Функция у = √х, ее свойства и график — Гипермаркет знаний. y=,y={x}, y=sign(x) и их графики

    На взгляд некоторых учёных главное назначение графиков состоит в их значении для эвристической деятельности — иллюстрации к изложению теории и, прежде всего, указание примеров и контрпримеров для доказательства или опровержения связей между различными свойствами функций, т.е. использование вырабатываемой в соответствии с требованиями стандарта «двуязычного» мышления, математического билингвизма.

    Широкое применение нашла логарифмическая функция в астрономии : Например по ней изменяется величина блеска звезд, если сравнивать характеристики блеска отмеченные глазом и с помощью приборов, то можно составить следующий график: Здесь по вертикальной оси отложим блеск звезд в единицах Гиппарха (распределение звезд по субъективным характеристикам (на глаз) на 6 групп), а на горизонтальной - показания приборов. По графику видно, что объективные и субъективные характеристики не пропорциональны, а прибор регистрирует возрастание блеска не на одну и ту же величину, а в 2,5 раза. Эта зависимость выражается логарифмической функцией.

Рассмотри как же они строятся.

Выберем на плоскости прямоугольную систему координат и будем откладывать на оси абсцисс значения аргумента х , а на оси ординат - значения функции у = f (х) .

Графиком функции y = f(x) называется множество всех точек, у которых абсциссы принадлежат области определения функции, а ординаты равны соответствующим значениям функции.

Другими словами, график функции y = f (х) - это множество всех точек плоскости, координаты х, у которых удовлетворяют соотношению y = f(x) .

На рис. 45 и 46 приведены графики функций у = 2х + 1 и у = х 2 — 2х .

Строго говоря, следует различать график функции (точное математическое определение которого было дано выше) и начерченную кривую, которая всегда дает лишь более или менее точный эскиз графика (да и то, как правило, не всего графика, а лишь его части, расположенного в конечной части плоскости). В дальнейшем, однако, мы обычно будем говорить «график», а не «эскиз графика».

С помощью графика можно находить значение функции в точке. Именно, если точка х = а принадлежит области определения функции y = f(x) , то для нахождения числа f(а) (т. е. значения функции в точке х = а ) следует поступить так. Нужно через точку с абсциссой х = а провести прямую, параллельную оси ординат; эта прямая пересечет график функции y = f(x) в одной точке; ордината этой точки и будет, в силу определения графика, равна f(а) (рис. 47).

Например, для функции f(х) = х 2 — 2x с помощью графика (рис. 46) находим f(-1) = 3, f(0) = 0, f(1) = -l, f(2) = 0 и т. д.

График функции наглядно иллюстрирует поведение и свойства функции. Например, из рассмотрения рис. 46 ясно, что функция у = х 2 — 2х принимает положительные значения при х < 0 и при х > 2 , отрицательные - при 0 < x < 2; наименьшее значение функция у = х 2 - 2х принимает при х = 1 .

Для построения графика функции f(x) нужно найти все точки плоскости, координаты х , у которых удовлетворяют уравнению y = f(x) . В большинстве случаев это сделать невозможно, так как таких точек бесконечно много. Поэтому график функции изображают приблизительно - с большей или меньшей точностью. Самым простым является метод построения графика по нескольким точкам. Он состоит в том, что аргументу х придают конечное число значений - скажем, х 1 , х 2 , x 3 ,..., х k и составляют таблицу, в которую входят выбранные значения функции.

Таблица выглядит следующим образом:

x x 1 x 2 x 3 ... x k
y f(x 1) f(x 2) f(x 3) ... f(x k)

Составив такую таблицу, мы можем наметить несколько точек графика функции y = f(x) . Затем, соединяя эти точки плавной линией, мы и получаем приблизительный вид графика функции y = f(x).

Следует, однако, заметить, что метод построения графика по нескольким точкам очень ненадежен. В самом деле поведение графика между намеченными точками и поведение его вне отрезка между крайними из взятых точек остается неизвестным.

Пример 1 . Для построения графика функции y = f(x) некто составил таблицу значений аргумента и функции:

x -2 -1 0 1 2
y -1 0 1 2 3

Соответствующие пять точек показаны на рис. 48.

На основании расположения этих точек он сделал вывод, что график функции представляет собой прямую (показанную на рис. 48 пунктиром). Можно ли считать этот вывод надежным? Если нет дополнительных соображений, подтверждающих этот вывод, его вряд ли можно считать надежным. надежным.

Для обоснования своего утверждения рассмотрим функцию

Вычисления показывают, что значения этой функции в точках -2, -1, 0, 1, 2 как раз описываются приведенной выше таблицей. Однако график этой функции вовсе не является прямой линией (он показан на рис. 49). Другим примером может служить функция y = x + l + sinπx; ее значения тоже описываются приведенной выше таблицей.

