Физика плазмы. Отдел физики плазмы

Времена, когда плазма ассоциировалась у нас с чем-то нереальным, непонятным, фантастическим, уже давно прошли. В наши дни это понятие активно используется. Плазму применяют в промышленности. Наиболее масштабно ее используют в светотехнике. Пример - газоразрядные лампы, освещающие улицы. Но и в лампах дневного света она присутствует. Она есть и в электрической сварке. Ведь дуга сварки - это плазма, сгенерированная плазмотроном. Можно привести и множество других примеров.

Физика плазмы - важный раздел науки. Поэтому стоит разобраться с основными понятиями, относящимися к ней. Этому и посвящена наша статья.

Определение и виды плазмы

Что же в физике дается вполне четкое. Плазменным называют такое состояние вещества, когда в последнем имеется значительное (соизмеримое с полным числом частиц) число заряженных частиц (носителей), способных более или менее свободно перемещаться внутри вещества. Можно выделить следующие основные виды плазмы в физике. Если носители принадлежат к частицам одного сорта (а частицы противоположного знака заряда, нейтрализующие систему, не имеют свободы перемещения), ее называют однокомпонентной. В противоположном случае она является - двух- или многокомпонентной.

Особенности плазмы

Итак, мы вкратце охарактеризовали понятие о плазме. Физика - наука точная, поэтому без определений здесь не обойтись. Расскажем теперь об основных особенностях этого состояния вещества.

В физике следующие. Прежде всего, в этом состоянии под действием уже малых электромагнитных сил возникает движение носителей - ток, который протекает таким образом и до тех пор, пока эти силы не исчезнут благодаря экранировке их источников. Поэтому плазма в конце концов переходит в состояние, когда она квазинейтральна. Другими словами, ее объемы, большие некоторой микроскопической величины, имеют нулевой заряд. Вторая особенность плазмы связана с дальнодействующим характером кулоновских и амперовских сил. Она состоит в том, что движения в этом состоянии, как правило, имеют коллективный характер, вовлекая большое число заряженных частиц. Таковы основные свойства плазмы в физике. Их полезно было бы запомнить.

Обе эти особенности ведут к тому, что физика плазмы необычайно богата и разнообразна. Наиболее ярким ее проявлением служит легкость возникновения различного рода неустойчивостей. Они являются серьезным препятствием, затрудняющим практическое применение плазмы. Физика - эта наука, которая постоянно развивается. Поэтому можно надеяться, что со временем эти препятствия будут устранены.

Плазма в жидкостях

Переходя к конкретным примерам структур, начнем с рассмотрения плазменных подсистем в конденсированном веществе. Среди жидкостей следует прежде всего назвать - пример, которому отвечает плазменная подсистема - однокомпонентная плазма носителей-электронов. Строго говоря, к интересующему нас разряду следовало бы отнести и жидкости-электролиты, в которых имеются носители - ионы обоих знаков. Однако по разным причинам электролиты не относят к данному разряду. Одна из них состоит в том, что в электролите нет легких, подвижных носителей, таких как электроны. Поэтому указанные выше свойства плазмы выражены существенно слабее.

Плазма в кристаллах

Плазма в кристаллах носит специальное название - плазма твердого тела. В ионных кристаллах хотя и имеются заряды, но они неподвижны. Поэтому плазмы там нет. В металлах же - проводимости, составляющие однокомпонентную плазму. Ее заряд компенсируется зарядом неподвижных (точнее говоря, неспособных смещаться на большие расстояния) ионов.

Плазма в полупроводниках

Рассматривая основы физики плазмы, необходимо отметить, что в полупроводниках ситуация более разнообразная. Вкратце охарактеризуем ее. Однокомпонентная плазма в этих веществах может возникнуть, если ввести в них соответствующие примеси. Если примеси легко отдают электроны (доноры), то возникают носители n-типа - электроны. Если же примеси, напротив, легко отбирают электроны (акцепторы), то возникают носители р-типа - дырки (пустые места в распределении электронов), которые ведут себя как частицы с положительным зарядом. Двухкомпонентная же плазма, образованная электронами и дырками, возникает в полупроводниках еще более простым образом. Например, она появляется под действием световой накачки, забрасывающей электроны из валентной зоны в зону проводимости. Отметим, что при определенных условиях электроны и дырки, притягивающиеся друг к другу, могут образовать связанное состояние, подобное атому водорода, - экситон, а если накачка интенсивна, и плотность экситонов велика, то они сливаются вместе и образуют каплю электронно-дырочной жидкости. Иногда такое состояние считают новым состоянием вещества.

