Дифракция света от круглого диска пятно пуассона. Экспериментальная установка и методика измерений

Пятно Араго — Пуассона (иногда просто пятно Пуассона ) — это яркое пятно, возникающее за непрозрачным телом, освещённым направленным пучком света, в его области .

Фото пятна Араго — Пуассона

Это явление стало одним из веских подтверждений света. Существование этого пятна показал теоретически в на основе предложенной теории. Получалось, что за большим круглым непрозрачным телом прямо в середине его геометрической тени должно возникать небольшое светлое пятно. Очевидную абсурдность этого результата Пуассон хотел использовать как главный аргумент против теории Френеля, однако поставил эксперимент, подтвердивший это предсказание. В итоге этот результат, ставший известным как пятно Араго — Пуассона, оказался весомым аргументом в пользу новой волновой теории. При дифракции на открытом отверстии можно наблюдать противоположный эффект - тёмное пятно .

Объяснения эффекта

Элементарное

Существование пятна Араго — Пуассона легко объяснить на основании . Предположим, что на круглый непрозрачный диск падает , параллельная оси диска. Согласно принципу Гюйгенса — Френеля, точки на краю диска можно рассматривать как источники вторичных волн, причём все они будут когерентны. Все эти волны пройдут одинаковое расстояние от края диска до любой точки на его оси. В результате они придут в эту точку в одинаковой и , создавая яркое пятнышко. Стоит отметить, что на достаточно больших расстояниях от диска наблюдать пятно становится невозможно, в силу приходящих волн.

Теория рассеяния

Существование пятна Араго — Пуассона может быть частично объяснено на основе общей теории . Полное σ tot {\displaystyle \sigma _{\text{tot}}} света на препятствии и (комплексная) f {\displaystyle f} связаны соотношением

f (n , n) = k 4 π σ tot , {\displaystyle \mathrm {f(\mathbf {n} ,\mathbf {n})} ={\frac {k}{4\pi }}\sigma _{\text{tot}},}

называемым . Здесь n {\displaystyle \mathbf {n} } — направление падающего пучка. Отсюда, в силу непрерывности амплитуды рассеяния как функции направления рассеяния, следует, что дифференциальное сечение рассеяния вперёд

d σ fw = | f (n , n) | 2 d o {\displaystyle d\sigma _{\text{fw}}=|f(\mathbf {n} ,\mathbf {n})|^{2}\,do}

отлично от нуля, что соответствует светлому пятну позади тела. Отметим, что это объяснение не вполне точное, так как описание света с помощью амплитуды и сечения рассеяния возможно лишь на расстоянии, большом по сравнению с размерами тела, но на таких расстояниях становится существенным учёт когерентности волн, а кроме того становится невозможным точно сопоставить размеры геометрической тени тела и соответствующего светлого пятна.

Пусть на пути света от точечного источника помещен непрозрачный экран, который перекрывает центральную часть волнового фронта (рис. 3.15). В этом случае будет закрыта одна или несколько первых зон Френеля.

Расчет интенсивности проводится точно так же, как и при полностью открытом волновом фронте, однако суммирование начинается с первой открытой зоны Френеля. Если закрыто зон Френеля, то результирующая амплитуда в точке , то есть равна половине амплитуды первой открытой зоны Френеля. Если размер экрана невелик, то есть он закрывает малое число зон, то действие первой открытой зоны практически не отличается от действия центральной зоны Френеля, и освещенность в точке будет почти такой же, как в отсутствие экрана. Вследствие симметрии задачи, как и при дифракции на круглом отверстии, центральное светлое пятно будет окружено темными и светлыми кольцами.

Полученный результат на первый взгляд кажется абсурдным, потому что в обычных условиях за препятствием наблюдается минимум интенсивности. Это было использовано Пуассоном в 1818 г. для опровержения теории Френеля. В начале 1817 г. Парижская академия наук выдвинула на премию задачу о дифракции. Подразумевалось, что явление дифракции получит свое объяснение в рамках корпускулярной теории света. Из пяти членов комиссии трое (Пуассон, Био и Лаплас) были убежденными сторонниками корпускулярной теории света, и только Араго придерживался волновой. Пятый член комиссии, Гей-Люссак, не был компетентен в рассматриваемом вопросе, но был известен исключительной честностью.