Эти примеры показывают, что в «чистом» виде метод построения графика по нескольким точкам ненадежен. Поэтому для построения графика заданной функции, как правило, поступают следующим образом. Сначала изучают свойства данной функции, с помощью которых можно построить эскиз графика. Затем, вычисляя значения функции в нескольких точках (выбор которых зависит от установленных свойств функции), находят соответствующие точки графика. И, наконец, через построенные точки проводят кривую, используя свойства данной функции.

Некоторые (наиболее простые и часто используемые) свойства функций, применяемые для нахождения эскиза графика, мы рассмотрим позже, а сейчас разберем некоторые часто применяемые способы построения графиков.

График функции у = | f(x) |.

Нередко приходится строить график функции y = |f(x) |, где f(х) - заданная функция. Напомним, как это делается. По определению абсолютной величины числа можно написать

Это значит, что график функции y= | f(x) | можно получить из графика, функции y = f(x) следующим образом: все точки графика функции у = f(х) , у которых ординаты неотрицательны, следует оставить без изменения; далее, вместо точек графика функции y = f(x) , имеющих отрицательные координаты, следует построить соответствующие точки графика функции у = -f(x) (т. е. часть графика функции
y = f(x) , которая лежит ниже оси х, следует симметрично отразить относительно оси х ).

Пример 2. Построить график функции у = |х|.

Берем график функции у = х (рис. 50, а) и часть этого графика при х < 0 (лежащую под осью х ) симметрично отражаем относительно оси х . В результате мы и получаем график функции у = |х| (рис. 50, б).

Пример 3 . Построить график функции y = |x 2 - 2x|.

Сначала построим график функции y = x 2 - 2x. График этой функции - парабола, ветви которой направлены вверх, вершина параболы имеет координаты (1; -1), ее график пересекает ось абсцисс в точках 0 и 2. На промежутке (0; 2) фукция принимает отрицательные значения, поэтому именно эту часть графика симметрично отразим относительно оси абсцисс. На рисунке 51 построен график функции у = |х 2 —2х| , исходя из графика функции у = х 2 — 2x

График функции y = f(x) + g(x)

Рассмотрим задачу построения графика функции y = f(x) + g(x). если заданы графики функций y = f(x) и y = g(x) .

Заметим, что областью определения функции y = |f(x) + g(х)| является множество всех тех значений х, для которых определены обе функции y = f{x) и у = g(х), т. е. эта область определения представляет собой пересечение областей определения, функций f{x) и g{x).

Пусть точки (х 0 , y 1 ) и (х 0 , у 2 ) соответственно принадлежат графикам функций y = f{x) и y = g(х) , т. е. y 1 = f(x 0), y 2 = g(х 0). Тогда точка (x0;. y1 + y2) принадлежит графику функции у = f(х) + g(х) (ибо f(х 0) + g(x 0 ) = y 1 +y2 ),. причем любая точка графика функции y = f(x) + g(x) может быть получена таким образом. Следовательно, график функции у = f(х) + g(x) можно получить из графиков функций y = f(x) . и y = g(х) заменой каждой точки ( х n , у 1) графика функции y = f(x) точкой (х n , y 1 + y 2), где у 2 = g(x n ), т. е. сдвигом каждой точки ( х n , у 1 ) графика функции y = f(x) вдоль оси у на величину y 1 = g(х n ). При этом рассматриваются только такие точки х n для которых определены обе функции y = f(x) и y = g(x) .

Такой метод построения графика функции y = f(x) + g(х ) называется сложением графиков функций y = f(x) и y = g(x)

Пример 4 . На рисунке методом сложения графиков построен график функции
y = x + sinx .

При построении графика функции y = x + sinx мы полагали, что f(x) = x, а g(x) = sinx. Для построения графика функции выберем точки с aбциссами -1,5π, - , -0,5 , 0, 0,5 , , 1,5 , 2 . Значения f(x) = x, g(x) = sinx, y = x + sinx вычислим в выбранных точках и результаты поместим в таблице.

x -1,5 - -0,5 0 0,5 1,5 2
f(x) = x -1,5 - -0,5 0 0,5 1,5 2
g(x) = sinx 1 0 -1 0 1 0 -1 0
y = x + sinx 1-1,5 - -1-0,5 0 1+0,5 1+1,5 2

По полученным резултатам построим точки, которые соединим плавной кривой, которая будет эскизом графика функции y = x + sinx .

Графики функций можно строить не только руками по точкам, но и с помощью различных программ(excel, maple), а также программируя на языке Pascal. Изучив язык паскаль, вы одновременно подтяните свои знания по информатике, но и быстро сможете строить разные графики функцицй. примеры функций в Паскале помогут разобраться в синтаксисе языка и построить первые графики самому.