Ионизация газа

Приведенные примеры относились к особым случаям плазменного состояния, а плазмой в чистом виде называется К его ионизации могут приводить многие факторы: электрическое поле (газовый разряд, гроза), световой поток (фотоионизация), быстрые частицы (излучение радиоактивных источников, космические лучи, которые и были открыты по возрастанию степени ионизации с высотой). Однако главным фактором является нагрев газа (термическая ионизация). В этом случае к отрыву электрона от соударение с последним другой частицы газа, имеющей достаточную кинетическую энергию за счет высокой температуры.

Высокотемпературная и низкотемпературная плазма

Физика низкотемпературной плазмы - то, с чем мы соприкасаемся практически каждый день. Примерами такого состояния могут служить пламя, вещество в газовом разряде и молнии, различные виды холодной космической плазмы (ионо- и магнитосферы планет и звезд), рабочее вещество в различных технических устройствах (МГД-генераторах, горелках и т. п.). Примеры высокотемпературной плазмы - вещество звезд на всех этапах их эволюции, кроме раннего детства и старости, рабочее вещество в установках по управляемому термоядерному синтезу (токамаки, лазерные устройства, пучковые устройства и др.).

Четвертое состояние вещества

Полтора века назад многие физики и химики полагали, что материя состоит только из молекул и атомов. Они объединяются в комбинации либо совсем неупорядоченные, либо более-менее упорядоченные. Считалось, что существует три фазы - газообразная, жидкая и твердая. Вещества принимают их под влиянием внешних условий.

Однако в настоящее время можно говорить о том, что имеется 4 состояния вещества. Именно плазму можно считать новым, четвертым. Ее отличие от конденсированного (твердого и жидкого) состояний заключается в том, что она, как и газ, не имеет не только сдвиговой упругости, но и фиксированного собственного объема. С другой стороны, плазму роднит с конденсированным состоянием наличие ближнего порядка, т. е. корреляция положений и состава частиц, соседних с данным зарядом плазмы. В этом случае такая корреляция порождается не межмолекулярными, а кулоновскими силами: данный заряд отталкивает от себя одноименные с ним самим заряды и притягивает разноименные.

Физика плазмы была нами вкратце рассмотрена. Эта тема достаточно объемна, поэтому можно говорить лишь о том, что мы раскрыли ее основы. Физика плазмы, безусловно, заслуживает дальнейшего рассмотрения.

Cтраница 1


Физика плазмы приобрела фундаментальное значение в середине текущего столетия, когда широко развернулось изучение процессов в космосе и был дан старт программе исследовании по управляемому термоядерному синтезу. С этого времени начинается стремительный расцвет, быть может даже второе рождение физики плазмы. Все возрастающий интерес к этой области естествознания определяется ее огромным познавательным значением и грандиозностью ее задач и перспектив.  

Физика плазмы изучает наиболее распространенное состояние вещества во Вселенной. Звезды, в том числе Солнце, представляют собой гигантские сгустки горячей и плотной плазмы. Межзвездные и межгалактические просторы заполнены плазмой ничтожной плотности.  

Физика плазмы занимается широким кругом вопросов - от космических масштабов до атомной физики. Солнце и все звезды состоят из плазмы. Внутри них в горячей плазме происходят термоядерные реакции (см. гл. Межзвездное пространство заполнено плазмой газовых туманностей.  

Физика плазмы для физиков, Атомиздат, Москва.  

В физике плазмы известен широкий класс так называемых градиентных (дрейфовых) неустойчивостей, обусловленных пространственной неоднородностью плазмы, которые часто играют определяющую роль. Причиной ее является перенос продольной энергии частиц (поперек магнитного поля из-за их дрейфа в скрещенных полях.  

В физике плазмы величина, обратная И.  

В физике плазмы исторически сложилось так, что термин эффективный соответствует статистическому описанию плазмы, парный - учету лишь аддитивно-парных квантовых эффектов, а использование слов потенциал или псевдопотенциал говорит о способе учета связанных состояний.  

К физике плазмы относятся две работы Ландау.  

В физике плазмы, так же как и в кинетической теории обычных газов, при точном математическом анализе необходимо учитывать распределение частиц по скоростям.  

С физикой плазмы тесно связана магнитная гидродинамика.  

