Генетическая рекомбинация. Гомологичная рекомбинация

Общая рекомбинация при согласованном внесении разрывов и воссоединении цепей двух спиралей ДНК с образованием протяженных гетеродуплексных областей. Чтобы могла произойти рекомбинация между двойными спиралями, представленная на, каждая из четырех цепей должна быть разорвана и затем соединена с новым партнером. Соответствующие цепи обоих линейных гомологичных дуплексов ДНК надрезаются и свободные концы одной спирали спариваются с комплементарными участками другой. Перекрест стабилизируется сшиванием концов донорных цепей со свободными концами реципиентных спиралей. Точка перекреста обменивающихся цепей перемещается вдоль спиралей – процесс, называемый миграцией ветви (е). При этом происходит одновременное расхождение цепей исходных спиралей и их реассоциация с новыми партнерами с образованием дочерних дуплексов. Структуры д и е, а также ж называются структурами Холлидея по имени исследователя, впервые их
предложившего. Структуры Холлидея могут переходить в рекомбинантные двойные спирали путем внесения разрыва и воссоединения цепей двумя альтернативными способами. Один способ состоит в разрезании и воссоединении перекрещивающихся цепей. Два реципрокных продукта л и м могут образоваться, если разрыв и последующее воссоединение цепей произойдут в точке перекреста в структурах е и д или по линии пересечения четырех цепей в изомерной структуре Холлидея и. Размер обменивающихся фрагментов зависит от расстояния, на которое произошла миграция ветви до акта рекомбинации. Альтернативные продукты н и о образуются в том случае, если структура Холлидея з переходит в результате разрыва в к. В основе рекомбинации данного типа лежит гомологичное спаривание цепей, принадлежащих двум разным спиралям ДНК, поэтому скорее всего она произойдет в том месте, где такое спаривание возможно a priori и где гомологичность последова тельностей достаточно велика, чтобы могла произойти миграция
ветви в рамках структуры со скрестившимися цепями. Отсюда можно понять, почему общая, или гомологичная, рекомбинация происходит также между двумя повторами в пределах одной молекулы ДНК или между аллельными и неаллельными элементами одной и той же последовательности в двух разных хромосомах.
В ходе миграции ветви при спаривании цепей,принадлежащих разным спиралям, образуются гетеродуплексы. В таких гетеродуплексах в пределах сегмента между сайтом начала образования структуры Холлидея и сайтом кроссинговера может содержаться по одному или более ошибочно спаренных оснований. Они удаляются так же, как любые модифицированные основания при репарации ДНК. Однако, поскольку удалено может быть любое из ошибочно спаренных оснований, в обеих рекомбинантных спиралях в данном сайте могут оказаться одинаковые пары оснований, т.е. рекомбинация для этого сайта окажется нереципрокной. Таким образом, каждая из рекомбинантных спиралей может быть похожа на любой
из начальных дуплексов в тех позициях, где исходно они различались.

Общая рекомбинация с образованием двухцепочечного разрыва.
Альтернативный механизм общей рекомбинации включает образование двухцепочечного разрыва в одном из дуплексов-партнеров. Далее с помощью экзонуклеаз в месте разрыва образуется брешь. При спаривании 3"-одноцепочечного конца бреши с комплементарной цепью интактной спирали в последней образуется петля. Размер этой петли увеличивается по мере того, как ДНК-полимераза наращивает 3"-конец «вклинившейся» цепи. В итоге другой одноцепочечный конец бреши спаривается с комплементарной последовательностью в перемещающейся петле. В результате такого спаривания образуется система «праймер матрица», и ДНК-полимераза синтезирует недостающую цепь, заполняя брешь. Лигирование двух растущих концов с исходными цепями приводит к образованию двойной структуры Холлидея (т.е. структуры, в которой две спирали объединены двумя перекрестами,
по одному на каждом конце бреши). Миграция ветви в одном или обоих перекрестах передвигает оба места сцепления в любом направлении, при этом в участках, фланкирующих брешь, могут возникать ошибки. Разделение таких структур может идти двумя способами – с перекрестом и без него, с образованием четырех дуплексов.
Необходимо отметить некоторые особенности этого механизма. Образование ошибочных пар (гетеродуплексов) в районах, фланкирующих брешь, обусловливает получение как реципрокных, так и нереципрокных рекомбинаций между генетическими маркерами. Если двухцепочечный разрыв происходит вблизи (или в пределах) участка, где между спиралями имеются различия (замены оснований, делеции, вставки, инверсии и т.п.), то рекомбинанты унаследуют нуклеотидную последовательность
партнера, у которого разрыва не происходило. Этот механизм объясняет многие случаи генной конверсии, особенно те, в которых протяженная последовательность одного дуплекса замещается соответствующей, но отличающейся последовательностью другого
дуплекса.
Нереципрокная общая рекомбинация используется и при репарации некоторых повреждений ДНК. Например, если тиминовые димеры не были удалены из УФ-облученной ДНК до того, как к ним подошла репликативная вилка, то синтез комплементарной цепи в этом участке не может быть завершен. Поскольку тиминовые димеры, находящиеся напротив бреши, не могут быть вы-
щеплены, остается один путь для спасения хроматиды – использовать генетическую информацию гомологичной сестринской хроматиды и заполнить брешь. Для этого применяется такой же механизм, как для репарации брешей.
в.

Ферменты, участвующие в общей рекомбинации.

В общей рекомбинации участвуют два специфических фермента и еще несколько ферментов, катализирующих также процессы репликации и репарации ДНК. Энзимология общей рекомбинации изучена только для некоторых прокариотических организмов, в частности E. coli и ее фагов. Один из специфических ферментов, необходимых для успешной гомологичной рекомбинации, называется recА-белком.
Он катализирует обмен одиночными цепями, используя энергию гидролиза АТР до ADP и неорганического фосфата. RecA-зависимое внедрение одноцепочечных ДНК в дуплекс – первый этап рекомбинационного процесса в рамках обеих схем Холлидея и механизма с образованием двухцепочечных разрывов. Второй фермент, состоящий из трех отдельных субъединиц (В, С и D) и поэтому называемый recBCD-нуклеазой, обладает эндо- и экзонуклеазной, а также геликазной активностями. Механизм его действия до конца не установлен, однако известно, что
recBCD-нуклеаза индуцирует разрывы в дуплексной ДНК и благодаря присущей ей геликазной активности вместе с recА инициирует рекомбинационный.
Идентифицирован также фермент, разрезающий узлы в структурах Холлидея; при его участии образуются липкие концы, соединяемые лигазой. В общей рекомбинации участвуют также геликазы и белки, связывающиеся с одноцепочечной ДНК
(SSB; от англ. single strand binding); оба они необходимы для обеспечения процесса миграции ветви.

Как известно, перемещению цепей во время миграции ветви способствует Pol I, а в воссоединенииразорванных цепей участвует ДНК-лигаза. Для снятия топологических ограничений при раскручивании спирали и для раcпутывания перекрученных структур, по-видимому, нужны топоизомераза типа I и, возможно, гираза.

Гомологичная рекомбинация в репарации ДНК

Быстро делящиеся бактериальные клетки, содержащие несколько репликонов, образованных недореплицированными хромосомами, более устойчивы к действию ионизирующей радиации, которая индуцирует двухцепочечные разрывы ДНК, чем клетки с небольшим числом репликонов, находящиеся в стационарной фазе.
Гаплоидные клетки дрожжей в фазе G 1 перед началом синтеза ДНК чрезвычайно чувствительны к действию ионизирующей радиации, тогда как те же клетки в фазе G 2 перед митозом так же устойчивы к ионизирующему излучению, как и диплоидные клетки.
Эти факты указывают на то, что для эффективного исправления
повреждений, вызываемых ионизирующей радиацией, необходимо одновременное присутствие в клетке двух гомологичных молекул ДНК.

рис.1 Одна из моделей объясняющих репарацию двуцепочечных разрывов .
Процесс репарации условно разделяется на три этапа:
1. Пресинаптическая фаза - происходит внесение двухцепочечного разрыва в ДНК или, при его наличии, сразу осуществляется нуклеазное расщепление концов разрыва. В создании одноцепочечных 3’-OH-выступающих концов ДНК в месте разрыва принимает участие белок RecBCD, который обладает как геликазной, так и экзонуклеазной активностями. RecBCD расплетает двухцепочечную молекулу ДНК в месте разрыва и гидролизует одну из цепей в направлении 5’>3’, оставляя выступающий одноцепочечный участок.
2. Синаптическая фаза - происходит синапсис гомологичных участков двух молекул ДНК с вхождением комплементарного
одноцепочечного участка в ДНК-дуплекс и последующим репаративным синтезом ДНК. Поиск гомологичных участков и обмен цепями, необходимые для рекомбинации, происходят с участием белка RecA.
3. Постсинаптическая фаза - образовавшиеся структуры Холидея разделяются с помощью белков RuvA, -B и -C, RecG, а также белков SOS-системы репарации (RecN, UvrD, RecF и RecJ). Похожие механизмы используются клетками для рекомбинационной репарации одноцепочечных брешей, остающихся в молекулах ДНК из-за блокировки репликативного синтеза ДНК модифицированными нуклеотидами.