В 1818 г. Френель представил в Академию в запечатанном конверте «Записку о теории дифракции». В этой записке он описал многочисленные опыты по дифракции, результаты которых объяснял, используя принцип Гюйгенса–Френеля, то есть на основе волновой теории. При обсуждении работы Пуассон заметил, что теория Френеля противоречит здравому смыслу: в самом центре тени, отбрасываемой небольшим диском, должно находиться светлое пятно.

Однако Араго доказал экспериментально существование светлого пятна в центре геометрической тени и показал, что выводы Пуассона соответствуют действительности и лишь подтверждают теорию Френеля. В результате работа Френеля получила заслуженную премию, а волновая теория – всеобщее признание. Светлое пятно в центре тени носит название пятна Араго–Пуассона или просто пятна Пуассона.

Для того чтобы интенсивность в точке Р была достаточной для наблюдения, необходимо, чтобы экран перекрывал одну или небольшое число зон. На рис. 3.16 приведена дифракционная картина, которая наблюдается на экране, расположенном перпендикулярно прямой для дифракции на круглом диске. В центре дифракционной картины всегда будет темное пятно (пятно Араго–Пуассона), окруженное светлыми и темными кольцами.

Пятно Араго - Пуассона (иногда просто пятно Пуассона) - это яркое пятно, возникающее за непрозрачным телом, освещённым направленным пучком света, в его области геометрической тени.

14. Дифракция Фраунгофера. Дифракция на щели. Дифракционная решетка.

Дифракция Фраунгофера на одной щели

Дифракция Фраунгофера (или дифракция плоских световых волн, или дифракция в параллельных лучах) наблюдается в том случае, когда источник света и точка наблюдения бесконечно удалены от препятствия, вызвавшего дифракцию.

Тип дифракции, при котором дифракционная картина образуется параллельными пучками, называется дифракцией Фраунгофера. Параллельные лучи проявятся, если источник и экран находятся в бесконечности. Практически используется две линзы: в фокусе одной – источник света, а в фокусе другой – экран.

Для наблюдения дифракции Фраунгофера необходимо точечный источник поместить в фокусе собирающей линзы, а дифракционную картину можно исследовать в фокальной плоскости второй собирающей линзы, установленной за препятствием.

Пусть монохроматическая волна падает нормально плоскости бесконечно длинной узкой щели (),- длина, b - ширина. Разность хода между лучами 1 и 2 в направ­лении φ

Разобьём волновую поверхность на участке щели МN на зоны Френеля, имеющие вид полос, параллельных ребру М щели. Ширина каждой полосы выбирается так, чтобы разность хода от краев этих зон была равна λ/2, т.е. всего на ширине щели уложится зон. Т.к. свет на щель падает нормально, то плоскость щели совпадает с фронтом волны, следовательно, все точки фронта в плоскости щели будут колебаться синфазно.

Амплитуды вторичных волн в плоскости щели будут равны, т.к. выбранные зоны Френеля имеют одинаковые площади и одинаково наклонены к направлению наблюдения.

Число зон Френеля укладывающихся на ширине щели, зависит от угла φ.

Условие минимума при дифракции Френеля:

Если число зон Френеля четное

то в т. Р наблюдается дифракционный минимум.

Условие максимума:

Если число зон Френеля нечетное

то наблюдается дифракционный максимум.

При φ’=0, Δ = 0 в щели укладывается одна зона Френеля и, следо­вательно, в т. Р главный (центральный) максимум нулевого порядка.

Основная часть световой энергии сосредоточена в главном максимуме: m =0:1:2:3...; I=1: 0,047: 0,017: 0,0083... (m -порядок максимума; I- интенсивность).

Сужение щели приводит к уширению главного максимума и уменьшению его яркости (то же и с другими максимумами). При уширении щели (b>λ) максимумы будут ярче, но дифракционные полосы становятся уже, а числе самих полос - больше. При b>> λ центре получается резкое изображение источника света, т.е. имеет место прямолинейное распространение света.

При падении белого света будет разложение на его составляющие. При этом фиолетовый свет будет отклоняться меньше, синий - больше и т.д., красный - максимально. Главный максимум в этой случае будет белого цвета.

Дифракционная решетка.

Дифракционная решетка представляет собой совокупность большого числа N одинаковых по ширине и параллельных друг другу щелей, разделенных непрозрачными промежутками, также одинаковыми по ширине

b -ширина щели;

а - ширина непрозрачного участка;

d = a + b -период или постоянная решетки.