Магнитогидродинамика и физика плазмы рассматривают поведение проводящей жидкости или газа в электромагнитных полях. Проводимость вещества связана с наличием свободных или почти свободных электронов, которые могут двигаться под действием приложенных полей. В твердом проводнике электроны фактически связаны, но за время между двумя столкновениями они могут сдвигаться на значительные по сравнению с атомными размерами расстояния внутри кристаллической решетки. При наложении полей в твердом теле проявляются такие динамические эффекты, как проводимость и эффект Холла, однако общего движения вещества не возникает. Действие приложенных полей на сами атомы сводится лишь к появлению напряжений в кристаллической решетке. Напротив, в жидкости или газе поля действуют как на электроны, так и на ионы, что приводит к движению всего вещества в целом. Движение вещества в свою очередь вызывает изменение электромагнитного поля. Следовательно, в этом случае мы должны рассматривать совместно взаимодействующую систему вещества и полей.  

Почти вся физика плазмы, с которой мы будем иметь дело, требует знания процессов только до некоторой масштабной длины, при которой плотность заряда и плотность тока еще рассматриваются как непрерывные - величины; более тонкое дробление и поведение плазмы опускаются.  

От успехов физики плазмы зависит в высокой степени осуществление тех надежд, которые возлагаются на решение проблемы управляемого синтеза легких ядер в плазменной среде, а вместе с тем и на реконструкцию энергетики будущего.  

Многие задачи физики плазмы, в том числе и разреженной, могут быть хорошо исследованы с помощью гидродинамических или газодинамических моделей. Они формулируются на основе системы уравнений для моментов функций распределения частиц по скоростям и уравнений Максвелла.  

Постепенно в физике плазмы удалось перейти от анализа отдельных явлений к решению самосогласованных задач, в которых многообразие проявлений коллективных плазменных процессов может быть выражено через несколько основных параметров.  

В первых трех состояниях - твердом, жидком и газообразном - электрические и магнитные силы глубоко запрятаны в недрах вещества. Они целиком уходят на то, чтобы связывать ядра и электроны в , атомы в и в кристаллы. Вещество в этих состояниях оказывается в целом электрически нейтральным. Другое дело - плазма. Электрические и магнитные силы здесь выступают на первый план и определяют все ее основные свойства. Плазма соединяет в себе свойства трех состояний: твердого (), жидкого (электролит) и газообразного. От металла она берет высокую электропроводность, от электролита - ионную проводимость, от газа - большую подвижность частиц. И все эти свойства переплетаются так сложно, что плазма оказывается очень трудной для изучения.

И все-таки ученым удается с помощью тонких физических приборов заглянуть в ослепительно светящееся газовое облако. Их интересует количественный и качественный состав плазмы, взаимодействие ее частей друг с другом.

До раскаленной плазмы руками не дотронешься. Ее ощупывают с помощью очень чувствительных «пальцев» - электродов, вводимых в плазму. Эти электроды называются зондами. Измеряя силу тока, идущего на зонд, при разных напряжениях, можно узнать степень концентрации электронов и ионов, их температуру и ряд других характеристик плазмы.(К слову интересно, что даже бумага А4 при определенных с ней манипуляций также может перейти в плазму)

Состав плазмы узнают, беря пробы плазменного вещества. Специальными электродами вытягивают небольшие порции ионов, которые затем сортируют по массам с помощью остроумного физического прибора - масс-спектрометра. Этот анализ дает возможность узнать также знак и степень ионизации, то есть отрицательно или положительно, однократно или многократно ионизированы атомы.

Плазму ощупывают также радиоволнами. В отличие от обычного газа плазма их сильно отражает, подчас сильнее, чем металлы. Это связано с наличием в плазме свободных электрических зарядов. До недавнего времени такое радиоощупывание было единственным источником сведений об ионосфере - замечательном плазменном «зеркале», которое природа поместила высоко над Землей. Сегодня ионосфера исследуется также с помощью искусственных спутников и высотных ракет, которые берут пробы ионосферного вещества и «на месте» производят его анализ.

Плазма - очень неустойчивое состояние вещества. Обеспечить согласованное движение всех ее составных частей - весьма нелегкое дело. Часто кажется, что это достигнуто, плазма усмирена, но внезапно по каким-то не всегда известным причинам в ней образуются сгущения и разрежения, возникают сильные колебания, и ее спокойное поведение резко нарушается.

Иногда же «игра» электрических и магнитных сил в плазме сама приходит на помощь ученым. Эти силы могут образовывать из плазмы тела компактной и правильной формы, названные плазмоидами. Форма плазмоидов может быть очень разнообразной. Здесь и кольца, и трубки, и сдвоенные кольца, и перекрученные шнуры. Плазмоиды довольно устойчивы. Например, если «выстрелить» навстречу друг другу двумя плазмоидами, то они при столкновении отлетят друг от друга, как бильярдные шары.