Многие продукты генов E. coli и дрожжей, участвующие в рекомбинационной репарации повреждений ДНК, имеют гомологи у животных и человека. Отличительной особенностью эукариотической рекомбинации и репарации является вхождение соответствующих белков в многочисленные белковые комплексы, в частности транскриптосомы и реплисомы, что
указывает на их важную роль в матричном биосинтезе нуклеиновых кислот эукариотических клеток.

РЕКОМБИНАЦИЯ (лат. re- приставка, означающая повторение, возобновление, + позднелат. combinatio соединение) - процесс перегруппировки генетического материала, результатом к-рого является появление новых сочетаний генетических структур (генов, хромосом, участков хромосом и т. д.) и контролируемых ими признаков у дочерних особей или клеток. Тот или иной вид генетической Р. существует у всех живых организмов и составляет материальную основу наследственной изменчивости (см.). Р. у эукариотов осуществляется в митозе (см.) и в мейозе (см.), когда происходит распределение хромосом и кроссинговер.

Примером генетической Р. служит следующее: напр., если один из родителей имеет светлые волосы и карие глаза, а другой - темные волосы и голубые глаза, то их дети могут унаследовать сочетание цвета волос и глаз кого-либо из родителей либо эти признаки проявятся у них в новых, рекомбинантных сочетаниях (светлые волосы и голубые глаза или темные волосы и карие глаза).

Существует несколько видов генетической Р. У эукариотов основными видами Р. являются: Р. несцепленных генов в результате независимого распределения негомологичных пар хромосом (см. Хромосомы) в мейозе и случайной встречи гамет при оплодотворении (см. Менделя законы); Р. сцепленных генов и несущих их гомологичных хромосом в результате кроссинговера. Иногда эти два вида Р. обозначают как Р. хромосом в широком смысле, хотя чаще иод Р. хромосом понимают только процесс кроссинговера и его результат. У прокариотов (бактерий, вирусов) аналогом кроссинговера является рекомбинация ДНК. О спектре изменчивости, обеспечиваемой Р., можно судить по следующему примеру. В нормальном хромосомном наборе человека 23 пары хромосом (см. Хромосомный набор). Если у индивида по каждой паре хромосом имеет место гетерозиготность хотя бы в одном локусе (в действительности степень гетерозиготности у человека гораздо выше), то только за счет независимого распределения негомологичных пар хромосом в мейозе такой индивид даст 2 23 , т. е. ок. 10 млн., генетических вариантов гамет. Наличие кроссинговера по меньшей мере удвоит это число. Поскольку то же самое может иметь место у брачного партнера, да еще и с вовлечением Р. по другим генам, то потенциальное генетическое разнообразие потомков одной человеческой пары будет порядка нескольких миллиардов вариантов. Этот пример показывает также, что спектр ком-бинативной изменчивости особенно широк при половом размножении многохромосомных биол. видов, в т. ч. и человека, что практически обеспечивает генетическую уникальность каждого индивида.

У многоклеточных организмов, помимо мейотической Р., может иметь место и митотическая (соматическая) Р., в результате к-рой у гетерозиготных по каким-либо признакам особей возможно появление участков (пятен) ткани, образованных клонами клеток рекомбинантного генотипа, а сами особи становятся так наз. мозаиками (см. Мозаицизм). Чем раньше в онтогенезе произойдет соматическая Р., тем большая доля клеток тела будет иметь рекомбинантный тип. В первом делении дробления Р. может дать мозаика с равными количествами исходных и рекомбинантных клеток. Если митотическая Р. затрагивает не только соматические клетки, но и инициальные клетки гонад, говорят о гонадно-соматическом мозаицизме. В этом случае часть потомства может унаследовать рекомбинантное сочетание генов. Спонтанный уровень митотической Р. обычно очень низок, но может сильно повышаться под воздействием ионизирующего излучения и других мутагенов (см.).

Рекомбинация хромосом

Р. гомологичных хромосом в мейозе доказана Т. Морганом с сотр. при изучении случаев дефицита рекомбинантов в ди- и тригибридных скрещиваниях по отношению к числу ожидаемых рекомбинантов в соответствии с законом независимого комбинирования. Были установлены следующие количественные закономерности.

1. Частота Р. каждой данной пары сцепленно наследуемых генов постоянна и не зависит от их исходной комбинации. Напр., при генотипе дигибрида АВ/ab частота рекомбинантных гамет АЬ и аВ будет такой же, как частота рекомбинантных гамет АВ и ab.

2. Частота Р. разных пар сцепленно наследуемых генов различна и может составлять от малых долей процента почти до 50% (последнее соответствует ожидаемой частоте рекомбинантов при несцепленном, независимом наследовании).

3. При малой и средней частоте Р. (не более 20%) у тригибридов по сцепленно-наследуе-мым признакам наибольшее значение частоты Р. равно сумме двух других. Напр., у тригибрида АВС/аЬс, если частота Р. между А и В составляет 5%, а между В и С - 10%, частота Р. между А и С окажется равной 15%.

Эти закономерности лучше всего объясняются тем, что сцегшенно-наследуемые признаки определяются генами, расположенными в линейной последовательности в фиксированных локусах одной и той же пары гомологичных хромосом, а их Р. является результатом обмена участками между гомологами (рис. 1), причем, чем дальше друг от друга находятся два гена, тем больше вероятность их Р. Такой обмен участками двух гомологичных хромосом в мейозе получил название кроссинговера или перекреста хромосом, а его продукты - кроссоверных хромосом. Комплексное генетическое (по фенотипическим признакам) и цитологическое (по маркерным хромосомам) изучение Р. позволило доказать реальность существования и всеобщность процесса кроссинговера в мейозе у всех эукариотических организмов. В норме кроссинговер происходит в строго гомологичных точках пары хромосом так, что они обмениваются строго одинаковыми по генным последовательностям сегментами. Тот факт, что при этом не наблюдают потери изучаемых маркеров, позволил сделать вывод, что кроссинговер происходит между генами без нарушения их целостности. Относительное постоянство частоты кроссинговера на каждом данном участке хромосомы послужило основанием для избрания этой частоты в качестве меры расстояния между генами.

За единицу генетической длины хромосомы принимается ее отрезок, на к-ром частота мейотического кроссинговера равна 1%. Эту единицу называют морганидой, кроссоверной единицей или единицей карты. Последнее название связано с тем, что полные данные по Р. сцепленно-наследуемых генов позволяют построить линейные генетические карты хромосом, описывающие последовательность генов и генетические расстояния между ними (см. Хромосомная карта). По мере накопления данных о генетических расстояниях между маркерами всегда оказывалось, что число выявленных групп сцепления имеет своим верхним пределом число хромосом в гаплоидном наборе данного вида. Это является еще одним доводом в пользу того, что сцепленное наследование признаков есть проявление локализации контролирующих их генов на одной паре гомологичных хромосом.

Рис. 2. Схематическое изображение множественного кроссинговера: I - исходные хромосомы, условно обозначенные ABCDEFGH и abcdefgh (пунктиром показаны места будущего перекреста); АВ - ab, CD - cd, EF - ef и GH - gh. - гомологичные участки хромосом; II - перекрест; III - кроссоверные хромосомы: ABcdEFgh и abCDefGH.

Между генами, расположенными далеко друг от друга на одной хромосоме, может произойти несколько перекрестов (рис. 2). Продукты четного числа перекрестов будут неотличимы от исходных сочетаний. Поэтому для построения точных генетических карт прибегают к последовательному объединению относительно коротких участков хромосом, на к-рых множественные перекресты менее вероятны.

На оценку рекомбинационных расстояний между сцепленными генами влияет интерференция крос-синговера - изменение вероятности второго события кроссинговера на участке хромосомы, примыкающем к точке предыдущего перекреста в данном процессе мейоза. Мерой интерференции служит коэффициент коинциденции (совпадения) - отношение частоты реально наблюдаемых двойных перекрестов на участке хромосомы к их частоте, ожидаемой на этом участке в отсутствие интерференции, т. е. к произведению частот одинарных перекрестов. В отсутствие интерференции коэффициент коинциденции равен 1. Если случившийся кроссинговер препятствует осуществлению второго кроссинговера вблизи данного локуса той же пары хромосом в том же мейозе, то интерференцию называют положительной; в этом случае коэффициент коинциденции может иметь значения от нуля (абсолютная интерференция) до величин, близких к единице. Если первый кроссинговер повышает вероятность второго, что случается реже, то говорят об отрицательной интерференции (коэффициент коинциденции больше 1).

Расстояния между генами на генетических картах не строго пропорциональны физическим расстояниям между ними на хромосомах, но последовательность расположения генов в обоих случаях одна и та же. Это обусловлено неодинаковой частотой кроссинговера в разных участках хромосом. Напр., на околоцентро-мерных гетерохроматических участках хромосом кроссинговер обычно (но не у всех объектов) на одну единицу физической длины хромосомы случается реже, чем в эухроматиче-ских участках.

Мейотический кроссинговер, ведущий к формированию рекомбинантных гамет, обусловливает комбинативную генотипическую изменчивость (см.) и обеспечивает все внутривидовое генетическое разнообразие и формирование (но и распад) коадаптированных генных комплексов. Препятствовать рекомбинационному распаду уже возникших генных комплексов могут инверсии хромосом (см. Инверсия), особенно перекрывающиеся, широко распространенные у гетерозигот в природных популяциях нек-рых биологических видов.