Основные свойства функций.

1) Область определения функции и область значений функции .

Область определения функции - это множество всех допустимых действительных значений аргумента x (переменной x ), при которых функция y = f(x) определена.
Область значений функции - это множество всех действительных значений y , которые принимает функция.

В элементарной математике изучаются функции только на множестве действительных чисел.

2) Нули функции .

Нуль функции - такое значение аргумента, при котором значение функции равно нулю.

3) Промежутки знакопостоянства функции .

Промежутки знакопостоянства функции - такие множества значений аргумента, на которых значения функции только положительны или только отрицательны.

4) Монотонность функции .

Возрастающая функция (в некотором промежутке) - функция, у которой большему значению аргумента из этого промежутка соответствует большее значение функции.

Убывающая функция (в некотором промежутке) - функция, у которой большему значению аргумента из этого промежутка соответствует меньшее значение функции.

5) Четность (нечетность) функции .

Четная функция - функция, у которой область определения симметрична относительно начала координат и для любого х из области определения выполняется равенство f(-x) = f(x) . График четной функции симметричен относительно оси ординат.

Нечетная функция - функция, у которой область определения симметрична относительно начала координат и для любого х из области определения справедливо равенство f(-x) = - f(x ). График нечетной функции симметричен относительно начала координат.

6) Ограниченная и неограниченная функции .

Функция называется ограниченной, если существует такое положительное число M, что |f(x)| ≤ M для всех значений x . Если такого числа не существует, то функция - неограниченная.

7) Периодическость функции .

Функция f(x) - периодическая, если существует такое отличное от нуля число T, что для любого x из области определения функции имеет место: f(x+T) = f(x). Такое наименьшее число называется периодом функции. Все тригонометрические функции являются периодическими

Функция $f(x)=|x|$

$|x|$ - модуль. Он определяется следующим образом: Если действительное число будет неотрицательным, то значение модуля совпадает с самим числом. Если же отрицательно, то значение модуля совпадает с абсолютным значением данного числа.

Математически это можно записать следующим образом:

Пример 1

Функция $f(x)=[x]$

Функция $f\left(x\right)=[x]$ - функция целой части числа. Она находится округлением числа (если оно само не целое) «в меньшую сторону».

Пример: $=2.$

Пример 2

Исследуем и построим её график.

  1. $D\left(f\right)=R$.
  2. Очевидно, что эта функция принимает только целые значения, то есть $\ E\left(f\right)=Z$
  3. $f\left(-x\right)=[-x]$. Следовательно, эта функция будет общего вида.
  4. $(0,0)$ -- единственная точка пересечения с осями координат.
  5. $f"\left(x\right)=0$
  6. Функция имеет точки разрыва (скачка функции) при всех $x\in Z$.

Рисунок 2.

Функция $f\left(x\right)=\{x\}$

Функция $f\left(x\right)=\{x\}$ -- функция дробной части числа. Она находится «отбрасыванием» целой части этого числа.

Пример 3

Исследуем и построим график функции

Функция $f(x)=sign(x)$

Функция $f\left(x\right)=sign(x)$ -- сигнум-функция. Эта функция показывает, какой знак имеет действительное число. Если число отрицательно, то функция имеет значение $-1$. Если число положительно, то функция равняется единице. При нулевом значении числа, значение функции также будет принимать нулевое значение.

Здравствуйте!

Сегодня у нас необычное занятие. Мы проведем математический урок здоровья.

Вместе с «закреплением» математических знаний мы вспомним основные секреты здоровья.

А эпиграфом урока будут слова «Великая книга здоровья написана математическими символами»

Как вы понимаете эти слова?

Без математических знаний невозможна ни одна наука и даже такая, как наука о здоровье. И в этом мы сегодня убедимся.

Итак, на прошлом уроке мы познакомились с функцией

, её свойствами и графиком.

Подпишите число и тему урока.

Предлагаю вам в процессе опроса определить, какие знания вам сегодня необходимо вспомнить и применить?

2. Актуализация теоретических знаний (фронтальный опрос) (5 мин.)

Задание: Дополнить фразы.

А) Арифметическим квадратным корнем из числа а называется…

В) Выражение не имеет смысла при …

С) Графиком функции является…

D ) Функция имеет отличительные…

E ) По графику функцииможно определить…

Какие мы для себя поставим задачи?

Задачи: совершенствовать умение строить график функции вида y=
, повторить свойства этой функции, проверить усвоение материала по нахождению квадратных корней, через решение выражений и уравнений.

Как вы заметили буквы, обозначающие последовательность фраз - заглавные латинские. В медицине так обозначаются витамины. В данном перечне представлена группа витаминов, которые присутствуют во многих продуктах питания и помогают вам хорошо видеть, быть стойкими перед простудными заболеваниями и стрессовыми ситуациями.

