Формулировка пифагора. На русском языке

Теорема Пифагора - важнейшее утверждение геометрии. Теорема формулируется так: площадь квадрата, построенного на гипотенузе прямоугольного треугольника, равна сумме площадей квадратов, построенных на его катетах.

Обычно открытие этого утверждения приписывают древнегреческому философу и математику Пифагору (VI в. до н.э.). Но изучение вавилонских клинописных таблиц и древних китайских рукописей (копий еще более древних манускриптов) показало, что это утверждение было известно задолго до Пифагора, возможно, за тысячелетие до него. Заслуга же Пифагора состояла в том, что он открыл доказательство этой теоремы.

Вероятно, факт, изложенный в теореме Пифагора, был сначала установлен для равнобедренных прямоугольных треугольников. Достаточно взглянуть на мозаику из черных и светлых треугольников, изображенную на рис. 1, чтобы убедиться в справедливости теоремы для треугольника : квадрат, построенный на гипотенузе, содержит 4 треугольника, а на каждом катете построен квадрат, содержащий 2 треугольника. Для доказательства общего случая в Древней Индии располагали двумя способами: в квадрате со стороной изображали четыре прямоугольных треугольника с катетами длин и (рис. 2,а и 2,б), после чего писали одно слово «Смотри!». И действительно, взглянув на эти рисунки, видим, что слева свободна от треугольников фигура, состоящая из двух квадратов со сторонами и , соответственно ее площадь равна , а справа - квадрат со стороной - его площадь равна . Значит, , что и составляет утверждение теоремы Пифагора.

Однако в течение двух тысячелетий применяли не это наглядное доказательство, а более сложное доказательство, придуманное Евклидом, которое помещено в его знаменитой книге «Начала» (см. Евклид и его «Начала»), Евклид опускал высоту из вершины прямого угла на гипотенузу и доказывал, что ее продолжение делит построенный на гипотенузе квадрат на два прямоугольника, площади которых равны площадям соответствующих квадратов, построенных на катетах (рис. 3). Чертеж, применяемый при доказательстве этой теоремы, в шутку называют «пифагоровы штаны». В течение долгого времени он считался одним из символов математической науки.

В наши дни известно несколько десятков различных доказательств теоремы Пифагора. Одни из них основаны на разбиении квадратов, при котором квадрат, построенный на гипотенузе, состоит из частей, входящих в разбиения квадратов, построенных на катетах; другие - на дополнении до равных фигур; третьи - на том, что высота, опущенная из вершины прямого угла на гипотенузу, делит прямоугольный треугольник на два подобных ему треугольника.

Теорема Пифагора лежит в основе большинства геометрических вычислений. Еще в Древнем Вавилоне с ее помощью вычисляли длину высоты равнобедренного треугольника по длинам основания и боковой стороны, стрелку сегмента по диаметру окружности и длине хорды, устанавливали соотношения между элементами некоторых правильных многоугольников. С помощью теоремы Пифагора доказывается ее обобщение, позволяющее вычислить длину стороны, лежащей против острого или тупого угла:

Из этого обобщения следует, что наличие прямого угла в является не только достаточным, но и необходимым условием для выполнения равенства . Из формулы (1) следует соотношение между длинами диагоналей и сторон параллелограмма, с помощью которого легко найти длину медианы треугольника по длинам его сторон.

На основании теоремы Пифагора выводится и формула, выражающая площадь любого треугольника через длины его сторон (см. Герона формула). Разумеется, теорему Пифагора применяли и для решения разнообразных практических задач.

Вместо квадратов на сторонах прямоугольного треугольника можно строить любые подобные между собой фигуры (равносторонние треугольники, полукруги и т.д.). При этом площадь фигуры, построенной на гипотенузе, равна сумме площадей фигур, построенных на катетах. Другое обобщение связано с переходом от плоскости к пространству. Оно формулируется так: квадрат длины диагонали прямоугольного параллелепипеда равен сумме квадратов его измерений (длины, ширины и высоты). Аналогичная теорема верна и в многомерном и даже бесконечномерном случаях.

Теорема Пифагора существует только в евклидовой геометрии. Ни в геометрии Лобачевского, ни в других неевклидовых геометриях она не имеет места. Не имеет места аналог теоремы Пифагора и на сфере. Два меридиана, образующие угол 90°, и экватор ограничивают на сфере равносторонний сферический треугольник, все три угла которого прямые. Для него , а не , как на плоскости.