Наряду с мейотическим возможен и митотический кроссинговер, происходящий в соматических клетках и ведущий к возникновению клонов рекомбинантных клеток, к-рые могут проявляться мозаицизмом по соответствующим признакам. Мейотический кроссинговер происходит в профазе I мейоза, когда хромосомы представлены четырьмя хроматидами, при этом рекомбинируют только две, как правило, несестринские, хроматиды. Собственно обмену генетического материала предшествует разрыв хроматид, хотя нельзя исключить и механизм обмена путем периодической смены матриц в процессе репликации ДНК хромосом (см.. Репликация).

Необходимой предпосылкой правильного (строго равного) кроссинговера является конъюгация хромосом (см.), при к-рой локусы хромосом точно «опознают» друг друга так, что в контакт вступают только строго гомологичные участки хромосом. На молекулярном уровне специфичность конъюгации хромосом в мейозе обеспечивается, по-видимохму, наличием в составе ДНК хромосом большого числа коротких (примерно по 100 нуклеотидов каждая) последовательностей так наз. зиготенной ДНК (зДНК), довольно равномерно и часто распределенных по всей длине всех хромосом. К стадии лепто-тены вся ДНК хромосом, кроме зДНК, удваивается и образует супер-спирализованные нити, соединенные с гистонами (см.), а зДНК вступает в контакт по всей длине двух конъюгирующих хромосом. В начале стадии зиготены появляется специфический белок, способный расплетать двойные спирали ДНК, не связанной с гистонами. Т. о., зДНК расплетается и с помощью водородных связей образует с зДНК гомологичной хромосомы гибридные двойные спирали - гетеродуплексы. Их образование происходит строго комплементарно, и они последовательно распространяются по длине конъюгирующих хромосом. Параллельно идет образование так наз. синапто-немного комплекса, к-рый состоит из двух продольных белковых тяжей и тонких поперечных белковых волокон. Этот комплекс обеспечивает фиксацию хромосом в положении гомологичной конъюгации и в то же время препятствует их необратимому слипанию. В зиготене гетеродуплексы зДНК распадаются, а сама зДНК реплицируется.

Инверсии хромосом, особенно множественные перекрывающиеся инверсии, препятствуют Р. хромосом, т. к. множественные различия в последовательностях генов обычной хромосомы и ее инвертированного гомолога не дают возможности инвертированным хромосомам специфически конъюгировать по всей длине. Хромосомы со множественными инверсиями получили название запирателей перекреста. Они широко используются в генетическом анализе, для предупреждения перестройки тестируемых хромосом.

Основными аномалиями Р. хромосом являются неравный кроссинговер и конверсия генов. Неравный кроссинговер возникает довольно редко и обычно приурочен к определенному локусу хромосому, где конъюгация, происходит не строго гомологично, а с нек-рым смещением. Причина такого смещения пока не ясна. В результате неравного кроссинговера одна кроссоверная хромосома несет удвоение (дупликацию) участка между точками разрыва гомологов, а в другой кроссоверной хромосоме происходит делеция этого участка. Хотя такие нарушения не всегда можно подтвердить цитологически, функционально они близки к микроскопически обнаружимым случаям дупликаций (см.) и делеций (см.), известны в мед. генетике как частичные трисомии и моносомии. В ряде случаев Такие аномалии хромосом могут быть причиной хромосомных болезней (см.). Существует также представление о том, что дупликация генов и участков хромосом с последующим независимым мутированиехм каждого из дубликатов служит важным механизмом эволюционного усложнения генетических систем. В процессе гаметогенеза у гетерозигот типа Аа хМожет происходить образование продуктов мейоза не в обычном соотношении 2А:2а, а в соотношении ЗА: 1а, хотя по соседним тесно сцепленным локусам соотношение 2:2 сохраняется. Такой феномен называют конверсией генов. Экспериментально конверсию генов удается наблюдать только у грибов. Существование и значение конверсии генов у других организмов почти не изучено.

Кроме обмена несестринскими хроматидами, характерного для мейотической и митотической Р., как в мейозе, так и в митозе могут происходить сестринские хроматидные обмены, обнаруживаемые только при дифференциальной идентификации (окраска, изотопная метка) сестринских хроматид.

Рекомбинация у бактерий

Процесс Р. у бактерий имеет нек-рые особенности, связанные со специфичностью их генетической организации, форм генетического обмена и функционирования систем генетической регуляции (см. Бактерии, генетика бактерий). Генетический материал бактериальной клетки представлен кольцевой молекулой ДНК, имеющей длину ок. 1000 мкм и конфигурацию суперспирали. Такая молекула способна к самокопированию - репликации (см.), функционируя при этом как самостоятельная единица (репликон) под контролем генетической системы регуляции. Кроме того, в клетках многих бактерий присутствуют дополнительные небольшие по размерам кольцевые молекулы ДНК - плазмиды (см.), эписомы (см.), способные к Р. При генетическом обмене между различными бактериями в реци-пиентную клетку обычно попадает лишь фрагмент хромосомы клетки-донора, что приводит к образованию частично диплоидных (меродиплоидных) зигот, тогда как плазмидные репликоны передаются полностью. После завершения переноса генетического материала в сформировавшихся меродиплоидных реципиентных клетках (зиготах) начинается процесс рекомбинации, к-рый по своему механизму напоминает кроссинговер хроматид конъюгирующих гомологичных хромосом эукариотов. Однако при Р. у бактерий в этом процессе участвует, с одной стороны, кольцевая молекула ДНК бактерии-реципиента (эндогенный генетический материал) и, с другой стороны, переданный в эту бактерию экзогенный фрагмент молекулы ДНК донора. Процесс начинается с синапса, т. е. с формирования соединения между экзогенным фрагментом ДНК и определенным участком эндогенной кольцевой молекулы ДНК, с к-рым этот фрагмент имеет гомологичные участки. Предполагают, что именно в этих местах возникают перекресты двух взаимодействующих структур, вслед за к-рыми в местах перекрестов с определенной частотой происходит разрыв молекул и последующее «ошибочное» воссоединение их разорванных концов. Результатом этого является включение того или иного фрагмента (либо нескольких различных фрагментов) экзогенного генетического материала в структуру эндогенного кольцевого репликона реципиент-ной бактериальной клетки, что обеспечивает возможность дальнейшего копирования включенного фрагмента (фрагментов). Противоположный (реципрокный) эндогенный фрагмент ДНК клетки-реципиента при кроссинговере превращается в экзогенную внехромосомную структуру» теряет способность копироваться и поэтому утрачивается бактериальной клеткой при последующих ее делениях. В результате Р. такого типа, получившей название классической или общей рекомбинации, из меродиплоидной зиготы возникают дочерние гаплоидные клетки (рекомбинанты) с теми или иными сочетаниями аллельных генов родительских генетических структур.

Классическая Р. у бактерий возможна не только между каким-либо репликоном и егонереплицирующейся частью (фрагментом этого репликона), но и между двумя различными полноценными репликонами (хромосомой и плазмидой, хромосомой и бактериофагом, двумя плазмидами и т. д.), если в структуре их ДНК имеются гомологичные участки. В результате такой Р. может происходить обмен генетическим материалом между реагирующими репликонами или же объединение (коинтеграция) двух взаимодействующих репликонов путем разрывов и воссоединений молекул ДНК в местах взаимной гомологии с образованием одной более крупной двурепликонной системы, а плазмида, обладающая свойствами эписомы, может с определенной частотой включаться в состав хромосомного репликона в процессе Р. в гомологичных участках этих структур и длительное время реплицироваться как часть единого (двойного) репликона под контролем хромосомной репликативной системы. Однако у небольшой части бактериальных клеток популяции, содержащих двойной репликон, возникают повторные Р., приводящие к возвращению интегрированной плазмиды в автономное состояние. Если в повторную Р. вовлекается участок гомологии, к-рый при первичной Р. служил местом взаимодействия двух структур, то происходит относительно правильное «вырезание» плазмидного репликона из состава двойного репликона. В случаях, когда повторная Р. происходит в иных участках гомологии, возможно включение нек-рых из прилежащих хромосомных генов в состав плазмидного репликона, т. е. происходит формирование «замещенной» плазмиды (рис. 3). Тот же механизм, приводящий к коинтегра-ции двух репликонов и к обмену участками генетического материала при их последующей диссоциации, имеет место, вероятно, и в случае Р. двух различных плазмид, обладающих гомологичными участками ДНК (рис. 4), а также плазмид и нек-рых бактериофагов или бактериофагов и хромосом. Все этапы классической Р. у бактерий обеспечиваются соответствующими ферментами (так наз. Иес-ферментами), а этот тип Р. обозначают также как Кес-зависимая Р.

