана функция . Требуется построить и прочитать ее график.

Решение. Как видите, здесь функция задана достаточно сложным выражением. Но математика - единая и цельная наука, ее разделы тесно связаны друг с другом. Воспользуемся тем, что мы изучали в главе 5, и сократим алгебраическую дробь

справедливо лишь при ограничении Следовательно, мы можем переформулировать задачу так: вместо функции у = х 2
будем рассматривать функцию у = х 2 , где Построим на координатной плоскости хОу параболу у = х 2 .
Прямая х = 2 пересекает ее в точке (2; 4). Но по условию , значит, точку (2; 4) параболы мы должны исключить из рассмотрения, для чего на чертеже отметим эту точку светлым кружком.

Таким образом, график функции построен - это парабола у = х 2 с «выколотой» точкой (2; 4) (рис. 69).


Перейдем к описанию свойств функции у = f (x), т. е. к чтению ее графика:

1. Независимая переменная х принимает любые значения, кроме х = 2. Значит, область определения функции состоит из двух открытых лучей (- 0 о, 2) и

2. у наим = 0 (достигается при х = 0), у наиб _ не существует.

3. Функция не является непрерывной, она претерпевает разрыв при х = 2 (в точке х = 2).

4. у = 0, если х = 0.

5. у > 0, если х є (-оо, 0), если х є (0, 2) и если х є (B,+оо).
6. Функция убывает на луче (- со, 0], возрастает на полуинтервале .

Календарно-тематическое планирование по математике, видео по математике онлайн , Математика в школе скачать

А. В. Погорелов, Геометрия для 7-11 классов, Учебник для общеобразовательных учреждений

Содержание урока конспект урока опорный каркас презентация урока акселеративные методы интерактивные технологии Практика задачи и упражнения самопроверка практикумы, тренинги, кейсы, квесты домашние задания дискуссионные вопросы риторические вопросы от учеников Иллюстрации аудио-, видеоклипы и мультимедиа фотографии, картинки графики, таблицы, схемы юмор, анекдоты, приколы, комиксы притчи, поговорки, кроссворды, цитаты Дополнения рефераты статьи фишки для любознательных шпаргалки учебники основные и дополнительные словарь терминов прочие Совершенствование учебников и уроков исправление ошибок в учебнике обновление фрагмента в учебнике элементы новаторства на уроке замена устаревших знаний новыми Только для учителей идеальные уроки календарный план на год методические рекомендации программы обсуждения Интегрированные уроки

План- конспект урока математики в 7 классе

(по учебнику А.Г. Мордковича)

Тема урока: Что означает в математике запись у= f(x). Кусочная функция.

Тип урока: «открытие» нового знания.

Основные цели:

    Формировать способность к обобщению;

    Повторить и закрепить свойства линейной и квадратичной функций,

графическое решение уравнений.

Этапы урока:

    Самоопределение к деятельности (организационный момент).

Здравствуйте, ребята! Сегодня мы продолжим работать с функциями.

    Актуализация знаний и фиксация затруднений в деятельности.

Начнем наше обсуждение с примера.

2.1. Как найти значение функции у=Зх-2 при х=4? (Надо число З умножить на 4 и из этого произведения вычесть 2. Получаем у=10).

Как называется функция у=Зх-2? (Это линейная функция).

функции является прямая линия)

2.2 . Как найти значение функции у= x 2 +З при х=2? (Надо число 2 возвести в квадрат и к полученному результату прибавить З. Получим у=7).

Как называется функция у= х 2 +з? (Это квадратичная функция).

Какая линия является графиком данной функции? (Графиком данной

функции является парабола).

Мы видим, что независимо от вида функции для вычисления величины у по заданному значению х надо выполнить набор определенных действий, операций. Совокупность этих действий, операций (алгоритм вычисления), называют функцией и обозначают символом y=f(x).

Разумеется, функцию y=f(x) можно задавать и несколькими формулами.

2.З Рассмотрим следующее задание

Дана функция у=

а)Вычислим f(-l), f(0), f(2),f(З).

б) Построим график функции y=f(x).

У учащихся возникают затруднения при выполнении задания.

3. Постановка учебной задачи.

Если кто - либо из учащихся верно предложит решение, то учитель попросит его обосновать, как выполнены действия.

Если учащиеся не смогут решить задание, то обсуждение проводится фронтально под руководством учителя.

Что дано в задании?

(Заданы две функции у=5-2х и y =

На каких промежутках определены данные функции? (Функция у=5-2х

определена при х<2, а у= х - при х 2).