С помощью теоремы Пифагора вычисляют расстояние между точками и координатной плоскости по формуле

.

После того как была открыта теорема Пифагора, возник вопрос, как отыскать все тройки натуральных чисел, которые могут быть сторонами прямоугольных треугольников (см. Ферма великая теорема). Они были открыты еще пифагорейцами, но какие-то общие методы отыскания таких троек чисел были известны еще вавилонянам. Одна из клинописных табличек содержит 15 троек. Среди них есть тройки, состоящие из настолько больших чисел, что не может быть и речи о нахождении их путем подбора.

ГИППОКРАТОВЫ ЛУНОЧКИ

Гиппократовы луночки - фигуры, ограниченные дугами двух окружностей, и притом такие, что по радиусам и длине общей хорды этих окружностей с помощью циркуля и линейки можно построить равновеликие им квадраты.

Из обобщения теоремы Пифагора на полукруги следует, что сумма площадей розовых луночек, изображенных на рисунке слева, равна площади голубого треугольника. Поэтому, если взять равнобедренный прямоугольный треугольник, то получатся две луночки, площадь каждой из которых будет равна половине площади треугольника. Пытаясь рещить задачу о квадратуре круга (см. Классические задачи древности), древнегреческий математик Гиппократ (V в. до н.э.) нашел еще несколько луночек, площади которых выражены через площади прямолинейных фигур.

Полный перечень гиппокраювых луночек был получен лишь в XIX-XX вв. благодаря использованию методов теории Галуа.

Каждый школьник знает, что всегда квадрат гипотенузы равен сумме катетов, каждый из которых возведен в квадрат. Эта утверждение носит название теоремы Пифагора. Она является одной из самых известных теорем тригонометрии и математики в целом. Рассмотрим ее подробнее.

Понятие о прямоугольном треугольнике

Перед тем, как переходить к рассмотрению теоремы Пифагора, в которой квадрат гипотенузы равен сумме катетов, которые возведены в квадрат, следует рассмотреть понятие и свойства прямоугольного треугольника, для которого справедлива теорема.

Треугольник - плоская фигура, имеющая три угла и три стороны. Прямоугольный же треугольник, как следует из его названия, имеет один прямой угол, то есть этот угол равен 90 o .

Из общих свойств для всех треугольников известно, что сумма всех трех углов этой фигуры равна 180 o , а это означает, что для прямоугольного треугольника сумма двух углов, которые не являются прямыми, составляет 180 o - 90 o = 90 o . Последний факт означает, что любой угол в прямоугольном треугольнике, который не является прямым, будет всегда меньше 90 o .

Сторону, которая лежит против прямого угла, принято называть гипотенузой. Две же другие стороны являются катетами треугольника, они могут быть равны между собой, а могут и отличаться. Из тригонометрии известно, что чем больше угол, против которого лежит сторона в треугольнике, тем больше длина этой стороны. Это означает, что в прямоугольном треугольнике гипотенуза (лежит против угла 90 o) будет всегда больше любого из катетов (лежат против углов < 90 o).

Математическая запись теоремы Пифагора

Эта теорема гласит, что квадрату гипотенузы равна сумма катетов, каждый из которых предварительно возведен в квадрат. Чтобы математически записать эту формулировку, рассмотрим прямоугольный треугольник, в котором стороны a, b и c являются двумя катетами и гипотенузой, соответственно. В этом случае теорема, которая формулируется, как квадрат гипотенузы равен сумме квадратов катетов, формулой следующей может быть представлена: c 2 = a 2 + b 2 . Отсюда могут быть получены другие важные для практики формулы: a = √(c 2 - b 2), b = √(c 2 - a 2) и c = √(a 2 + b 2).

Отметим, что в случае прямоугольного равностороннего треугольника, то есть a = b, формулировка: квадрат гипотенузы равен сумме катетов, каждый из которых возведен в квадрат, математически запишется так: c 2 = a 2 + b 2 = 2a 2 , откуда вытекает равенство: c = a√2.