Наряду с классической, или общей Р. широкое распространение у бактерий имеет «незаконная» рекомбинация, для осуществления к-рой не требуется значительной гомологии ДНК взаимодействующих структур. В такой Р. участвуют небольшие фрагменты ДНК, получившие название транслоцирующихся элементов, к-рые способны с определенной частотой перемещаться из одного репликона в другой, мигрируя среди бактериальных хромосом, плазмид, бактериофагов и др. (см. Транслокация). Известны два типа таких элементов - IS-элементы (англ. insertion sequences вставочные последовательности) и транспозоны. IS-элементы представляют собой специфические фрагменты ДНК, содержащие, вероятно, лишь те гены, к-рые необходимы для Р. с негомологичными участками различных репликонов. Эта Р. приводит к интеграции таких генов в структуры этих репликонов или к «вырезанию» соответствующих участков из таких структур. Однако конкретные механизмы такой Р. остаются неясными. При интеграции IS-элементов и их «вырезании» могут возникать мутации различных генов, связанные с перестройками (делециями, инверсиями, дупликациями и др.) соответствующих участков молекулы ДНК. Транспозоны представляют более сложные структуры, содержащие обычно в своем составе IS-элементы, к-рые и обеспечивают их «незаконную» Р., и дополнительные гены, не связанные с функциями интеграции (гены лекарственной устойчивости бактерий и др.).

Классическая и «незаконная» Р. бактерий обеспечивают широкие возможности генетического обмена между различными репликонами и их частями, что определяет высокие темпы изменчивости и эволюции этих структур и бактериальных популяций в целом в условиях интенсивного применения различных антибактериальных веществ и воздействий (антибиотиков, солей тяжелых металлов, ультрафиолетового и ионизирующего излучений и т. д.). В случае классической Р., требующей значительной гомологии взаимодействующих структур, эти процессы наиболее эффективны при внутривидовом генетическом обмене, тогда как «незаконная» Р. играет важную роль в перераспределении генов не только в пределах отдельных видов, но и между бактериями различных видов и родов. Предполагают также, что в результате включения идентичных IS-элементов и транспозонов в негомологичные участки репликонов бактерий различных видов возникают так наз. горячие точки Р., т. е. районы взаимной гомологии этих репликонов, обеспечивающие последующую классическую Р. между ними в условиях как внутривидового, так и межвидового обмена генетическим материалом. В микробиологии процессы Р. используются для получения гибридных форм бактерий с измененными вирулентными, антигенными и другими свойствами. Разработаны также методы создания искусственных рекомбинантов молекул ДНК из фрагментов, полученных с помощью рестриктаз, составляющие основу современной генной инженерии. Т. о., могут быть сконструированы новые рекомбинантные репликоны (плазмиды, бактериофаги), в структуре к-рых содержатся гены, в т. ч. полученные от многоклеточных организмов, представляющие практический интерес (напр., гены, контролирующие синтез определенных гормонов, витаминов, аминокислот, антибиотиков и др.). После введения таких репликонов в подходящие бактериальные клетки эти клетки могут быть использованы в мед. промышленности и других областях микробиол. производства для получения соответствующих биологически активных веществ. В результате спонтанной Р. возникают также различные атипичные формы патогенных и условно-патогенных бактерий.

Частота Р. может значительно колебаться в зависимости от ряда факторов. При классической Р. процесс способен существенно нарушаться из-за низкой гомологии взаимодействующих молекул, а также при мутациях генов, контролирующих Р. Низкая степень гомологии ДНК хромосом у бактерий различных видов и родов служит основной причиной низкой частоты Р. этих структур при межвидовых и межродовых скрещиваниях. Однако повторное использование полученных рекомбинантов в скрещиваниях может повышать частоту Р. за счет возрастания такой гомологии. Мутации, вызывающие потерю функциональной активности генов, контролирующих Р., приводят бактериальную клетку к полной или частичной потере способности осуществлять классическую Р., а также снижают ее способность к репарации генетических повреждений (см.).На процессы Р. у бактерий существенно влияют и факторы окружающей среды (состав питательной среды, температура, ультрафиолетовое и ионизирующее излучение, различные хим. вещества и др.).

Для изучения Р. у бактерий пользуются радиобиологическими, электронно-микроскопическими и другими физ.-хим. методами исследования, а также методами генетического анализа (см.) бактерий. Различные методы определения частоты Р. сцепленных генов лежат в основе генетического картирования бактерий.

Библиография: Бреелер С. Е. Молекулярная биология, с. 305, JI., 1973, библиогр.; Гершензон С. М. Основы современной генетики, с. 93, Киев, 1979; Кушев В. В. Механизмы генетической рекомбинации, Л., 1971, библиогр.; Ме fi-не л л Г. Бактериальные плазмиды, пер. с англ., с. 33 и др., М., 1976, библиогр.; Рекомбинантные молекулы, под ред. Р. Бирса и Э. Бэсита, пер. с англ., М., 1980, библиогр.; Физиологическая генетика, под ред. М. Е. Лобашева и С. Г. Инге-Вечтомова, с. 129 и др., Л.„ 1976, библиогр.; Хэйс У. Генетика бактерий и бактериофагов, пер. с англ., с. 257, 476 и др., М., 1965; Цитология и генетика мейоза, под ред. В. В. Хвостовой и Ю. Ф. Богданова, М., 1975.

В. И. Иванов; В. П. Щипков (бакт.).

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Размещено на http://www.allbest.ru/

Введение

Генетическая рекомбинация - это важный процесс реорганизации генетического материала, обусловленный обменом отдельными сегментами двойных спиралей ДНК, приводящее к возникновению новых комбинаций генов.

Генетическая рекомбинация - главный фактор непостоянства генома, основа большинства его изменений, обусловливающая естественный отбор, микро- и макроэволюции.

Рекомбинация может происходить путем обмена клеточными ядрами, целыми молекулами ДНК или частями молекул. В то время как процессы репликации и репарации ДНК обеспечивают воспроизведение и сохранение генетического материала, рекомбинация приводит к генетической изменчивости.

Она получила развитие у всех живых организмов: у эукариот, у бактерий и даже при размножении вирусов, в том числе таких, генетический материал которых состоит из РНК.

Перетасовка хромосом в мейозе, приводящая к огромному разнообразию гамет, случайность слияния гамет при оплодотворении, обмен частями между гомологичными хромосомами - все это (и далеко не только это) относится к рекомбинации.

Двойная спираль ДНК обычно не взаимодействует с другими сегментами ДНК, и в клетках разные хромосомы пространственно разделены в ядре. Это расстояние между разными хромосомами важно для способности ДНК действовать в качестве стабильного носителя информации. В процессе рекомбинации с помощью ферментов две спирали ДНК разрываются, обмениваются участками, после чего непрерывность спиралей восстанавливается.

Различают два основных типа генетической рекомбинации:

1) "законную" (общую, или гомологичную), при которой происходит обмен гомологичными (одинаковыми) участками молекул ДНК;

2) "незаконную" (негомологичную), в основе которой лежит обмен негомологичными участками ДНК.

Генетическую рекомбинацию называют сайт-специфичной, если обмен между разными молекулами ДНК осуществляется только в участках со строго определенными нуклеотидными последовательностями, если в любых местах молекулы ДНК - сайт-неспецифичной.

1 . Зак

Законная генетическая рекомбинация обычно сайт-неспецифична, хотя довольно часто у бактерий и высших организмов она может проявлять черты сайт-специфичности, т. е. избирательности к определенным нуклеотидным последовательностям ДНК (так называемые горячие точки рекомбинации). Такие последовательности резко повышают частоту рекомбинации в тех участках генома, в которых они локализованы.

Законная генетическая рекомбинация наблюдается, например, между двумя копиями какой-либо хромосомы. У эукариот (все организмы, за исключением бактерий и сине-зеленых водорослей) наиболее типичен обмен участками гомологичных хромосом в мейозе (деление клеток, в результате которого происходит уменьшение числа хромосом в дочерних клетках - основная стадия образования половых клеток). Этот обмен может происходить между плотно конъюгированными хромосомами на ранних стадиях развития яйца или сперматозоида. Реже - законная генетическая рекомбинация осуществляется при обычном делении клеток (с сохранением числа хромосом) - митозе.

У прокариот (бактерии и сине-зеленые водоросли), у которых отсутствует мейоз, а геном представлен только одной молекулой ДНК, законная генетическая рекомбинация сопряжена с такими естественными формами обмена и переноса генетического материала, как конъюгация (хромосомы из донорской клетки передаются в рециниентную через протоплазменный мостик-пиль), трансформация (ДНК проникает из среды через клеточную оболочку), трансдукция (передача ДНК осуществляется бактериофагом, или вирусом бактерий). У вирусов генетическая рекомбинация происходит при заражении ими клеток. После лизиса клетки обнаруживаются вирусы с рекомбинантными ДНК. У прокариот рекомбинацию генетическую осуществляют специальные клеточные белки (многие из них ферменты).

1.1 Гомологичная генетическая рекомбинация

В основе молекулярного механизма законной генетической рекомбинации лежит принцип "разрыв-воссоединение" двух гомологичных молекул ДНК. Этот процесс называют кроссинговер, он включает несколько промежуточных этапов:

1) узнавание участков;

2) разрыв и реципрокное (крест-накрест) воссоединение молекул: замена одних цепей гомологичными;

3) устранение ошибок, возникающих в результате неправильного спаривания участков.

Точка обмена может возникать на любом участке гомологичных нуклеотидных последовательностей хромосом, вовлекаемых в обмен. При этом в точке обмена обычно не происходит изменения нуклеотидных последовательностей. Точность разрыва и воссоединения чрезвычайно велика: ни один нуклеотид не утрачивается, не добавляется и не превращается в какой-нибудь другой.