Дифракционная картина на решетке определяется как результат взаимной интерференции волн, идущих от всех щелей, т.е. в дифракционной решетке осуществляется многолучевая интерференция. Т.к. щели находятся друг от друга на одинаковых расстояниях, то разности хода лучей, идущих от двух соседних щелей, будут для данного направления φ одинаковы в пределах всей дифракционной решетки.

В направлениях, в которых наблюдается минимум для одной щели, будут минимумы и в случае N щелей, т.е. условие главных минимумов дифракционной решетки будет аналогично условию минимумов для щели:

(2)

Условие главных минимумов.

Условие максимумов; те случаи φ, которые удовлетворяют максимумам для одной щели, могут быть либо максимумами, либо минимумами, т.к. всё зависит от разности хода между лучами. Условие главных максимумов:

(3)

Эти максимумы будут расположены симметрично относительно центрального (нулевого k = 0) максимума.

Для тех углов φ, для которых одновременно выполняется (2) и (3) максимума не будет, а будет минимум (например, при d =2b для всех четных k =2р, р = 1, 2, 3...). Между главными максимумами имеются дополнительные очень слабые максимумы, интенсивность которых во много раз меньше интенсивности главных максимумов (1/22 интенсивности ближайшего главного максимума). Дополнительных максимумов будет N - 2, где N - число штрихов.

Условие дополнительных максимумов:

Между главными максимума будут располагаться (N-1) дополнительных минимумов.

Условие дополнительных минимумов:

Таким образом, дифракционная картина, при дифракции на дифракционной решетке зависит от N и от отношения d/b.

Пусть N =5,d/b =4. Тогда число главных максимумов(sin φ =1) k max Таким образом, дифракционная картина при дифракции на дифракционной решетке будет иметь вид:

Если решетку освещать монохроматическим белым светом, то будет картина, показанная на рис. Если освещать белым светом, то все максимумы, кроме центрального (k = 0) разложатся в спектр - совокупность составляющих цветов, причем фиолетовые линии будут ближе к центру, а красные дальше (т.к. λ ф

На основе предложенной Огюстеном Френелем теории. Получалось, что за большим круглым непрозрачным телом прямо в середине его геометрической тени должно возникать небольшое светлое пятно. Очевидную абсурдность этого результата Пуассон хотел использовать как главный аргумент против теории дифракции Френеля, однако Доминик Араго поставил эксперимент, подтвердивший это предсказание. В итоге этот результат, ставший известным как пятно Араго - Пуассона, оказался весомым аргументом в пользу новой волновой теории.

Объяснения эффекта

Элементарное

Существование пятна Араго - Пуассона легко объяснить на основании принципа Гюйгенса - Френеля . Предположим, что на круглый непрозрачный диск падает плоская волна , параллельная оси диска. Согласно принципу Гюйгенса - Френеля, точки на краю диска можно рассматривать как источники вторичных волн, причём все они будут когерентны. Все эти волны пройдут одинаковое расстояние от края диска до любой точки на его оси. В результате они придут в эту точку в одинаковой фазе и усилятся , создавая яркое пятнышко. Стоит отметить, что на достаточно больших расстояниях от диска наблюдать пятно становится невозможно, в силу пространственной декогерентности приходящих волн.

Теория рассеяния

Существование пятна Араго - Пуассона может быть частично объяснено на основе общей теории рассеяния . Полное сечение рассеяния \sigma_{tot} света на препятствии и (комплексная) амплитуда рассеяния f связаны соотношением

\mathrm{f(\bold{n},\bold{n})} = \frac{k}{4\pi} \sigma_{tot}

называемым оптической теоремой . Здесь \bold{n} - направление падающего пучка. Отсюда, в силу непрерывности амплитуды рассеяния как функции направления рассеяния, следует, что дифференциальное сечение рассеяния вперёд

d\sigma_{fw} = |f(\bold{n},\bold{n})|^2 do

отлично от нуля, что соответствует светлому пятну позади тела. Отметим, что это объяснение не вполне точное, так как описание света с помощью амплитуды и сечения рассеяния возможно лишь на расстоянии, большом по сравнению с размерами тела, но на таких расстояниях становится существенным учёт когерентности волн, а кроме того становится невозможным точно сопоставить размеры геометрической тени тела и соответствующего светлого пятна.