Историческая справка

Теорема Пифагора, гласящая, что квадрату гипотенузы равна сумма катетов, каждый из которых возведен в квадрат, была известна задолго до того, когда на нее обратил внимание знаменитый греческий философ. Многие папирусы Древнего Египта, а также глиняные таблички Вавилонян подтверждают, что эти народы использовали отмеченное свойство сторон прямоугольного треугольника. Например, одна из первых египетских пирамид, пирамида Хефрена, строительство которой относится к XXVI веку до нашей эры (за 2000 лет до жизни Пифагора), была построена, исходя из знания соотношения сторон в прямоугольном треугольнике 3x4x5.

Почему же тогда в настоящее время теорема носит имя грека? Ответ прост: Пифагор является первым, кто математически доказал эту теорему. В сохранившихся вавилонских и египетских письменных источниках говорится лишь об ее использовании, но не приводится никакого математического доказательства.

Считается, что Пифагор доказал рассматриваемую теорему путем использования свойств подобных треугольников, которые он получил, проведя высоту в прямоугольном треугольнике из угла 90 o к гипотенузе.

Пример использования теоремы Пифагора

Рассмотрим простую задачу: необходимо определить длину наклонной лестницы L, если известно, что она имеет высоту H = 3 метра, и расстояние от стены, в которую упирается лестница, до ее подножия равно P = 2,5 метра.

В данном случае H и P - это катеты, а L - гипотенуза. Поскольку длина гипотенузы равна сумме квадратов катетов, получаем: L 2 = H 2 + P 2 , откуда L = √(H 2 + P 2) = √(3 2 + 2,5 2) = 3,905 метра или 3 м и 90,5 см.

В одном можно быть уверенным на все сто процентов, что на вопрос, чему равен квадрат гипотенузы, любой взрослый человек смело ответит: «Сумме квадратов катетов». Эта теорема прочно засела в сознании каждого образованного человека, но достаточно лишь попросить кого-либо ее доказать, и тут могут возникнуть сложности. Поэтому давайте вспомним и рассмотрим разные способы доказательства теоремы Пифагора.

Краткий обзор биографии

Теорема Пифагора знакома практически каждому, но почему-то биография человека, который произвел ее на свет, не так популярна. Это поправимо. Поэтому прежде чем изучить разные способы доказательства теоремы Пифагора, нужно кратко познакомиться с его личностью.

Пифагор - философ, математик, мыслитель родом из Сегодня очень сложно отличить его биографию от легенд, которые сложились в память об этом великом человеке. Но как следует из трудов его последователей, Пифагор Самосский родился на острове Самос. Его отец был обычный камнерез, а вот мать происходила из знатного рода.

Судя по легенде, появление на свет Пифагора предсказала женщина по имени Пифия, в чью честь и назвали мальчика. По ее предсказанию рожденный мальчик должен был принести много пользы и добра человечеству. Что вообще-то он и сделал.

Рождение теоремы

В юности Пифагор переехал с в Египет, чтобы встретиться там с известными египетскими мудрецами. После встречи с ними он был допущен к обучению, где и познал все великие достижения египетской философии, математики и медицины.

Вероятно, именно в Египте Пифагор вдохновился величеством и красотой пирамид и создал свою великую теорию. Это может шокировать читателей, но современные историки считают, что Пифагор не доказывал свою теорию. А лишь передал свое знание последователям, которые позже и завершили все необходимые математические вычисления.

Как бы там ни было, сегодня известна не одна методика доказательства данной теоремы, а сразу несколько. Сегодня остается лишь гадать, как именно древние греки производили свои вычисления, поэтому здесь рассмотрим разные способы доказательства теоремы Пифагора.

Теорема Пифагора

Прежде чем начинать какие-либо вычисления, нужно выяснить, какую теорию предстоит доказать. Теорема Пифагора звучит так: «В треугольнике, у которого один из углов равен 90 о, сумма квадратов катетов равна квадрату гипотенузы».

Всего существует 15 разных способов доказательства теоремы Пифагора. Это достаточно большая цифра, поэтому уделим внимание самым популярным из них.

Способ первый

Сначала обозначим, что нам дано. Эти данные будут распространяться и на другие способы доказательств теоремы Пифагора, поэтому стоит сразу запомнить все имеющееся обозначения.

Допустим, дан прямоугольный треугольник, с катетами а, в и гипотенузой, равной с. Первый способ доказательства основывается на том, что из прямоугольного треугольника нужно дорисовать квадрат.