Все, что говорилось о гомологии ДНК и комплементарности полинуклеотидных цепей, относится к гомологичной, или общей, рекомбинации, основанной на спаривании комплементарных цепей ДНК. От других типов рекомбинационных процессов ее отличают необходимость в общей (по всей длине молекул) гомологии между рекомбинирующими ДНК и участие большого набора специальных белков. Гомологичная рекомбинация начинается с возникновения в одном или обоих дуплексах участков из одиночных цепей ДНК, которые затем с помощью специальных белков находят комплементарные последовательности в гомологичном дуплексе и образуют с ними гетеродуплекс - ключевой промежуточный продукт (интермедиат) рекомбинации. Конечным результатом рекомбинации будет обмен равными частями гомологичных молекул

Из общей рекомбинации можно выделить как частный случай так называемую эктопическую рекомбинацию. Она заключается в обменах (кроссинговерах) между отдельными участками гомологичной ДНК, разбросанными по геному. К ним относятся разнообразные подвижные элементы, названные так за способность перемещаться по геному, гены транспортных и рибосомных РНК, гистонов и многие другие повторяющиеся последовательности (повторы) ДНК. Такая локальная гомологичная рекомбинация интересна прежде всего тем, что она может приводить к хромосомным перестройкам, хотя ее биологическая роль этим не исчерпывается. Это только часть возможных перестроек хромосом. Другие их типы могут возникать в зависимости от того, какова ориентация повторов ДНК по отношению друг к другу (прямая или обратная), и от того, где они расположены: внутри одной хромосомы, в сестринских хроматидах или разных хромосомах. Несмотря на то, что обмены происходят между локальными участками гомологии, эктопическая рекомбинация осуществляется в основном теми же белками, что и гомологичная.

1.2 Модель Холлидея

Рассмотрение гомологичной рекомбинации невозможно без общей модели кроссинговера, опубликованного в 1964 году американским генетиком Р. Холлидеем. Модель была формальной, без детализации молекулярных механизмов рекомбинационных реакций, она не рассматривала белки, их осуществляющие, поскольку в начале 60-х годов большинство из них не было известно. Но как раз в то время началось бурное развитие молекулярной генетики и случилось так, что новые экспериментальные результаты хорошо вписались в модель Холлидея, дополняя и уточняя ее. По существу история молекулярной генетики рекомбинации - это развитие модели Холлидея. Она разработана для мейотического кроссинговера. Напомним, что ядро мейотической клетки в профазе I содержит по четыре гомологичных хроматиды, но в каждом отдельном акте кроссинговера участвуют только две из них.

В принципе для того, чтобы гомологичные молекулы ДНК поменялись своими частями, сначала должны произойти разрывы во всех цепях обоих дуплексов, а уже потом - обмен цепями и замыкание разрывов. У Холлидея разрывы происходят не одновременно, а в два этапа. Рекомбинация начинается с первичных одноцепочечных разрывов фосфодиэфирных связей ДНК (их вносит фермент эндонуклеаза). Разрывы происходят в двух цепях одинаковой полярности. Холлидей также постулировал, что первичные разрывы возникают не в случайных, а в определенных сайтах ДНК. Впоследствии эта идея получила экспериментальное подтверждение.

Далее от точек первичных разрывов происходит обмен цепями между дуплексами, который приводит к образованию крестообразной структуры, получившей впоследствии название "полухиазма Холлидея". Такое название объясняется тем, что в полухиазме в обмен вовлечены только две цепи ДНК из четырех, что отличает ее от полной хиазмы - характерного продукта завершенного мейотического кроссинговера, давно известного биологам. Затем происходит очень важный процесс - перемещение точки перекреста цепей в полухиазме вдоль рекомбинирующих дуплексов. Такое явление описано под названием "миграция ветвления". Оно заключается в следующем: от точки перекреста цепей происходит расплетание исходных дуплексов и высвобождающиеся цепи тут же ренатурируют с комплементарными цепями из гомологичных дуплексов, что приводит к образованию и последующему удлинению гетеродуплекса (B / b). Именно в удлинении гетеродуплекса и заключается биологический смысл миграции ветвления. Ее осуществляют специальные ферменты. Размеры гетеродуплекса при мейотическом кроссинговере колеблются от нескольких сот до одной тысячи п.н., при рекомбинации в соматических клетках и клетках прокариот он еще протяженнее.

Гетеродуплекс сформирован. Образовавшаяся сложная разветвленная структура должна разделиться на гомологи. Это называется разрешением полухиазмы. Для разрешения необходимы еще два разрыва цепей: вторичные разрывы завершат обмен цепями. Но прежде чем это случится, полухиазма должна претерпеть еще одно превращение - изомеризацию. Изомеризация заключается в изменении структуры полухиазмы, которое происходит за счет обычного теплового движения молекул. Структуры в и в" идентичны. В структуре в" происходит один поворот на 180 любой пары дуплексных сегментов (плеч). Образовавшаяся структура может разрешиться двумя парами вторичных разрывов. Парные разрывы цепей одинаковой полярности 1-1 или 2-2 приводят к двум типам рекомбинантных хроматид: хроматиды первого типа содержат внутренний гетеродуплекс B / b, а по конфигурации фланговых маркеров А и С не отличаются от исходных (некроссоверные хроматиды); рекомбинантные хроматиды второго типа кроссоверные, они также содержат гетеродуплекс, но обмениваются частями по обе стороны от него. Оба типа продуктов рекомбинации равновероятны, что соответствует генетическим данным, на которые опирался Холлидей при создании своей модели.

Здесь необходимо сделать небольшое отступление по поводу одного важного процесса, происходящего в гетеродуплексе. Как уже указывалось, от исходных молекул в рекомбинационный гетеродуплекс могут войти разные аллели, и тогда в нем возникнут неспаренные основания, которые локально нарушат структуру двойной спирали ДНК. Эти нарушения узнаются специальными ферментными системами, работающими по типу эксцизионной репарации. Они проводят коррекцию неспаренных оснований в гетеродуплексе: удаляют неспаренное основание в одной цепи ДНК и застраивают образующуюся брешь по матрице другого аллеля в комплементарной цепи, тем самым превращая (конвертируя) один аллель в другой. Это явление было давно известно под названием "конверсия гена", но теперь мы знаем, что в ее основе лежит коррекция гетеродуплекса. Если гетерозиготная клетка A / a вступает в мейоз, то в норме среди продуктов мейоза оба аллеля гена A будут представлены в равном соотношении: 2A: 2a. Однако если в районе хромосомы, где расположен ген A, произойдет кроссинговер, то сформируется гетеродуплекс A / a с локально неспаренными основаниями, что может привести к конверсии гена A: расщепление аллелей гена среди продуктов мейоза будет 3A: 1a или 1A: 3a. Расщепление по генам, расположенным вне участка кроссинговера, сохранит нормальное соотношение аллелей 2: 2. Мы видели при разборе модели Холлидея, что содержащие гетеродуплекс продукты рекомбинации с кроссинговером и без кроссинговера по внешним генам равновероятны, иными словами, конверсия гена в мейозе может одинаково часто сопровождаться и не сопровождаться обменом по внешним генам. Этот факт был основным среди упомянутых выше генетических данных, опираясь на которые Холлидей создавал свою модель.

Модель Холлидея симметрична: первичные разрывы возникают одновременно в обоих гомологах и обмен цепями происходит синхронно. Однако имеются генетические данные об асимметричных обменах, полученные, в частности, на дрожжах. В этих случаях первичный разрыв возникает только в одном дуплексе, затем от точки разрыва отделяется одна цепь ДНК, которая внедряется в гомологичный дуплекс и в ходе последующей миграции ветвления вытесняет из него цепь той же полярности. После этого обмен превращается в симметричный.

Модель Холлидея в ее современном виде общепризнанна и универсальна для прокариот и эукариот (и для половых, и для соматических клеток). Ее достоинством является тот факт, что она хорошо проверяется генетическими данными, и практически все ее этапы постепенно нашли экспериментальное подтверждение. Полухиазмы Холлидея хорошо видны под электронным микроскопом. Обнаружены специальные эндонуклеазы (их называют резолвазами), которые осуществляют разрешение полухиазмы. К настоящему времени такие резолвазы обнаружены у бактериофагов T4 и T7, E. coli, дрожжей и человека. У E. coli выявлены также белки, осуществляющие миграцию ветвления полухиазмы.

2. Незак онная генетическая рекомбинация

Изначально, термин незаконная рекомбинация был определен Франклином как рекомбинация между последовательностями с небольшими участками гомологии или не имеющими гомологии вообще.

В настоящее время имеет смысл принять более широкое определение, которое исключает рекомбинационные события, являющиеся результатом нормальной или законной транспозиционной деятельности или деятельности специализированных рекомбинационных систем (например, инсерция и высвобождение ДНК). Франклин рассматривал, что незаконная рекомбинация может быть следствием ошибок в белках, ответственных за разрезание и сшивание или репликацию ДНК.

Незаконная генетическая рекомбинация имеет выраженный локальный характер. В этом случае весь процесс с его начальным этапом узнавания, который сводит вместе две спирали ДНК, направляется особым рекомбинационным ферментом; спаривания оснований здесь не требуется (даже в тех случаях, когда это все-таки происходит, в процессе участвует не более несколько пар оснований). Интеграция транспозонов, плазмид и умеренных фагов в бактериальный геном может служить примером генетическая рекомбинация этого типа. Подобный механизм существует также и в эукариотических клетках.

