Гомологичные ряды наследственной изменчивости. Гомологических рядов в наследственной изменчивости закон

МУТАЦИОННАЯ ИЗМЕНЧИВОСТЬ

План

Отличие мутаций от модификаций.

Классификация мутаций.

Закон Н.И.Вавилова

Мутации. Понятие мутации. Мутагенные факторы.

Мутации – это внезапные, стойкие,естественные или искусственные изменения генетического материала, возникающие под действием мутагенныхфакторов .

Виды мутагенных факторов:

А) физические – радиация, температура, электромагнитные излучения.

Б) химические факторы – вещества, которые вызывают отравление организма: алкоголь, никотин, формалин.

В) биологические - вирусы, бактерии.

Отличие мутаций от модификаций

Классификация мутаций

Существует несколько классификаций мутаций.

I Классификация мутаций по значению: полезные, вредные, нейтральные.

Полезные мутации приводят к повышенной устойчивости организма и являются материалом для естественного и искусственного отбора.

Вредные мутации снижают жизнеспособность и приводят к развитию наследственных заболеваний: гемофилия, серповидная клеточная анемия.

II Классификация мутаций по локализации или месту возникновении: соматические и генеративные.

Соматические возникают в клеткахтела и затрагивают лишь часть тела, при этом развиваются особи мозаики: разные глаза, окраска волос. Эти мутации наследуются только при вегетативном размножении (у смородины).

Генеративные происходят в половых клетках или в клетках, из которых образуются гаметы. Они делятся на ядерные и внеядерные (митохондриальные, пластидное).

III Мутации по характеру изменения генотипа: хромосомные, геномные, генные.

Генные (или точковые) не видны в микроскоп, связаны с изменением структуры гена. Эти мутации происходят в результате потери нуклеотида, вставки или замены одного нуклеотида другим. Эти мутации приводят к генным болезням: дальтонизму, фенилкетонурии.

Хромосомные (перестройки ) связаны с изменением структуры хромосом. Может произойти:

Делеция: - потеря участка хромосомы;

Дупликация – удвоение участка хромосомы;

Инверсия – поворот части хромосомы на 180 0 ;

Транслокация – обмен участками негомологичных хромосом и слияние двух негомологичных хромосом в одну.

Причины хромосомных мутаций : возникновение двух или более разрывов хромосом с последующим их соединением, но в неправильном порядке.

Геномные мутации приводят к изменению числа хромосом. Различают гетероплоидию и полиплоидию.

Гетероплоидия связана с изменением числом хромосом, на нескольких хромосомах – 1.2.3. Причины : не расхождение хромосом в мейозе:

- Моносомия – уменьшением числа хромосом на 1 хромосому. Общая формула хромосомного набора 2n-1.

- Трисономия – увеличение числа хромосом на 1. Общая формула 2n+1 (47 хромосом Синдром Кланфейтера; трисономия по 21 паре хромосом – синдром Дауна (признаки множественные врожденные пороки, снижающие жизнеспособность организма и нарушение умственного развития).

Полиплодия – кратное изменение числа хромосом. У полиплоидных организмов гаплоидный (n) набор хромосом в клетках повторяется не 2 раза, как у диплоидных, а 4-6 раз, иногда значительно больше – до 10-12 раз.

Возникновение полиплоидов связано с нарушением митоза или мейоза. В частности, не расхождение гомологичных хромосом в мейозе приводит к формированию гамет с увеличенным числом хромосом. У диплоидных организмов в результате такого процесса могут образовываться диплоидные (2n) гаметы.

Широко встречается у культурных растений: гречихи, подсолнуха и т.д., а так же у дикорастущих.

Закон Н.И.Вавилова (закон гомологичных рядов наследственной изменчивости).

/С давних времен исследователи наблюдали существование сходных признаков у разных видов и родов одного семейства, например дыни, похожие на огурцы, или арбузы, похожие на дыни. Эти факты легли в основу закона гомологических рядов в наследственной изменчивости./

Множественный аллелизм. Параллельная изменчивость . Ген может находиться более чем в двух состояниях. Разнообразие аллелей одного гена получило название множественного аллелизма . Разные аллели определяют разную степень одного и того же признака. Чем больше аллелей несут особи популяций, тем более пластичен вид, лучше приспособлен к меняющимся условиям среды обитания.