Изучение плазмоидов позволяет лучше понять процессы, происходящие с плазмой в гигантских масштабах вселенной. Один из видов плазмоидов - шнур - играет очень важную роль в попытках ученых создать управляемую . Плазмояды, видимо, будут использованы также в плазменной химии и металлургии.

НА ЗЕМЛЕ И В КОСМОСЕ

На Земле плазма - довольно редкое состояние вещества. Но уже на небольших высотах плазменное состояние начинает преобладать. Мощное ультрафиолетовое, корпускулярное и рентгеновское излучение ионизирует воздух в верхних слоях атмосферы и вызывает образование плазменных «облаков» в ионосфере. Верхние слои атмосферы - это защитная броня Земли, предохраняющая все живое от губительного действия солнечных излучений. Ионосфера - отличное зеркало для радиоволн (за исключением ультракоротких), позволяющее осуществлять земную радиосвязь на далекие расстояния.

Верхние слои ионосферы не исчезают и ночью: слишком разрежена в них плазма, чтобы возникшие днем ионы и электроны успели воссоединиться. Чем дальше от Земли, тем меньше в атмосфере нейтральных атомов, а на расстоянии в полтораста миллионов километров находится ближайший к нам колоссальный сгусток плазмы - .

Из него постоянно вылетают фонтаны плазмы - подчас на высоту в миллионы километров, - так называемые протуберанцы. По поверхности перемещаются вихри несколько менее горячей плазмы - солнечные пятна. Температура на поверхности Солнца около 5 500°, пятен - на 1 000° ниже. На глубине 70 тысяч километров - уже 400 000°, а еще дальше температура плазмы достигает более 10 миллионов градусов.

В этих условиях ядра атомов солнечного вещества совершенно оголены. Здесь при гигантских давлениях все время идут термоядерные реакции слияния ядер водорода и превращения их в ядра . Выделяющаяся при этом энергия восполняет ту, что Солнце так щедро излучает в мировое пространство, «отапливая» и освещая всю свою систему планет.

Звезды во вселенной находятся на разных стадиях развития. Одни умирают, медленно превращаясь в холодный несветящийся газ, другие взрываются, выбрасывая в пространство огромные облака плазмы, которые спустя миллионы и миллиарды лет достигают в виде космических лучей других звездных миров. Есть области, где силы притяжения сгущают газовые облака, в них растут давление и температура, пока не создаются благоприятные условия для появления плазмы и возбуждения термоядерных реакций, - и тогда вспыхивают новые звезды. Плазма в природе находится в непрерывном круговороте.

НАСТОЯЩЕЕ И БУДУЩЕЕ ПЛАЗМЫ

Ученые стоят на пороге овладения плазмой. На заре человечества величайшим достижением было умение получать и поддерживать огонь. А сегодня понадобилось создать и сохранить на длительное время другую, гораздо более «высокоорганизованную» плазму.

Мы уже говорили о применении плазмы в хозяйстве: вольтова дуга, лампы дневного света, газотроны и тиратроны. Но здесь «работает» сравнительно негорячая плазма. В вольтовой дуге, например, ионная температура составляет около четырех тысяч градусов. Однако сейчас появляются сверхжаропрочные сплавы, которые выдерживают температуру до 10-15 тысяч градусов. Чтобы обрабатывать их, нужна плазма с более высокой ионной температурой. Применение ее сулит немалые перспективы и для химической промышленности, так как многие реакции протекают тем быстрее, чем выше температура.

До какой же температуры пока удалось разогреть плазму? До десятков миллионов градусов. И это не предел. Исследователи уже находятся на подступах к управляемой термоядерной реакции синтеза, в ходе которой выделяются огромные количества энергии. Представьте себе искусственное солнце. И не одно, а несколько. Ведь они изменят климат нашей планеты, навсегда снимут с человечества заботу о топливе.

Вот какие применения ожидают плазму. А пока ведутся исследования. Большие коллективы ученых напряженно работают, приближая тот день, когда четвертое состояние вещества станет для нас таким же обычным, как и три остальных.

Заведующий отделом-к.ф.м.н. Вячеслав Алексеевич Иванов

Большой вклад в создание и становлении его тематики внесли академик В.И.Векслер и профессор М.С.Рабинович, руководивший отделом до 1982 г. Работы отдела сосредоточены на решении широкого круга фундаментальных и прикладных проблем физики плазмы таких, как нелинейные процессы в плазме, взаимодействие мощного СВЧ излучения с плазмой, нагрев и удержание высокотемпературной плазмы в магнитных ловушках стеллараторного типа с целью решения проблемы управляемого термоядерного синтеза, создание сверхмощных плазменных СВЧ генераторов и усилителей, физика магнитного пересоединения и образования токовых слоев в плазме, и, наконец, использование различного типа разрядов и источников плазмы для решения широкого круга плазмохимических и прикладных задач.