Чтобы это сделать, нужно к катету длиной а дорисовать отрезок равный катету в, и наоборот. Так должно получиться две равные стороны квадрата. Остается только нарисовать две параллельные прямые, и квадрат готов.

Внутри получившейся фигуры нужно начертить еще один квадрат со стороной равной гипотенузе исходного треугольника. Для этого от вершин ас и св нужно нарисовать два параллельных отрезка равных с. Таким образом, получиться три стороны квадрата, одна из которых и есть гипотенуза исходного прямоугольного треугольники. Остается лишь дочертить четвертый отрезок.

На основании получившегося рисунка можно сделать вывод, что площадь внешнего квадрата равна (а+в) 2 . Если заглянуть внутрь фигуры, можно увидеть, что помимо внутреннего квадрата в ней имеется четыре прямоугольных треугольника. Площадь каждого равна 0,5ав.

Поэтому площадь равна: 4*0,5ав+с 2 =2ав+с 2

Отсюда (а+в) 2 =2ав+с 2

И, следовательно, с 2 =а 2 +в 2

Теорема доказана.

Способ два: подобные треугольники

Данная формула доказательства теоремы Пифагора была выведена на основании утверждения из раздела геометрии о подобных треугольниках. Оно гласит, что катет прямоугольного треугольника - среднее пропорциональное для его гипотенузы и отрезка гипотенузы, исходящего из вершины угла 90 о.

Исходные данные остаются те же, поэтому начнем сразу с доказательства. Проведем перпендикулярный стороне АВ отрезок СД. Основываясь на вышеописанном утверждении катеты треугольников равны:

АС=√АВ*АД, СВ=√АВ*ДВ.

Чтобы ответить на вопрос, как доказать теорему Пифагора, доказательство нужно проложить возведением в квадрат обоих неравенств.

АС 2 =АВ*АД и СВ 2 =АВ*ДВ

Теперь нужно сложить получившиеся неравенства.

АС 2 + СВ 2 =АВ*(АД*ДВ), где АД+ДВ=АВ

Получается, что:

АС 2 + СВ 2 =АВ*АВ

И, следовательно:

АС 2 + СВ 2 =АВ 2

Доказательство теоремы Пифагора и различные способы ее решения нуждаются в разностороннем подходе к данной задаче. Однако этот вариант является одним из простейших.

Еще одна методика расчетов

Описание разных способов доказательства теоремы Пифагора могут ни о чем не сказать, до тех самых пор пока самостоятельно не приступишь к практике. Многие методики предусматривают не только математические расчеты, но и построение из исходного треугольника новых фигур.

В данном случае необходимо от катета ВС достроить еще один прямоугольный треугольник ВСД. Таким образом, теперь имеется два треугольника с общим катетом ВС.

Зная, что площади подобных фигур имеют соотношение как квадраты их сходных линейных размеров, то:

S авс * с 2 - S авд *в 2 =S авд *а 2 - S всд *а 2

S авс *(с 2 -в 2)=а 2 *(S авд -S всд)

с 2 -в 2 =а 2

с 2 =а 2 +в 2

Поскольку из разных способов доказательств теоремы Пифагора для 8 класса этот вариант едва ли подойдет, можно воспользоваться следующей методикой.

Самый простой способ доказать теорему Пифагора. Отзывы

Как полагают историки, этот способ был впервые использован для доказательства теоремы еще в древней Греции. Он является самым простым, так как не требует абсолютно никаких расчетов. Если правильно начертить рисунок, то доказательство утверждения, что а 2 +в 2 =с 2 , будет видно наглядно.

Условия для данного способа будет немного отличаться от предыдущего. Чтобы доказать теорему, предположим, что прямоугольный треугольник АВС - равнобедренный.

Гипотенузу АС принимаем за сторону квадрата и дочерчиваем три его стороны. Кроме этого необходимо провести две диагональные прямые в получившемся квадрате. Таким образом, чтобы внутри него получилось четыре равнобедренных треугольника.

К катетам АВ и СВ так же нужно дочертить по квадрату и провести по одной диагональной прямой в каждом из них. Первую прямую чертим из вершины А, вторую - из С.