Поэтому, первое правило здоровья - это здоровое и правильное питание.

- Чтобы открыть второй секрет здоровья, сядем правильно и вместе поиграем в математическое лото.

Вычислительная разминка. (8 мин.)

Игра «Математическое лото»

Вычислить

Вычислите, укажите правильный ответ

Какое целое число заключено между
и

Что больше ,
; 3,2 ?

Найти наибольшее значение функции y= на отрезке от 1 до 25

Решить уравнение
=4

Найти наибольший корень уравнения x2 = 4

Вычислить

Вычислить
+

Вычислить

Найти сторону квадрата, если его площадь равна 64 см2

Найти периметр квадрата, если его площадь равна 9 см2

-Второй секрет здоровья - режим дня . Это правильное сочетание и чередование труда, занятий и отдыха. В рубрике «Это интересно!» мы узнаем о режиме дня известного математика.

4. Это интересно! (3 мин.)

Пифагор едва ли не самый популярный ученый за всю историю человечества. Математик, механик, музыкант, олимпийски чемпион древности, имя ни одного ученого не повторяется так часто. Он учредил свою школу, учеников школы называли пифагорейцами. Попасть в пифагорейскую школу было очень трудно. Пифагор выработал для себя и своих учеников особый распорядок дня. Встав до восхода солнца, пифагорейцы шли на морской берег встречать рассвет, делали гимнастические упражнения, завтракали. В конце дня совершали совместные прогулки, морское купание и ужинали, а после ужина - молились богам и читали.

И мы с вами не будем нарушать режим и немного отдохнём. Сядем удобно и следим глазами за шайбой.

5.Физминутка для глаз (2 мин.)

Эта физминутка даёт подсказку о третьем секрете здоровья. О каком?

- Занятие спортом, постоянное движение.

И сейчас мы устроим своеобразное математическое соревнование между парами по проверке ваших знаний по теме урока.

6. Отработка знаний, умений, навыков (10 мин.)

1. Работа в парах (формирование 3 пар).

Задание: найти неточность в предложенных свойствах функции
, отметить выбранный вариант флажком вашей пары, по возможности первыми, и обязательно дать правильную формулировку свойства, иначе ответ переходит следующей паре:

Область определения функции - множество неотрицательных чисел (х≥0).

Область значений функции - множество Z.

3. Функция возрастает.

4. y=0 при x=0; y<0 при x<0; y>0 при x>0

5.Нет наибольшего и наименьшего значения функции.

6. График функции симметричен графику функции у = х², где х≥0 относительно прямой у = х.

7. Практическое применение знаний (10 мин.)

Задание в учебнике № 357 с.84:

Решить графически уравнение один обучающийся у доски с устным объяснением этапов решения.

8. Рефлексия (3 мин.)

Заканчивается наш урок, подведем итоги.

Вам было интересно?

Какие знания и умения должны были применить на уроке?

Что нового открыли для себя на уроке.

А как настроение? Влияет ли настроение на здоровье? Вот и последний секрет - «хорошее настроение».

Положительные эмоции тоже необходимы для здорового образа жизни. Сегодня на занятии вы испытали радость познания, удовлетворенность своими успехами, доброжелательность в общении. Здоровье - это бесценное достояние не только каждого отдельно взятого человека, но и всего общества.

Давайте посмотрим друг на друга, улыбнёмся и этот положительный заряд эмоции возьмём с собой на следующий урок.

Берегите себя, свое здоровье и тогда математические задачи будут решаться быстрей и легче.

9. Домашнее задание (1 мин.)

п.15 № 365; № 367;
№ 344(а).

Спасибо за урок!

Рассмотрим функцию y=√x. График этой функции показан на рисунке ниже.

График функции y=√x

Как видите, график напоминает повернутую параболу, точнее одну из её ветвей. Мы получаем ветвь параболы x=y^2. Из рисунка видно, что график лишь один раз касается оси Оу, в точке с координатами (0;0).
Теперь стоит отметить основные свойства этой функции.

Свойства функции y=√x

1. Область определения функции явяется луч }

Последние материалы раздела:

Изменение вида звездного неба в течение суток
Изменение вида звездного неба в течение суток

Тема урока «Изменение вида звездного неба в течение года». Цель урока: Изучить видимое годичное движение Солнца. Звёздное небо – великая книга...

Развитие критического мышления: технологии и методики
Развитие критического мышления: технологии и методики

Критическое мышление – это система суждений, способствующая анализу информации, ее собственной интерпретации, а также обоснованности...

Онлайн обучение профессии Программист 1С
Онлайн обучение профессии Программист 1С

В современном мире цифровых технологий профессия программиста остается одной из самых востребованных и перспективных. Особенно высок спрос на...