Работы сектора теории плазмы посвящены изучению физики нагрева и удержания высокотемпературной плазмы в тороидальных магнитных ловушках стеллараторного типа, взаимодействия электромагнитного излучения с плазмой, развитию теории плазменной турбулентности и нелинейного взаимодействия волн, магнитогидродинамической устойчивости плазмы в стеллараторах, и ряда других актуальных проблем физики плазмы. Сотрудниками сектора был получен ряд существенных результатов в теории турбулентной плазмы и взаимодействия мощного излучения с плазмой и развита нелинейная теория аномального поглощения электромагнитных волн в неоднородной плазме и генерации быстрых электронов в области плазменного резонанса. Изучена топологическая устойчивость стеллараторных магнитных полей и открыто явление резонансного расслоения магнитных поверхностей - образование магнитных островов. Это привело к созданию концепции топологических устойчивых стеллараторных конфигураций, принятой практически всеми стеллараторными лабораториями мира. Проведенные исследования МГД – устойчивости привели к коренному пересмотру представлений о максимально достижимых давлениях плазмы в стеллараторах в результате открытого явления самостабилизации. Они показали, в частности, что в стеллараторах возможно достижение давлений, необходимых для термоядерного реактора. Развитие неоклассической теории переноса позволило указать пути оптимизации стеллараторных систем и построить модель переноса, учитывающую аномальные потери и позволяющую проводить сравнение с экспериментом.

Магнитное удержание горячей плазмы и управляемый термоядерный синтез

Экспериментальные исследования по данной проблеме проводятся на стеллараторе Л-2М. Это единственная в Российской Федерации установка подобного типа. Несмотря на успехи, достигнутые по магнитному удержанию плазмы на установках типа токамак, и решение о сооружении международного экспериментального термоядерного реактора-токамака ИТЭР, в последние годы всё большее внимание международного термоядерного сообщества привлекают установки типа стелларатора. Это связано как с успешными экспериментами, проведенными на этих установках, так и с их потенциальными преимуществами по сравнению с токамаками – возможность стационарной работы и отсутствие характерных для токамаках и весьма опасных для работы реактора неустойчивостей срыва. Стелларатор – это тороидальная магнитная ловушка для удержания горячей плазмы, в которой система замкнутых магнитных поверхностей создается токами, расположенными вне плазменного объёма. Схематически конструкция стелларатора Л-2М приведена на рис.1.

Л-2М представляет собой установку с большим радиусом R = 100 см, магнитное поле в которой создается 28 катушками тороидального поля и двухзаходной винтовой обмоткой с 7 шагами вдоль тора. Напряженность магнитного поля на оси тора B 0 £ 1,5 Т.

Магнитная конфигурация стелларатора Л-2М характеризуется высокими значениями шира (перекрещенность силовых линий). Угол вращательного преобразования силовых линий на магнитной оси равен 0,2 и, соответственно 0,8 на граничной магнитной поверхности. Средний радиус поперечного сечения плазменного шнура равен 11.5 см.

Водородная плазма создается в металлической вакуумной камере из немагнитной нержавеющей стали 1ХН9Т с толщиною стенок 1.2 мм. Граничная магнитная поверхность со средним радиусом поперечного сечения равным 11.5 см расположена внутри вакуумной камеры и не контактирует с ее стенками. Общий вид установки приведен ниже на фото.

Экспериментальные исследования на стеллараторе проводятся силами четырех лабораторий отдела - это “лаборатория физики и диагностики горячей плазмы”; “лаборатория физико-технических проблем стеллараторов”; “лаборатория нелинейной трасформации электромагнитной энергии в плазме” и лаборатория “Ливень” в сотрудничестве с теоретическим сектором отдела.




Последние материалы раздела:

Изменение вида звездного неба в течение суток
Изменение вида звездного неба в течение суток

Тема урока «Изменение вида звездного неба в течение года». Цель урока: Изучить видимое годичное движение Солнца. Звёздное небо – великая книга...

Развитие критического мышления: технологии и методики
Развитие критического мышления: технологии и методики

Критическое мышление – это система суждений, способствующая анализу информации, ее собственной интерпретации, а также обоснованности...

Онлайн обучение профессии Программист 1С
Онлайн обучение профессии Программист 1С

В современном мире цифровых технологий профессия программиста остается одной из самых востребованных и перспективных. Особенно высок спрос на...