Такая функция, которая на разных участках задается разными формулами, называется кусочной функцией.

Как же выполнить задание? (Надо рассмотреть сначала одну функцию, а затем другую, учитывая область определения функции).

Правильно! Значит, это наша гипотеза. Что же нужно сделать, чтобы использовать ее? (доказать в общем виде).

Вы сформулировали цель сегодняшнего урока. А как бы вы назвали тему урока? (Кусочные функции).

Учитель записывает тему урока на доске, а учащиеся - в тетради.

    Построение проекта выхода из затруднения («открытие» нового знания)

4.1. Итак, сформулируйте еще раз алгоритм работы с кусочными функциями. (Надо рассмотреть сначала одну функцию, а затем другую, учитывая область определения функции).

Учащимся предлагается в парах в течение 5-7 минут проговорить решение задания и оформить его в тетрадях.

3атем решение оформляется на доске.

Решение:

а) Т.к. х=-1, х=0, х=l удовлетворяют условию х<2, то пользуемся первой формулой f(x)= 5-2х и получаем f(-1)= 5-2*(-1)=7, f(0)= 5-2*0=5,

f(-1)= 5-2* 1=3.

Т.к, х=2 и х=3 удовлетворяют условию х 2, то пользуемся второй формулой

f (x)= и получаем f(2)= 2=1, f(3)= З=1,5.

б) При х< 2 построим прямую y 1 =5-2х и при x 2 строим прямую f (x)= Построенная ломаная линия является графиком данной функции y=f(x).

При этом графиком функции является непрерывная функция.

Y 1

Y 2

    Первичное закрепление во внешней речи.

Учащиеся выполняют № 39.5 устно, обосновывая свои действия

6. Самостоятельная работа с самопроверкой по эталону.

6.1. Учащиеся выполняют самостоятельные задания:

1). Постройте график функции

7. Рефлексия деятельности.

Что нового мы узнали на уроке?

Кого вы можете отметить?

Оцените свою работу на уроке. (Учащимся предлагается поднять сигнальные карточки: зеленая - все сделал правильно; желтая- были незначительные затруднения, но во всем разобрался; красная - требуется дополнительная помощь).

8. Домашнее задание: 39.10 (б); 39.15 (а); 39.22.

Дополнительно: построить график функции y=

На уроке закрепления знаний по алгебре в 7 классе по теме "ЧТО ОЗНАЧАЕТ В МАТЕМАТИКЕ ЗАПИСЬ y = f(x) " необходимо разъяснить смысл записи y = f (x ), понятий:

Скачать:


Подписи к слайдам:

Функция У=F(Х)и графики.Линейная функция.Квадратичная функция.
Исследование функций.
Траектория полета – парабола
Траектория движения кометв межпланетном пространстве – парабола
Парабола в архитектуре
Какие функции знаете?
а)
б)
в)
Графиком квадратичной функции является парабола
Прочти и вспомни, какие функции ты знаешь
Назови свойства этих функций
Графики каких функций составляют искомый график?
Свойства функции
1.Область определения: значение Х2.Наибольшее и наименьшее значение функции: У наиб.У наим.3.У=0 при Х4.У>0 при Х5.У №39.40 стр 180
Свойства
а) f(–1) = (–1)2 = 1; f(2) = 4; f(1) = 4 Ч 1 = 4; f(1,5) = 4; f(–2) = (–2)2 = 4.б) в) 1. Область определения функции [–2; 3];2. унаим. = 0 (достигается при х = 0);yнаиб. = 4 (достигается при х = – 2 и в любой точке полуинтервала , возрастает на отрезке и постоянна в полуинтервале ;

2. у наим. = 0 (достигается при х = 0);

y наиб. = 4 (достигается при х = – 2 и в любой точке полуинтервала , возрастает на отрезке и постоянна в полуинтервале }

Последние материалы раздела:

Изменение вида звездного неба в течение суток
Изменение вида звездного неба в течение суток

Тема урока «Изменение вида звездного неба в течение года». Цель урока: Изучить видимое годичное движение Солнца. Звёздное небо – великая книга...

Развитие критического мышления: технологии и методики
Развитие критического мышления: технологии и методики

Критическое мышление – это система суждений, способствующая анализу информации, ее собственной интерпретации, а также обоснованности...

Онлайн обучение профессии Программист 1С
Онлайн обучение профессии Программист 1С

В современном мире цифровых технологий профессия программиста остается одной из самых востребованных и перспективных. Особенно высок спрос на...