При незаконной генетической рекомбинации в обмен вступают короткие специфические нуклеотидные последовательности одной или обеих спиралей ДНК, участвующих в этом процессе. Таким образом такая генетическая рекомбинация изменяет распределение нуклеотидных последовательностей в геноме - соединяются участки ДНК, которые до этого не располагались в непрерывной последовательности рядом друг с другом. Подобный обмен гетерологическими участками ДНК приводит к возникновению вставок, делеций, дупликаций и транслокаций генетического материала.

У эукариот перемещения разных генетических элементов, сопряженные с незаконной генетическая рекомбинация, осуществляются преим. не в мейозе, когда контактируют парные хромосомы. а во время обычных клеточных циклов (митозе). Незаконная генетическая рекомбинация играет важную роль в эволюционной изменчивости, т. к. благодаря ей осуществляются самые разнообразные, нередко кардинальные, перестройки генома и, следовательно, создаются предпосылки для качеств. изменений в эволюции данного организма.

3. Сайт-специфич еская генетическая рекомбинация

В 1962 г. А. Кэмпбелл, исследуя интеграцию генома фага X в хромосому Е. coli, обнаружил, что встраивание происходит водном, строго определенном сайте бактериальной хромосомы. Это наблюдение положило начато изучению механизмов рекомбинации между молекулами ДНК с низким уровнем гомологии или с полным ее отсутствием. Различают два типа сайт-специфической рекомбинации: двойную, или собственно сайт-специфическую (оба рекомбинирующих дуплекса ДНК несут последовательности, специфично распознаваемые ферментами рекомбинации), и одиночную (такие последовательности находятся только в одном из дуплексов ДНК), называемую незаконной. Различия между сайт-специфической и незаконной рекомбинацией не четкие и связаны со степенью сходства нуклеотидных последовательностей, участвующих в данном процессе.

Обязательное условие сайт-специфической рекомбинации - наличие короткого (около 10 п.н.) участка гомологии у двух взаимодействующих молекул ДНК. Процесс обеспечения специфическими ферментами - рекомбиназами, распознающими области гомологии и катализирующими обмен генетическим материалом. Эти ферменты могут быть подразделены на две основные группы: топоизомеразы (Хег, Сrе, Int/Xis) и резольвазы (Tn-резольвазы, инвертазы).

В результате сайт-специфической рекомбинации образуются два типа продуктов. Если рекомбинирующие участки ориентированы противоположно (АВ и ВА), то рекомбинантный сегмент окажется инвертированным. Если же сайты рекомбинации ориентированы в одном направлении (АВ и АВ), результатом обмена будет делеция вышеназванного сегмента и образование кольцевой молекулы из оставшейся ДНК. Иначе говоря, рекомбинация инвертированных повторов порождает инверсию участка гомологии, а прямых - его делецию.

Редкий, если не единственный, но зато жизненно важный пример сайт-специфической рекомбинации у многоклеточных животных - перестройки в последовательностях ДНК, кодирующих иммуноглобулины, - белковые молекулы, распознающие тот или иной антиген при иммунном ответе у позвоночных.

4. Транспозиции

гомологичный генетический рекомбинация транспозиция

Рекомбинационные процессы еще одного типа - транспозиции лежат в основе перемещений подвижных генетических элементов. Подвижные элементы - это особые последовательности ДНК, способные, как это следует из их названия, к перемещениям из одного участка молекулы ДНК (хромосомы или плазмиды) в другой, или в другую молекулу в той же клетке, или даже в клетки другого организма. Они широко распространены как у прокариот, так и у эукариот и при этом отличаются высоким разнообразием. Подвижные элементы, как правило, не существуют автономно, и для них характерно нахождение в составе хромосом или плазмид. В большинстве своем подвижные элементы прокариот и эукариот построены по сходному плану и состоят из центральной части, фланкированной концевыми обращенными повторами.

Транспозиции осуществляются особыми белками, ген (или гены) которых в основном локализован в самих подвижных элементах, в их центральной части. Главный белок транспозиции - транспозаза. Рекомбинация между подвижным элементом и той ДНК, в которую он будет встраиваться (ее называют ДНК-мишенью), происходит на уровне дуплексов, не имеющих, как и в случае сайт-специфической рекомбинации, пресинаптических фиксированных повреждений. Поскольку рекомбинация происходит точно по концам подвижного элемента, транспозиции можно рассматривать как сайт-специфический процесс, но только в отношении самого элемента, так как встраивание элементов в ДНК-мишень чаще всего происходит в случайные сайты. Важно отметить, что сколько-нибудь заметная гомология между подвижным элементом и ДНК-мишенью отсутствует.

5 . Биологическое зна чение генетической рекомбинации

Очевидным результатом рекомбинации генетического материала в мейозе и полового размножения в целом является производство генотипически неоднородного потомства. Нередко подразумевается, что в этом и заключается функция генетических рекомбинаций. Согласно такому взгляду, половое размножение - адаптация к вариабельности внешних условий в последовательных поколениях.

Это объяснение значения рекомбинации было подвергнуто всестороннему анализу Мейнардом Смитом. Главный результат этого анализа - вывод, что естественный отбор мог бы обеспечить преимущество половому размножению только в случае весьма маловероятных постоянных перемен в условиях внешней среды, когда в каждом поколении требовались бы новые генотипы, характеризующиеся высокой приспособленностью.

Считающееся классическим объяснение функции генетических рекомбинаций, данное Фишером и независимо от него Меллером, указывает на значение не генотипического разнообразия вообще, а объединения в одном геноме каких-либо двух независимо возникших благоприятных мутаций.

Установлено, что для выявления преимуществ генетических рекомбинаций в концепции Фишера-Меллера большое значение могли бы иметь периодические сокращения численности популяции, т. е. условия генетического дрейфа. В этом случае рекомбинация обеспечивает объединение благоприятных аллелей разного происхождения на фоне пониженной (в условиях дрейфа) вероятности возникновения двух или нескольких благоприятных мутаций в одном геноме.

Очевидно, что объединение полезных мутаций, возникающих в разных особях популяции, в отсутствие рекомбинаций невозможно. Фелсенстейн трактует эту ситуацию, как рекомбинационный дисбаланс, или неравновесность «по сцеплению». Таким образом, генетические рекомбинации устраняют неравновесность «по сцеплению» (точнее по комбинированию) благоприятных мутаций, возникающих у разных особей популяции.

Аналогичное рассуждение Фелсенстейн применил также к процессу «бесконечного» накопления вредных мутаций в бесполых генерациях, известному как «храповик Меллера». Генетические рекомбинации останавливают «обороты» храповика Меллера, тоже как бы устраняя рекомбинационный дисбаланс, но на этот раз в отношении неблагоприятных мутаций: если в популяции в результате дрейфа каждая особь содержит хотя бы одну неблагоприятную мутацию, то подобная «неравновесность» устраняется в результате появления рекомбинантных форм, не содержащих неблагоприятных мутаций.

В концепции Фишера-Меллера преимущество полового размножения реализуется через так называемый групповой отбор, который проявляется как выживание в эволюции популяций и видов, обладающих половым размножением, и соответственно как вымирание видов, теряющих способность к половому размножению.

Но в рамках изложенного выше представления о том, что генетические рекомбинации могли бы способствовать объединению благоприятных мутаций и препятствовать распространению вредных мутаций, устраняя неравновесность популяции «по сцеплению», были предложены модели, в которых индивидуальный отбор также направлен на повышение частоты рекомбинаций. В этих моделях две сцепленные благоприятные мутации препятствуют отбору друг друга в соответствии с эффектом Хилла-Робертсона. В том случае, если имеется третий сцепленный ген, обусловливающий рекомбинацию благоприятных аллелей, этот ген с высокой вероятностью наследуется рекомбинантами, у которых происходит объединение благоприятных аллелей.

Подобный механизм отбора в отношении гена, влияющего на рекомбинацию, известен под названием «попутного транспорта» или «бесплатного проезда». Как отмечает Мейнард Смит, модели, основанные на механизме «попутного транспорта», объясняя полезность какого-то уровня рекомбинации, не объясняют, почему реально в природе наблюдается высокий уровень частоты рекомбинаций.

Следует заметить, что большинство популяционно-генетических работ еще находится на уровне представлений об эволюционном процессе, сложившихся в 20-е годы нашего века. Согласно этим представлениям, эволюция (прогрессивная) представляет собой непрерывный процесс накопления благоприятных мутаций, повышающих приспособленность организмов. В подобном представлении об эволюции генетическим рекомбинациям, очевидно, вообще нет места, что, собственно, и объясняет не очень успешные попытки отыскать им «применение».

Между тем, рекомбинациям принадлежит центральная роль в прогрессивной эволюции, по ходу прогрессивной эволюции принципиально различные виды отбора закономерно сменяют друг друга.

В основе упомянутой модели лежит представление о цикличности эволюционных преобразований. В следующих друг за другом эволюционных циклах каждый очередной цикл инициируется появлением «перспективной» гибридной формы, характеризующейся, тем не менее, понижением общей приспособленности (плодовитости и жизнеспособности) из-за физиологического дисбаланса, вызванного аутбридингом. Отсюда отбор на первой стадии эволюционного цикла в самом деле направлен на повышение приспособленности и на «приобретение» соответствующих мутаций в каждом поколении.