Множественный аллелизм лежит в основе параллельной изменчивости – явления, при котором возникают сходные признаки у разных видов и родов одного семейства. Систематизировал факты параллельной изменчивости Н.И.Вавилов./

Н.И.Вавилов сравнивал виды семейства Злаки. Он выяснил, что если мягкая пшеница имеет формы озимые и яровые, остистые и безостые, то такие же формы обязательно обнаруживаются и у твердой пшеницы. Более того, состав признаков. По которым различаются формы внутри вида и рода, оказывается часто таким же в других родах. Например, формы ржи и ячменя повторяют формы разных видов пшеницы, причем образуя те же параллельные, или гомологичные ряды наследственной изменчивости.

Систематизация фактов позволила Н.И.Вавилову сформулировать закон гомологичных рядов в наследственной изменчивости (1920г): виды и роды, генетически близкие, характеризуются сходными рядами наследственной изменчивости с такой правильностью. Что, зная ряд форм в пределах одного вида, можно предвидеть нахождение параллельных форм у других видов и родов.

Гомологичность наследственных признаков близких видов и родов объясняется гомологичностью их генов, так как они произошли от одного вида-родоначальника. Кроме того, мутационный процесс у генетически близких видов протекает сходно. Поэтому у них возникают сходные серии рецессивных аллелей и в результате – параллельные признаки.

Вывод из закона Вавилова : каждый вид имеет определенные границы мутационной изменчивости. К изменениям, выходящим за пределы спектра наследственной изменчивости вида, никакой мутационный процесс привести не может. Так, у млекопитающих мутации могут изменить цвет шерсти от черного к бурому, рыжему, белому, может возникнуть полосатость, пятнистость, но возникновение зеленой окраски исключено.

©2015-2019 сайт
Все права принадлежать их авторам. Данный сайт не претендует на авторства, а предоставляет бесплатное использование.
Дата создания страницы: 2016-04-12

Закон, который был открыт выдающимся отечественным ученым Н. И. Вавиловым, является мощнейшим стимулятором селекции новых видов растений и животных, которые выгодны для человека. Даже в настоящее время данная закономерность играет большую роль в изучении эволюционных процессов, разработке акклиматизационной базы. Результаты исследований Вавилова важны и для истолкования различных биогеографических явлений.

Сущность закона

Вкратце закон гомологических рядов звучит следующим образом: спектры изменчивости у родственных типов растений похожи между собой (нередко это бывает строго фиксированное число тех или иных вариаций). Вавилов изложил свои идеи на III селекционном съезде, который проходил в 1920 году в Саратове. Чтобы продемонстрировать действие закона гомологических рядов, он собрал всю совокупность наследственных признаков культурных растений, расположил их в одной таблице и сравнил известные на тот момент сорта и подвиды.

Изучение растений

Вместе со злаковыми Вавилов рассматривал и бобовые. Во многих случаях обнаружилась параллельность. Несмотря на то что у каждого семейства фенотипические признаки различались, у них были свои особенности, форма выражения. К примеру, цвет семян практически у любого культурного растения варьировался от самого светлого до черного. У хорошо изученных исследователями культурных растений было обнаружено до нескольких сотен признаков. У других же, что являлись на тот момент менее изученными или же дикими родственниками окультуренных растений, признаков наблюдалось гораздо меньше.

Географические центры распространения видов

Основой для открытия закона гомологических рядов послужил материал, который Вавилов собрал во время своей экспедиции по странам Африки, Азии, Европы и Америки. Первые предположения о том, что существуют некие географические центры, откуда берут свое начало биологические виды, было сделано швейцарским ученым А. Декандолем. По его представлениям, когда-то эти виды охватывали большие территории, иногда и целые континенты. Однако именно Вавилов был тем исследователем, который смог изучить многообразие растений на научной основе. Он использовал метод, называемый дифференцированным. Вся та коллекция, которая была собрана исследователем во время экспедиций, подвергалась тщательному анализу с помощью морфологических и генетических методов. Так можно было определить конечную область сосредоточения разнообразия форм и признаков.