Теперь нужно внимательно всмотреться в получившийся рисунок. Поскольку на гипотенузе АС лежит четыре треугольника, равные исходному, а на катетах по два, это говорит о правдивости данной теоремы.

Кстати, благодаря данной методике доказательства теоремы Пифагора и появилась на свет знаменитая фраза: «Пифагоровы штаны во все стороны равны».

Доказательство Дж. Гарфилда

Джеймс Гарфилд - двадцатый президент Соединенных Штатов Америки. Кроме того, что он оставил свой след в истории как правитель США, он был еще и одаренным самоучкой.

В начале своей карьеры он был обычным преподавателем в народной школе, но вскоре стал директором одного из высших учебных заведений. Стремление к саморазвитию и позволило ему предложить новую теорию доказательства теоремы Пифагора. Теорема и пример ее решения выглядит следующим образом.

Сначала нужно начертить на листе бумаги два прямоугольных треугольника таким образом, чтобы катет одного из них был продолжением второго. Вершины этих треугольников нужно соединить, чтобы в конечном итоге получилась трапеция.

Как известно, площадь трапеции равна произведению полусуммы ее оснований на высоту.

S=а+в/2 * (а+в)

Если рассмотреть получившуюся трапецию, как фигуру, состоящую из трех треугольников, то ее площадь можно найти так:

S=ав/2 *2 + с 2 /2

Теперь необходимо уравнять два исходных выражения

2ав/2 + с/2=(а+в) 2 /2

с 2 =а 2 +в 2

О теореме Пифагора и способах ее доказательства можно написать не один том учебного пособия. Но есть ли в нем смысл, когда эти знания нельзя применить на практике?

Практическое применение теоремы Пифагора

К сожалению, в современных школьных программах предусмотрено использование данной теоремы только в геометрических задачах. Выпускники скоро покинут школьные стены, так и не узнав, а как они могут применить свои знания и умения на практике.

На самом же деле использовать теорему Пифагора в своей повседневной жизни может каждый. Причем не только в профессиональной деятельности, но и в обычных домашних делах. Рассмотрим несколько случаев, когда теорема Пифагора и способы ее доказательства могут оказаться крайне необходимыми.

Связь теоремы и астрономии

Казалось бы, как могут быть связаны звезды и треугольники на бумаге. На самом же деле астрономия - это научная сфера, в которой широко используется теорема Пифагора.

Например, рассмотрим движение светового луча в космосе. Известно, что свет движется в обе стороны с одинаковой скоростью. Траекторию АВ, которой движется луч света назовем l . А половину времени, которое необходимо свету, чтобы попасть из точки А в точку Б, назовем t . И скорость луча - c . Получается, что: c*t=l

Если посмотреть на этот самый луч из другой плоскости, например, из космического лайнера, который движется со скоростью v, то при таком наблюдении тел их скорость изменится. При этом даже неподвижные элементы станут двигаться со скоростью v в обратном направлении.

Допустим, комический лайнер плывет вправо. Тогда точки А и В, между которыми мечется луч, станут двигаться влево. Причем, когда луч движется от точки А в точку В, точка А успевает переместиться и, соответственно, свет уже прибудет в новую точку С. Чтобы найти половину расстояния, на которое сместилась точка А, нужно скорость лайнера умножить на половину времени путешествия луча (t").

А чтобы найти, какое расстояние за это время смог пройти луч света, нужно обозначить половину пути новой буковой s и получить следующее выражение:

Если представить, что точки света С и В, а также космический лайнер - это вершины равнобедренного треугольника, то отрезок от точки А до лайнера разделит его на два прямоугольных треугольника. Поэтому благодаря теореме Пифагора можно найти расстояние, которое смог пройти луч света.

Этот пример, конечно, не самый удачный, так как только единицам может посчастливиться опробовать его на практике. Поэтому рассмотрим более приземленные варианты применения этой теоремы.

Радиус передачи мобильного сигнала

Современную жизнь уже невозможно представить без существования смартфонов. Но много ли было бы от них прока, если бы они не могли соединять абонентов посредством мобильной связи?!

Качество мобильной связи напрямую зависит от того, на какой высоте находиться антенна мобильного оператора. Для того чтобы вычислить, каком расстоянии от мобильной вышки телефон может принимать сигнал, можно применить теорему Пифагора.

Допустим, нужно найти приблизительную высоту стационарной вышки, чтобы она могла распространять сигнал в радиусе 200 километров.