Однако если в результате отбора на повышение общей приспособленности будет превзойден некоторый пороговый уровень, то возникают условия внутривидовой конкуренции за источники питания. На этом этапе отбор на более эффективную утилизацию пищевых ресурсов неизбежно сопряжен с постепенным сужением экологического потенциала в отдельных подвидах и расах, что ведет к их дивергенции. Особенностью действия отбора на данном этапе является то, что каждый шаг на пути дальнейшей специализации подвидов или рас инициируется выживанием определенной мутантной формы, характеризующейся общим понижением приспособленности.

Наконец, на заключительном этапе цикла на фоне общего кризиса, вызванного недостатком пищевых ресурсов, происходит взаимодействие дивергировавших рас и образование путем рекомбинации очередной перспективной гибридной формы, соединяющей в себе экологический потенциал родительских рас.

Заключение

Мы рассмотрели далеко не все примеры рекомбинационных систем, ведущих к перестройкам в генетическом материале. Их много, и их роль разнообразна. Как и в случае гомологичной рекомбинации, процессы, основанные на негомологичной рекомбинации, играют большую роль в эволюции, но их функции проявляются особенно значимо в онтогенезе как прокариотических, так и эукариотических организмов. Сайт-специфическая рекомбинация играет ключевую роль в жизненных циклах умеренных бактериофагов.

Биологическая роль транспозиций и лежащих в их основе подвижных генетических элементов огромна. Подвижные элементы достигли большого разнообразия и распространились среди представителей всех систематических групп живого мира. У некоторых организмов они составляют существенную часть генетического материала: у дрозофилы и человека на их долю приходится, по оценкам разных исследователей, 5-10% геномной ДНК. Зачем нужно столько "лишней" ДНК, пока непонятно. В качестве частичного объяснения можно предполагать, что избыточная ДНК является материалом для эволюции. Полностью биологическая роль подвижных элементов будет выяснена нескоро.

Размещено на Allbest.ru

Подобные документы

    Понятие и общее описание механизма рекомбинации генов, классификация и типы форм его реализации: общей и сайт-специфической. Особенности взаимодействий, обусловленных спариванием оснований между комплементарными цепями гомологичных спиралей ДНК.

    курсовая работа , добавлен 18.10.2013

    Выявление параллелизма в поведении генов и хромосом в ходе формирования гамет и оплодотворения. Понятие генетической рекомбинации, исследование явления на дрозофилах, проведенное Т. Морганом. Основные положения хромосомной теории наследственности.

    презентация , добавлен 28.12.2011

    История открытия основных свойств генетических систем: репликации, рекомбинации и репарации. Биохимические исследования экспрессии и регуляции эукариотических генов. Введение новой генетической информации в клетки. Основные принципы клонирования.

    реферат , добавлен 27.07.2009

    Мейоз как один из ключевых механизмов наследственности и изменчивости. Биологическое значение мейоза: поддержание постоянства кариотипа в ряду поколений, обеспечение рекомбинации хромосом и генов. Законы Грегора Менделя как основа классической генетики.

    презентация , добавлен 15.04.2014

    презентация , добавлен 28.12.2011

    Механизм эволюции прокариотического и эукариотического геномов. Свойства, отбор и динамика рисунка локализации мобильных генетических элементов. Роль мобильных генетических элементов и горизонтального переноса генетического материала в эволюции генома.

    курсовая работа , добавлен 30.09.2009

    История, цели и основы генетической инженерии; биоэтические аспекты. Группы генетических заболеваний, их диагностика и лечение. Применение генетической инженерии в медицинской практике: генные вакцины, генотерапия, производство лекарственных препаратов.

    реферат , добавлен 26.10.2011

    Наследственность и генетические рекомбинации у бактерий. Химический состав, размножение и особенности питания бактериальной клетки. Ферменты микроорганизмов. Мутация, молекулярные изменения в хромосоме. Деление стафилококка путем врастания перегородок.

    презентация , добавлен 23.02.2014

    Изменчивость (биологическая)- разнообразие признаков и свойств у особей и групп особей любой степени родства, ее формы. Генетическая рекомбинация и трансформация. Изменчивость фагов и микроорганизмов. Практическое применение изменчивости микроорганизмов.

    реферат , добавлен 26.12.2013

    Задачи физиологии микроорганизмов. Анализ химического состава бактериальной клетки. Особенности и механизмы питания аутотрофных и гетеротрофных бактерий, их ферменты, процесс дыхания и размножения. Наследственность и генетические рекомбинации у бактерий.

Рекомбинация - это процесс, который обеспечивает перемешивание генов в ряду поколений. При формировании половых клеток гены, полученные от родителей, “перетасовываются”, и в каждую гамету попадает только половина родительских генов. При оплодотворении гены двух родителей случайно комбинируются в зиготе. Сочетание этих двух случайных процессов - тасовки генов в генеративных клетках и встречи гамет - обеспечивает уникальность набора генов каждого организма.

Этот процесс был открыт в начале XX в. на основе анализа результатов скрещиваний. Сейчас в изучении рекомбинации используют весь арсенал современных методов молекулярной и клеточной биологии. И тем не менее процесс остается во многом загадочным. До сих пор идут бурные дебаты о том, зачем нужна рекомбинация. Непонятно, отчего она так сложно и, казалось бы, нелогично организована. Неясно, как распределяются по геному ее горячие и холодные точки. Попытаемся ответить на эти вопросы, рассмотрев рекомбинацию в свете эволюции.

Зачем нужна рекомбинация

Рекомбинация - главный генератор фенотипического разнообразия, того самого, с которым оперирует естественный отбор, тех отличий между организмами, которые играют решающую роль в их борьбе за существование. Мы привыкли думать, что эти различия определяются мутациями генов. Это и верно, и неверно одновременно.

Мутации меняют гены. Ген может быть неузнаваемо испорчен мутацией, изменен с сохранением функции (синонимически) или с ее потерей. Мы должны ясно понимать, что функция каждого гена определяется его взаимодействием с другими генами. Поэтому и функцию гена, и ее изменения следует рассматривать исключительно в рамках конкретного метаболического пути или регуляторной генной сети, в которых задействованы продукты этого гена. Бессмысленный или неверный ген из одной генной сети может приобрести новый, неожиданный смысл в другой; синоним в одном контексте оказаться антонимом в другом. Таким образом, мутации меняют фенотип не сами по себе, а в сочетании с другими генами.

Разнообразие фенотипов, которое мы наблюдаем, есть воплощенное разнообразие генных сочетаний. А поскольку рекомбинация обеспечивает постоянную генерацию все новых и новых сочетаний, мы имеем полное право назвать этот замечательный механизм генератором фенотипического разнообразия.

Рекомбинация, видимо, возникла одновременно или вскоре после появления жизни. Однако на первых порах она была робкой и спорадической. Такой она и остается в мире прокариот. Бактерии иногда входят в контакт друг с другом и обмениваются генетической информацией, чаще когда их жизнь становится хуже. Но из этого не следует, что рекомбинация непременно облегчает им жизнь, повышает их приспособленность. Она дает им шанс, надежду на то, что новая комбинация генов окажется полезной.

Регулярная, запланированная и обязательная рекомбинация появилась гораздо позже, одновременно или вскоре после возникновения эукариотических клеток. В пользу этого предположения свидетельствует тот факт, что у подавляющего большинства современных эукариот рекомбинация происходит регулярно, а ее молекулярные и клеточные механизмы у самых разных организмов поразительно сходны. Сходство мы обнаруживаем и в том, что у всех них рекомбинация так или иначе связана с размножением. У эукариот, в отличие от бактерий, результаты рекомбинации проявляются не у самих организмов, а у их потомков.

Если мы сравним размножение бесполых (не рекомбинирующих) и половых (регулярно рекомбинирующих) организмов, нам сразу бросится в глаза поразительная неэффективность последнего варианта размножения. Представим себе два острова. На одном живут самец и самка, способные к половому размножению и, следовательно, к рекомбинации. На другом - две самки, размножающиеся бесполым путем. Ограничим плодовитость и тех и других самок двумя потомками. После первого же цикла размножения на бесполом острове родится четыре потомка, а на половом - два. Если на половом острове оба родившихся детеныша будут одного пола, то на этом вся история закончится. Если на свет появятся самка и самец, то эта пара произведет еще двух потомков, а на бесполом острове их родится уже восемь. Таким образом, при заданных условиях численность популяции бесполого острова будет расти экспоненциально, а на половом она так и останется равной двум особям. Очевидно, что эффективность бесполого размножения значительно выше (рис.1).

Рис.1.

Почему же тогда у эукариот, как правило, размножение половое, а бесполое - лишь редкое исключение? Именно потому, что при половом размножении возможна рекомбинация. Но если организмы, размножающиеся половым путем, так значительно проигрывают бесполым в эффективности размножения, то рекомбинация должна давать им преимущества, с лихвой покрывающие этот гигантский проигрыш. В чем же они заключаются?

Вернемся на наши умозрительные острова. И на одном, и на другом острове в генеративных клетках их обитателей возникают мутации. Полностью защититься от мутаций в принципе невозможно, ведь с ними неизбежно сопряжено копирование ДНК. Большинство мутаций оказываются вредными. Парадоксально, но очень вредные мутации не так опасны для генофонда популяции, как не очень вредные. Очень вредные мутации несовместимы с жизнью, их носители немедленно выбраковываются, и, следовательно, такие мутации не накапливаются в генофонде. А не очень вредные передаются потомкам, затем у них возникают новые не очень вредные мутации, и в итоге генофонд бесполой популяции медленно, но верно деградирует (рис.2,а).