Карта растений

Во время этих поездок ученый не запутался в многообразии видов различных растений. Всю информацию он наносил при помощи цветных карандашей на карты, затем переводя материал в схематический вид. Таким образом, ему удалось обнаружить, что на всей планете существует всего несколько центров разнообразия окультуренных растений. Ученый показал непосредственно при помощи карт, как из этих центров виды «расползаются» по другим географическим регионам. Некоторые из них уходят на небольшое расстояние. Другие завоевывают весь мир, как это произошло с пшеницей и горохом.

Следствия

Согласно закону гомологической изменчивости, все генетически близкие между собой сорта растений обладают приблизительно равными рядами наследственной изменчивости. При этом ученый допускал, что даже похожие внешне признаки могут иметь различную наследственную основу. Учитывая тот факт, что каждый из генов имеет способность к мутациям в разных направлениях и что данный процесс может протекать без определенного направления, Вавилов сделал предположение, что и количество генных мутаций у родственных видов будет приблизительно одинаковым. Закон гомологических рядов Н. И. Вавилова отражает общие закономерности процессов генной мутации, а также формообразования различных организмов. Он является главной основой изучения биологических видов.

Вавилов показал также и следствие, которое вытекало из закона гомологических рядов. Оно звучит следующим образом: наследственная изменчивость практически у всех видов растений варьируется параллельно. Чем более близкими между собой являются виды, тем в большей степени проявляется данная гомология признаков. Сейчас этот закон повсеместно применяется в селекции сельскохозяйственных культур, а также животных. Открытие закона гомологических рядов является одним из самых крупных достижений ученого, которое принесло ему мировую славу.

Происхождение растений

Ученый создал теорию о происхождении культурных растений в отдаленных друг от друга в различные доисторические эпохи точках земного шара. Согласно закону гомологических рядов Вавилова, у родственных видов растений и животных обнаруживаются похожие вариации изменчивости признаков. Роль этого закона в растениеводстве и животноводстве можно сопоставить с той ролью, которую играет таблица периодических элементов Д. Менделеева в химии. Используя свое открытие, Вавилов пришел к выводу о том, какие территории являются первоисточниками определенных типов растений.

  • Китайско-японскому региону мир обязан происхождением риса, проса, голозерных форм овса, многих типов яблонь. Также территории данного региона являются родиной ценных сортов слив, восточной хурмы.
  • кокосовой пальмы и сахарного тростника - Индонезийско-Индокитайский центр.
  • С помощью закона гомологических рядов изменчивости Вавилову удалось доказать огромное значение полуострова Индостан в развитии растениеводства. Данные территории являются родиной некоторых типов фасоли, баклажанов, огурцов.
  • На территории среднеазиатского региона традиционно выращивались грецкие орехи, миндаль, фисташки. Вавилов открыл, что именно эта территория является родиной репчатого лука, а также первичных типов моркови. В древности выращивали абрикосы. Одними из самых лучших в мире являются дыни, которые были выведены на территориях Средней Азии.
  • На Средиземноморских территориях впервые появился виноград. Здесь также происходил процесс эволюции пшеницы, льна, различных сортов овса. Также достаточно типичных элементов флоры средиземноморья является оливковое дерево. Здесь же началось и окультуривание люпина, клевера и льна.
  • Флора австралийского континента подарила миру эвкалипты, акации, хлопчатник.
  • Африканский регион - родина всех типов арбузов.
  • На Европейско-Сибирских территориях происходило окультуривание сахарной свеклы, сибирской яблони, лесного винограда.
  • Южная Америка - родина хлопчатника. Территория Анд является и некоторых видов томатов. На территориях Древней Мексики произрастала кукуруза и некоторые виды фасоли. Также здесь возник табак.
  • На территориях Африки древний человек использовал сначала только местные виды растений. Черный континент является родиной кофе. На территории Эфиопии впервые появилась пшеница.

Используя закон гомологических рядов изменчивости, ученый может выявить центр происхождения растений по тем признакам, которые схожи с формами видов из другой географической местности. Помимо необходимого разнообразия флоры, для того чтобы возник крупный очаг разнообразных культурных растений, нужна также и земледельческая цивилизация. Так считал Н. И. Вавилов.