АВ (высота вышки) = х;

ВС (радиус передачи сигнала) = 200 км;

ОС (радиус земного шара) = 6380 км;

ОВ=ОА+АВОВ=r+х

Применив теорему Пифагора, выясним, что минимальная высота вышки должна составить 2,3 километра.

Теорема Пифагора в быту

Как ни странно, теорема Пифагора может оказаться полезной даже в бытовых делах, таких как определение высоты шкафа-купе, например. На первый взгляд, нет необходимости использовать такие сложные вычисления, ведь можно просто снять мерки с помощью рулетки. Но многие удивляются, почему в процессе сборки возникают определенные проблемы, если все мерки были сняты более чем точно.

Дело в том, что шкаф-купе собирается в горизонтальном положении и только потом поднимается и устанавливается к стене. Поэтому боковина шкафа в процессе подъема конструкции должна свободно проходить и по высоте, и по диагонали помещения.

Предположим, имеется шкаф-купе глубиной 800 мм. Расстояние от пола до потолка - 2600 мм. Опытный мебельщик скажет, что высота шкафа должна быть на 126 мм меньше, чем высота помещения. Но почему именно на 126 мм? Рассмотрим на примере.

При идеальных габаритах шкафа проверим действие теоремы Пифагора:

АС=√АВ 2 +√ВС 2

АС=√2474 2 +800 2 =2600 мм - все сходится.

Допустим, высота шкафа равна не 2474 мм, а 2505 мм. Тогда:

АС=√2505 2 +√800 2 =2629 мм.

Следовательно, этот шкаф не подойдет для установки в данном помещении. Так как при поднятии его в вертикальное положение можно нанести ущерб его корпусу.

Пожалуй, рассмотрев разные способы доказательства теоремы Пифагора разными учеными, можно сделать вывод, что она более чем правдива. Теперь можно использовать полученную информацию в своей повседневной жизни и быть полностью уверенным, что все расчеты будут не только полезны, но и верны.

Убедитесь, что данный вам треугольник является прямоугольным, так как теорема Пифагора применима только к прямоугольным треугольникам. В прямоугольных треугольниках один из трех углов всегда равен 90 градусам.

  • Прямой угол в прямоугольном треугольнике обозначается значком в виде квадрата, а не в виде кривой, которая обозначает непрямые углы.

Обозначьте стороны треугольника. Катеты обозначьте как «а» и «b» (катеты – стороны, пересекающиеся под прямым углом), а гипотенузу – как «с» (гипотенуза – самая большая сторона прямоугольного треугольника, лежащая напротив прямого угла).

  • Определите, какую сторону треугольника требуется найти. Теорема Пифагора позволяет найти любую сторону прямоугольного треугольника (если известны две другие стороны). Определите, какую сторону (a, b, c) необходимо найти.

    • Например, дана гипотенуза, равная 5, и дан катет, равный 3. В этом случае необходимо найти второй катет. Мы вернемся к этому примеру позднее.
    • Если две другие стороны неизвестны, необходимо найти длину одной из неизвестных сторон, чтобы иметь возможность применить теорему Пифагора. Для этого используйте основные тригонометрические функции (если вам дано значение одного из непрямых углов).
  • Подставьте в формулу a 2 + b 2 = c 2 данные вам значения (или найденные вами значения). Помните, что a и b – это катеты, а с – это гипотенуза.

    • В нашем примере напишите: 3² + b² = 5².
  • Возведите в квадрат каждую известную сторону. Или же оставьте степени – вы можете возвести числа в квадрат позже.

    • В нашем примере напишите: 9 + b² = 25.
  • Обособьте неизвестную сторону на одной стороне уравнения. Для этого перенесите известные значения на другую сторону уравнения. Если вы находите гипотенузу, то в теореме Пифагора она уже обособлена на одной стороне уравнения (поэтому делать ничего не нужно).

    • В нашем примере перенесите 9 на правую сторону уравнения, чтобы обособить неизвестное b². Вы получите b² = 16.
  • Извлеките квадратный корень из обеих частей уравнения после того, как на одной стороне уравнения присутствует неизвестное (в квадрате), а на другой стороне – свободный член (число).