Создание акустических миражей

Эффект пятна Пуассона может проявляться не только в оптике, но и в акустике . Примером такого проявления может служить создание акустических миражей . Суть эффекта заключается в том, что для частот звука порядка 1-4 кГц длина волны звука сравнима с размерами головы человека. Поэтому возможно создание ситуации, когда источник находится с одной стороны головы, а максимум интенсивности вследствие эффекта пятна Пуассона возникает возле другой стороны. Поэтому человеку кажется, что звук идёт не с той стороны - возникает мираж. Для наблюдения эффекта нужны специальные условия, и в реальной жизни он наблюдается редко.

Напишите отзыв о статье "Пятно Пуассона"

Примечания

Литература

Отрывок, характеризующий Пятно Пуассона

– Вот еще одного ведут! – сказал один из офицеров, указывая на французского пленного драгуна, которого вели пешком два казака.
Один из них вел в поводу взятую у пленного рослую и красивую французскую лошадь.
– Продай лошадь! – крикнул Денисов казаку.
– Изволь, ваше благородие…
Офицеры встали и окружили казаков и пленного француза. Французский драгун был молодой малый, альзасец, говоривший по французски с немецким акцентом. Он задыхался от волнения, лицо его было красно, и, услыхав французский язык, он быстро заговорил с офицерами, обращаясь то к тому, то к другому. Он говорил, что его бы не взяли; что он не виноват в том, что его взяли, а виноват le caporal, который послал его захватить попоны, что он ему говорил, что уже русские там. И ко всякому слову он прибавлял: mais qu"on ne fasse pas de mal a mon petit cheval [Но не обижайте мою лошадку,] и ласкал свою лошадь. Видно было, что он не понимал хорошенько, где он находится. Он то извинялся, что его взяли, то, предполагая перед собою свое начальство, выказывал свою солдатскую исправность и заботливость о службе. Он донес с собой в наш арьергард во всей свежести атмосферу французского войска, которое так чуждо было для нас.
Казаки отдали лошадь за два червонца, и Ростов, теперь, получив деньги, самый богатый из офицеров, купил ее.
– Mais qu"on ne fasse pas de mal a mon petit cheval, – добродушно сказал альзасец Ростову, когда лошадь передана была гусару.
Ростов, улыбаясь, успокоил драгуна и дал ему денег.
– Алё! Алё! – сказал казак, трогая за руку пленного, чтобы он шел дальше.
– Государь! Государь! – вдруг послышалось между гусарами.
Всё побежало, заторопилось, и Ростов увидал сзади по дороге несколько подъезжающих всадников с белыми султанами на шляпах. В одну минуту все были на местах и ждали. Ростов не помнил и не чувствовал, как он добежал до своего места и сел на лошадь. Мгновенно прошло его сожаление о неучастии в деле, его будничное расположение духа в кругу приглядевшихся лиц, мгновенно исчезла всякая мысль о себе: он весь поглощен был чувством счастия, происходящего от близости государя. Он чувствовал себя одною этою близостью вознагражденным за потерю нынешнего дня. Он был счастлив, как любовник, дождавшийся ожидаемого свидания. Не смея оглядываться во фронте и не оглядываясь, он чувствовал восторженным чутьем его приближение. И он чувствовал это не по одному звуку копыт лошадей приближавшейся кавалькады, но он чувствовал это потому, что, по мере приближения, всё светлее, радостнее и значительнее и праздничнее делалось вокруг него. Всё ближе и ближе подвигалось это солнце для Ростова, распространяя вокруг себя лучи кроткого и величественного света, и вот он уже чувствует себя захваченным этими лучами, он слышит его голос – этот ласковый, спокойный, величественный и вместе с тем столь простой голос. Как и должно было быть по чувству Ростова, наступила мертвая тишина, и в этой тишине раздались звуки голоса государя.
– Les huzards de Pavlograd? [Павлоградские гусары?] – вопросительно сказал он.
– La reserve, sire! [Резерв, ваше величество!] – отвечал чей то другой голос, столь человеческий после того нечеловеческого голоса, который сказал: Les huzards de Pavlograd?
Государь поровнялся с Ростовым и остановился. Лицо Александра было еще прекраснее, чем на смотру три дня тому назад. Оно сияло такою веселостью и молодостью, такою невинною молодостью, что напоминало ребяческую четырнадцатилетнюю резвость, и вместе с тем это было всё таки лицо величественного императора. Случайно оглядывая эскадрон, глаза государя встретились с глазами Ростова и не более как на две секунды остановились на них. Понял ли государь, что делалось в душе Ростова (Ростову казалось, что он всё понял), но он посмотрел секунды две своими голубыми глазами в лицо Ростова. (Мягко и кротко лился из них свет.) Потом вдруг он приподнял брови, резким движением ударил левой ногой лошадь и галопом поехал вперед.