Одомашнивание животных

Благодаря открытию закона гомологических рядов наследственной изменчивости стало возможным открытие тех мест, где когда-то впервые произошло одомашнивание животных. Считается, что оно происходило тремя путями. Это сближение человека и животных; насильственное приручение молодых особей; одомашнивание взрослых особей. Территории, на которых происходило одомашнивание диких животных, предположительно находятся в местах обитания их диких сородичей.

Приручение в разные эпохи

Считается, что собака была одомашнена в эпоху мезолита. Свиней и коз человек начал разводить в эпоху неолита, а немного позднее были приручены и дикие лошади. Однако еще недостаточно ясен вопрос о том, кем были предки современных домашних животных. Считается, что предками крупного рогатого скота были туры, лошадей - тарпаны и лошади Пржевальского, домашнего гуся - дикий серый гусь. Сейчас процесс одомашнивания животных нельзя назвать завершенным. Например, в процессе приручения находятся песцы и дикие лисы.

Значение закона гомологических рядов

При помощи данного закона можно не только установить происхождение определенных видов растений и очаги приручения животных. Он позволяет предсказать появление мутаций, сравнивая закономерности мутирования у других типов. Также с помощью данного закона можно предсказать изменчивость признака, возможность появления новых мутаций по аналогии с теми генетическими отклонениями, что были обнаружены у других видов, родственных данному растению.

Обработка обширного материала наблюдений и опытов, детальное исследование изменчивости многочисленных линнеевских видов (линнеонов), огромное количество новых фактов, полученных главным образом при изучении культурных растений и их диких родичей, позволили Н.И. Вавилову свести в единое целое все известные примеры параллельной изменчивости и сформулировать общий закон, названный им «Закон гомологических рядов в наследственной изменчивости» (1920 г.), доложенный им на Третьем Всероссийском съездеселекционеров, проходившем в Саратове. В 1921 г. Н.И. Вавилов был командирован в Америку на Международный конгресс по сельскому хозяйству, где выступил с сообщением о законе гомологических рядов. Закон параллельной изменчивости близких родов и видов, установленный Н.И. Вавиловым и связываемый с общностью происхождения, развивающий эволюционное учение Ч. Дарвина, был по достоинству оценен мировой наукой. Он был воспринят слушателями как крупнейшее событие в мировой биологической науке, которое открывает самые широкие горизонты для практики.

Закон гомологических рядов, прежде всего, устанавливает основы систематики огромного разнообразия растительных форм, которыми так богат органический мир, позволяет селекционеру получить ясное представление о месте каждой, даже самой мелкой, систематической единицы в мире растений и судить о возможном разнообразии исходного материала для селекции.

Основные положения закона гомологических рядов следующие.

«1. Виды и роды, генетически близкие, характеризуются сходными рядами наследственной изменчивости с такой правильностью, что, зная ряд форм в пределах одного вида, можно предвидеть нахождение параллельных форм у других видов и родов. Чем ближе генетически расположены в общей системе роды и линнеоны, тем полнее сходство в рядах их изменчивости.

2. Целые семейства растений в общем характеризуются определенным циклом изменчивости, проходящей через все роды и виды, составляющие семейства».

Еще на III Всероссийском съезде по селекции (Саратов, июнь 1920 г.), где Н.И. Вавилов впервые доложил о своем открытии, все участники съезда признали, что «подобно таблице Менделеева (периодическая система)» закон гомологических рядов позволит предсказывать существование, свойства и строение неизвестных еще форм и видов растений и животных, и высоко оценили научное и практическое значение этого закона. Современные успехи молекулярно-клеточной биологии позволяют понять механизм существования гомологической изменчивости у близких организмов - на чем именно основывается сходство будущих форм и видов с имеющимися - и осмысленно синтезировать новые, не имеющиеся в природе формы растений. Теперь в закон Вавилова вкладывается новое содержание, точно так же как появление квантовой теории дало новое более глубокое содержание периодической системе Менделеева.