    • В нашем примере b² = 16. Извлеките квадратный корень из обеих частей уравнения и получите b = 4. Таким образом, второй катет равен 4.
  • Используйте теорему Пифагора в повседневной жизни, так как ее можно применять в большом числе практических ситуаций. Для этого научитесь распознавать прямоугольные треугольники в повседневной жизни – в любой ситуации, в которой два предмета (или линии) пересекаются под прямым углом, а третий предмет (или линия) соединяет (по диагонали) верхушки двух первых предметов (или линий), вы можете использовать теорему Пифагора, чтобы найти неизвестную сторону (если две другие стороны известны).

    • Пример: дана лестница, прислоненная к зданию. Нижняя часть лестницы находится в 5 метрах от основания стены. Верхняя часть лестницы находится в 20 метрах от земли (вверх по стене). Какова длина лестницы?
      • «в 5 метрах от основания стены» означает, что а = 5; «находится в 20 метрах от земли» означает, что b = 20 (то есть вам даны два катета прямоугольного треугольника, так как стена здания и поверхность Земли пересекаются под прямым углом). Длина лестницы есть длина гипотенузы, которая неизвестна.
        • a² + b² = c²
        • (5)² + (20)² = c²
        • 25 + 400 = c²
        • 425 = c²
        • с = √425
        • с = 20,6. Таким образом, приблизительная длина лестницы равна 20,6 метров.
  • Вокруг да около

    История теоремы Пифагора уходит в века и тысячелетия. В этой статье, мы не будем подробно останавливаться на исторических темах. Для интриги, скажем только, что, по-видимому, эту теорему знали еще древне-египетские жрецы, жившие более 2000 лет до нашей эры. Для тех, кому любопытно, вот ссылка на статью в Википедии .

    Прежде всего, хочется для полноты изложения привести здесь доказательство теоремы Пифагора, которое, по моему мнению, наиболее элегантно и очевидно. На рисунке выше изображено два одинаковых квадрата: левый и правый. Из рисунка видно, что слева и справа площади закрашенных фигур равны, так как в каждом из больших квадратов закрашено по 4 одинаковых прямоугольных треугольника. А это означает, что и незакрашенные (белые) площади слева и справа тоже равны. Замечаем, что в первом случае площадь незакрашенной фигуры равна , а во втором - площадь незакрашенной области равна . Таким образом, . Теорема доказана!

    Как же назвать эти числа? Треугольниками не назовешь, ведь четыре числа никак не могут образовать треугольник. И тут! Как гром среди ясного неба

    Раз есть такие четверки чисел, значит должен быть геометрический объект с такими же свойствами, отраженными в этих числах!

    Теперь осталось только подобрать какой-то геометрический объект под это свойство, и все встанет на свои места! Конечно, предположение было чисто гипотетическое, и никакого подтверждения под собой не имело. Но что если это так!

    Начался перебор объектов. Звезды, многоугольники, правильные, неправильные, с прямым углом и так далее и тому подобное. Опять ничего не подходит. Что делать? И в этот момент Шерлок получает свою вторую зацепку.

    Надо повысить размерность! Раз тройке соответствуют треугольник на плоскости, значит четверке соответствует нечто трехмерное!

    О нет! Опять перебор вариантов! А в трехмерии гораздо, гораздо больше всевозможных геометрических тел. Попробуй перебрать их все! Но не все так плохо. Есть же еще прямой угол и другие зацепки! Что мы имеем? Египетские четверки чисел (пусть будут египетские, надо же их как-то называть), прямой угол (или углы) и некий трехмерный объект. Дедукция сработала! И… Полагаю, что догадливые читатели уже поняли, что речь идет о пирамидах, у которых при одной из вершин все три угла - прямые. Можно даже назвать их прямоугольными пирамидами по аналогии с прямоугольным треугольником.

    Новая теорема

    Итак, у нас есть все что нужно. Прямоугольные (!) пирамиды, боковые грани-катеты и секущая грань-гипотенуза . Пришло время нарисовать еще одну картинку.


    На картинке изображена пирамида с вершиной в начале прямоугольных координат (пирамида как бы лежит на боку). Пирамида образована тремя взаимно-перпендикулярными векторами, отложенными из начала координат вдоль координатных осей. То есть каждая боковая грань пирамиды - это прямоугольный треугольник с прямым углом при начале координат. Концы векторов определяют секущую плоскость и образуют грань-основание пирамиды.