Материал из Википедии - свободной энциклопедии

Пятно Араго - Пуассона (иногда просто пятно Пуассона ) - это яркое пятно, возникающее за непрозрачным телом, освещённым направленным пучком света, в его области геометрической тени .

Фото пятна Араго-Пуассона

Это явление стало одним из веских подтверждений волновой теории света. Существование этого пятна показал теоретически в 1818 году Симеон Дени Пуассон на основе предложенной Огюстеном Френелем теории. Получалось, что за большим круглым непрозрачным телом прямо в середине его геометрической тени должно возникать небольшое светлое пятно. Очевидную абсурдность этого результата Пуассон хотел использовать как главный аргумент против теории дифракции Френеля, однако Доминик Араго поставил эксперимент, подтвердивший это предсказание. В итоге этот результат, ставший известным как пятно Араго - Пуассона, оказался весомым аргументом в пользу новой волновой теории.

Объяснения эффекта

Элементарное

Существование пятна Араго - Пуассона легко объяснить на основании принципа Гюйгенса - Френеля . Предположим, что на круглый непрозрачный диск падает плоская волна , параллельная оси диска. Согласно принципу Гюйгенса - Френеля, точки на краю диска можно рассматривать как источники вторичных волн, причём все они будут когерентны. Все эти волны пройдут одинаковое расстояние от края диска до любой точки на его оси. В результате они придут в эту точку в одинаковой фазе и усилятся , создавая яркое пятнышко. Стоит отметить, что на достаточно больших расстояниях от диска наблюдать пятно становится невозможно, в силу пространственной декогерентности приходящих волн.

Теория рассеяния

Существование пятна Араго - Пуассона может быть частично объяснено на основе общей теории рассеяния . Полное сечение рассеяния σ t o t {\displaystyle \sigma _{tot}} света на препятствии и (комплексная) амплитуда рассеяния f {\displaystyle f} связаны соотношением

f (n , n) = k 4 π σ t o t {\displaystyle \mathrm {f({\mathbf {n} },{\mathbf {n} })} ={\frac {k}{4\pi }}\sigma _{tot}}

называемым оптической теоремой . Здесь n {\displaystyle {\mathbf {n}}} - направление падающего пучка. Отсюда, в силу непрерывности амплитуды рассеяния как функции направления рассеяния, следует, что дифференциальное сечение рассеяния вперёд

d σ f w = | f (n , n) | 2 d o {\displaystyle d\sigma _{fw}=|f({\mathbf {n} },{\mathbf {n} })|^{2}do}

отлично от нуля, что соответствует светлому пятну позади тела. Отметим, что это объяснение не вполне точное, так как описание света с помощью амплитуды и сечения рассеяния возможно лишь на расстоянии, большом по сравнению с размерами тела, но на таких расстояниях становится существенным учёт когерентности волн, а кроме того становится невозможным точно сопоставить размеры геометрической тени тела и соответствующего светлого пятна.

Создание акустических миражей

Эффект пятна Пуассона может проявляться не только в оптике, но и в акустике . Примером такого проявления может служить создание акустических миражей . Суть эффекта заключается в том, что для



Последние материалы раздела:

Развитие критического мышления: технологии и методики
Развитие критического мышления: технологии и методики

Критическое мышление – это система суждений, способствующая анализу информации, ее собственной интерпретации, а также обоснованности...

Онлайн обучение профессии Программист 1С
Онлайн обучение профессии Программист 1С

В современном мире цифровых технологий профессия программиста остается одной из самых востребованных и перспективных. Особенно высок спрос на...

Пробный ЕГЭ по русскому языку
Пробный ЕГЭ по русскому языку

Здравствуйте! Уточните, пожалуйста, как верно оформлять подобные предложения с оборотом «Как пишет...» (двоеточие/запятая, кавычки/без,...