Рис.2.

Выдающийся генетик Герман Мёллер впервые обратил внимание на медленную, но неуклонную деградацию бесполого генофонда за счет последовательного накопления не очень вредных мутаций. Сейчас в научной литературе этот процесс называется храповиком Мёллера. Мёллер показал, что бесполые популяции, несмотря на давление мутационного процесса, могут поддерживать свое существование за счет очень высокой численности и сильного давления стабилизирующего отбора, благодаря которому носители даже не очень вредных мутаций быстро погибают, а их место занимают клоны, свободные от мутаций.

Однако у храповика Мёллера есть еще одна неприятная особенность. Чем больше у организма генов, тем больше он накапливает мутаций. Вероятность мутации одного гена приблизительно равна 10-5 на гамету за поколение. Это значит, что каждая вторая из 10 тыс. гамет, содержащих 5 тыс. генов (именно столько их у бактерий), несет одну новую мутацию. Если в гамете 30 тыс. генов, как у нас млекопитающих, то каждая из 10 тыс. гамет несет в среднем три новых мутаций. Отсюда третье условие, позволяющее виду жить с храповиком Мёллера, - малый размер генома и как следствие - относительная простота организации.

Мощное и радикальное средство борьбы с храповиком Мёллера - рекомбинация. Перетасовывая гены при образовании гамет, она может перегрузить мутациями одни гаметы и одновременно недогрузить другие. В итоге особи, возникшие из перегруженных мутациями гамет, погибают, а продукты гамет, очищенных от мутаций, процветают (рис.2,б). Это позволяет рекомбинирующим организмам избавиться от ограничений, накладываемых храповиком Мёллера. Они могут позволить себе роскошь иметь большие геномы. Отсюда получается, что все мы высшие и сложные оттого, что наши далекие одноклеточные предки открыли для себя рекомбинацию и создали механизмы, гарантирующие регулярную перетасовку генов из поколения в поколение.

Гипотеза Мёллера - не единственное объяснение преимуществ рекомбинации. Очень подробные обзоры гипотез о преимуществах рекомбинации даны в книгах Дж.Мэнард Смита и М.Ридли .

Значение слова РЕКОМБИНАЦИЯ в Энциклопедии Биология

РЕКОМБИНАЦИЯ

Перераспределение (перекомбинирование) генетического материала родителей, в результате чего у потомков появляются новые сочетания генов, определяющие новые сочетания признаков. Другими словами, сочетание признаков у потомков никогда не повторяет сочетания признаков ни одного из родителей. Рекомбинация - основа комбинативной изменчивости, обеспечивающей бесконечное разнообразие особей внутри вида и неповторимость каждой из них. У эукариотических организмов, размножающихся половым путём, рекомбинация происходит в мейозе при независимом расхождении хромосом и при обмене гомологичными участками между гомологичными хромосомами (кроссинговере). Возможна и т. н. незаконная рекомбинация, когда структурные перестройки затрагивают негомологичные хромосомы. Рекомбинации бывают и в половых, и, гораздо реже, в соматических клетках. У прокариот (бактерий) и у вирусов существуют специальные механизмы обмена генами. Таким образом, рекомбинации - универсальный способ повышения генотипической изменчивости у всех организмов, создающий материал для естественного отбора. См. также изменчивость, Менделя законы.

Энциклопедия Биология. 2012

Смотрите еще толкования, синонимы, значения слова и что такое РЕКОМБИНАЦИЯ в русском языке в словарях, энциклопедиях и справочниках:

  • РЕКОМБИНАЦИЯ
    в физике -1) рекомбинация ионов и электронов в ионизованных газах и плазме - образование нейтральных атомов и молекул из свободных …
  • РЕКОМБИНАЦИЯ в Современном энциклопедическом словаре:
  • РЕКОМБИНАЦИЯ
    (от ре... и позднелатинского combinatio - соединение) (генетическое), появление новых сочетаний генов, ведущих к новым сочетаниям признаков у потомства. У …
  • РЕКОМБИНАЦИЯ в Энциклопедическом словарике:
    и, ж. 1. спец. Расположение составных частей чего-нибудь в новом порядке. 2. физ. Процесс, обратный ионизации: превращение ионов с противоположными …
  • РЕКОМБИНАЦИЯ
    РЕКОМБИН́АЦИЯ в физике: Р. ионов и электронов в ионизованных газах и плазме - образование нейтральных атомов и молекул из свободных …
  • РЕКОМБИНАЦИЯ в Большом российском энциклопедическом словаре:
    РЕКОМБИН́АЦИЯ (от ре... и позднелат. соmbinatio - соединение) (генетич.), появление новых сочетаний генов, ведущих к новым сочетаниям признаков у …
  • РЕКОМБИНАЦИЯ в Полной акцентуированной парадигме по Зализняку:
    ре`комбина"ция, ре`комбина"ции, ре`комбина"ции, ре`комбина"ций, ре`комбина"ции, ре`комбина"циям, ре`комбина"цию, ре`комбина"ции, ре`комбина"цией, ре`комбина"циею, ре`комбина"циями, ре`комбина"ции, …
  • РЕКОМБИНАЦИЯ в Новом словаре иностранных слов:
    (ре... + лат. combinatio соединение) 1) расположение составных частей чего-л. в новом порядке; 2) физ. процесс, обратный ионизации; при рекомбинации …
  • РЕКОМБИНАЦИЯ в Словаре иностранных выражений:
    [ре... + лат. combinatio соединение] 1. расположение составных частей чего-л. в новом порядке; 2. физ. процесс, обратный ионизации; при рекомбинации …
  • РЕКОМБИНАЦИЯ в словаре Синонимов русского языка:
    воссоединение, перераспределение, …
  • РЕКОМБИНАЦИЯ в Словаре русского языка Лопатина:
    рекомбин`ация, …
  • РЕКОМБИНАЦИЯ в Полном орфографическом словаре русского языка:
    рекомбинация, …
  • РЕКОМБИНАЦИЯ в Орфографическом словаре:
    рекомбин`ация, …
  • РЕКОМБИНАЦИЯ в Современном толковом словаре, БСЭ:
    (от ре … и позднелат. сombinatio - соединение), в генетике - появление новых сочетаний генов, ведущих к новым сочетаниям признаков …
  • РЕКОМБИНАЦИЯ ХРОМОСОМ в Медицинских терминах:
    обмен участками гомологичных хромосом, приводящий к появлению хромосом с новым сочетанием …
  • РЕКОМБИНАЦИЯ ВИРУСОВ в Медицинских терминах:
    обмен генетическими структурами между двумя вирусными геномами, происходящий в смешанно-зараженных …
  • РЕКОМБИНАЦИЯ БАКТЕРИЙ в Медицинских терминах:
    (ре- + лат. combino связывать, сочетать) обмен участками бактериальных хромосом в результате конъюгации, трансформации или трансдукции, приводящий к появлению бактериальных …
  • КЛЕТКА: МИТОЗ - Д. РАСЩЕПЛЕНИЕ И РЕКОМБИНАЦИЯ в Словаре Кольера:
    К статье КЛЕТКА: МИТОЗ Особенность мейоза состоит в том, что при клеточном делении экваториальную пластинку образуют пары гомологичных хромосом, а …
  • МЕЙОЗ в Энциклопедии Биология:
    (деления созревания, период созревания), этап в образовании половых клеток; состоит из двух последовательных делений исходной диплоидной клетки (содержат два набора …
  • КРОССИНГОВЕР в Энциклопедии Биология:
    , взаимный обмен участками между гомологичными (попарными) хромосомами. Происходит в процессе клеточных делений - мейоза и (гораздо реже) митоза на …
  • ГЕН в Энциклопедии Биология:
    , единица генетического материала; участок молекулы ДНК (у некоторых вирусов - РНК), определяющий (кодирующий) возможность развития какого-либо признака. Ген …
  • СТОЛКНОВЕНИЯ АТОМНЫЕ в Большом энциклопедическом словаре:
    столкновения атомов, молекул, электронов и ионов друг с другом. Различают упругие атомные столкновения, при которых внутренние состояния частиц не изменяются, …
  • ЭЛЕКТРИЧЕСКИЙ РАЗРЯД В ГАЗАХ в Большой советской энциклопедии, БСЭ:
    разряд в газах, прохождение электрического тока через газовую среду под действием электрического поля, сопровождающееся изменением состояния газа. Многообразие условий, определяющих …


Последние материалы раздела:

Развитие критического мышления: технологии и методики
Развитие критического мышления: технологии и методики

Критическое мышление – это система суждений, способствующая анализу информации, ее собственной интерпретации, а также обоснованности...

Онлайн обучение профессии Программист 1С
Онлайн обучение профессии Программист 1С

В современном мире цифровых технологий профессия программиста остается одной из самых востребованных и перспективных. Особенно высок спрос на...

Пробный ЕГЭ по русскому языку
Пробный ЕГЭ по русскому языку

Здравствуйте! Уточните, пожалуйста, как верно оформлять подобные предложения с оборотом «Как пишет...» (двоеточие/запятая, кавычки/без,...