    Теорема

    Пусть есть прямоугольная пирамида, образованная тремя взаимно-перпендикулярными векторами , у которой площади граней-катетов равны - , и площадь грани-гипотенузы - . Тогда

    Альтернативная формулировка: У четырехгранной пирамиды, у которой при одной из вершин все плоские углы прямые, сумма квадратов площадей боковых граней равна квадрату площади основания.

    Разумеется, если обычная теорема Пифагора формулируется для длин сторон треугольников, то наша теорема формулируется для площадей сторон пирамиды. Доказать эту теорему в трех измерениях очень просто, если вы немного знаете векторную алгебру.

    Доказательство

    Выразим площади через длины векторов .

    где .

    Площадь представим как половину площади параллелограмма, построенного на векторах и

    Как известно, векторное произведение двух векторов - это вектор, длина которого численно равна площади параллелограмма, построенного на этих векторах.
    Поэтому

    Таким образом,

    Что и требовалось доказать!

    Конечно, как у человека, профессионально занимающегося исследованиями, подобное в моей жизни уже случалось, и не раз. Но этот момент был самым ярким и самым запоминающимся. Я испытал полную гамму чувств, эмоций, переживаний первооткрывателя. От зарождения мысли, кристализации идеи, нахождения доказательства - до полного непонимания и даже неприятия, которое встретили мои идеи у моих друзей, знакомых и, как мне тогда казалось, у целого мира. Это было уникально! Я словно почувствовал себя в шкуре Галлилея, Коперника, Ньютона, Шредингера, Бора, Эйнштейна и многих многих других открывателей.

    Послесловие

    В жизни, все оказалось гораздо проще и прозаичнее. Я опоздал… Но на сколько! Всего-то навсего 18 лет! Под страшными продолжительными пытками и не с первого раза Гугл признался мне, что эта теорема была опубликована в 1996 году!

    Статья опубликована издательством Техасского технического университета. Авторы, профессиональные математики, ввели терминологию (которая, кстати, во многом совпала с моей) и доказали также и обобщенную теорему справедливую для пространства любой размерности большей единицы. Что же произойдет в размерностях более высоких, чем 3? Все очень просто: вместо граней и площадей будут гиперповерхности и многомерные объемы. А утверждение, конечно, останется все тем же: сумма квадратов объемов боковых граней равна квадрату объема основания, - просто количество граней будет больше, а объем каждой из них станет равен половине произведения векторов-образующих. Вообразить это почти невозможно! Можно только, как говорят философы, помыслить!

    Что удивительно, узнав о том, что такая теорема уже известна, я ничуть не расстроился. Где-то в глубине души я подозревал, что вполне возможно, я был не первый, и понимал, что нужно быть всегда к этому готовым. Но тот эмоциониальный опыт, который я получил, зажег во мне искру исследователя, которая, я уверен, теперь уже не угаснет никогда!

    P.S.

    Эрудированный читатель в комментариях прислал ссылку
    Теорема де Гуа

    Выдержка из Википедии

    В 1783 году теорема была представлена Парижской академии наук французским математиком Ж.-П. де Гуа, однако ранее она была известна Рене Декарту и до него Иоганну Фульгаберу (англ.), который, вероятно, первым открыл её в 1622 году. В более общем виде теорему сформулировал Шарль Тинсо (фр.) в докладе Парижской академии наук в 1774 году

    Так что я опоздал не на 18 лет, а как минимум на пару веков!

    Источники

    Читатели указали в комментариях несколько полезных ссылок. Вот эти и некоторые другие ссылки:

    Последние материалы раздела:

    Изменение вида звездного неба в течение суток
    Изменение вида звездного неба в течение суток

    Тема урока «Изменение вида звездного неба в течение года». Цель урока: Изучить видимое годичное движение Солнца. Звёздное небо – великая книга...

    Развитие критического мышления: технологии и методики
    Развитие критического мышления: технологии и методики

    Критическое мышление – это система суждений, способствующая анализу информации, ее собственной интерпретации, а также обоснованности...

    Онлайн обучение профессии Программист 1С
    Онлайн обучение профессии Программист 1С

    В современном мире цифровых технологий профессия программиста остается одной из самых востребованных и перспективных. Особенно высок спрос на...