Гомологические ряды в наследственной изменчивости - понятие, введенное Н. И. Вавиловым при исследовании параллелизмов в явлениях наследственной изменчивости по аналогии с гомологическими рядами органических соединений.

Закон гомологичных рядов : Генетически близкие виды и роды характеризуются сходными рядами наследственной изменчивости с такой правильностью, что, зная ряд форм в пределах одного вида, можно предвидеть нахождение параллельных форм у других видов и родов.

Закономерности в полиморфизме у растений, установленные путем детального изучения изменчивости различных родов и семейств, можно условно до некоторой степени сравнить с гомологическими рядами органической химии, например с углеводородами (CH 4 , C 2 H 6 , C 3 H 8 …).

Суть явления состоит в том, что при изучении наследственной изменчивости у близких групп растений были обнаружены сходные аллельные формы, которые повторялись у разных видов (например, узлы соломины злаков с антоциановой окраской или без, колосья с остью или без и т. п.). Наличие такой повторяемости давало возможность предсказывать наличие ещё не обнаруженных аллелей, важных с точки зрения селекционной работы. Поиск растений с такими аллелями проводился в экспедициях в предполагаемые центры происхождения культурных растений . Следует помнить, что в те годы искусственная индукция мутагенеза химическими веществами или воздействием ионизирующих излучений ещё не была известна, и поиск необходимых аллелей приходилось производить в природных популяциях .

Н. И. Вавилов рассматривал сформулированный им закон как вклад в популярные в то время представления о закономерном характере изменчивости, лежащей в основе эволюционного процесса (например, теория номогенеза Л. С. Берга ). Он полагал, что закономерно повторяющиеся в разных группах наследственные вариации лежат в основе эволюционных параллелизмов и явления мимикрии .

В 70-80-х годах XX века к закону гомологических рядов обратился в своих трудах Медников Б. М. , написавший ряд работ, в которых показал, что именно такое объяснение возникновения сходных, часто до мелочей, признаков в родственных таксонах вполне состоятельно.

Родственные таксоны часто имеют родственные генетические последовательности, слабо различающиеся в принципе, а некоторые мутации возникают с большей вероятностью и проявляются в целом сходно у представителей разных, но родственных, таксонов. Как пример приводятся двувариантная фенотипически ярко выраженная мутация строения черепа и организма в целом: акромегалия и акромикрия , за которые отвечает в конечном счете мутация, изменяющая баланс, своевременное «включение» или «выключение» в ходе онтогенеза гормонов соматотропина и гонадотропина .

Учение о центрах происхождения культурных растений

Учение о центрах происхождения культурных растений сформировалось на основе идей Ч. Дарвина («Происхождение видов», гл. 12, 1859) о существовании географических центров происхождения биологических видов. В 1883 А. Декандоль опубликовал труд, в котором установил географические области начального происхождения главнейших культурных растений. Однако эти области были приурочены к целым континентам или к др. также достаточно обширным территориям. В течение полувека после выхода книги Декандоля познания в области происхождения культурных растений значительно расширились; вышли монографии, посвященные культурным растениям различных стран, а также отдельным растениям. Наиболее планомерно эту проблему разрабатывал в 1926-39 Н. И. Вавилов. На основании материалов о мировых растительных ресурсах он выделял 7 основных географических центров происхождения культурных растений.

1. Южноазиатский тропический центр (около 33 % от общего числа видов культурных растений).

2. Восточноазиатский центр (20 % культурных растений).

3. Юго-Западноазиатский центр (4 % культурных растений).

4. Средиземноморский центр (примерно 11 % видов культурных растений).

5. Эфиопский центр (около 4 % культурных растений).

6. Центральноамериканский центр (примерно 10 %)

7. Андийский (Южноамериканский) центр (около 8 %)

Центры происхождения культурных растений: 1. Центральноамериканский, 2. Южноамериканский, 3. Средиземноморский, 4. Переднеазиатский, 5. Абиссинский, 6. Среднеазиатский, 7. Индостанский, 7A. Юго-восточноазиатский, 8. Восточноазиатский.

Многие исследователи, в том числе П. М. Жуковский, Е. Н. Синская, А. И. Купцов, продолжая работы Вавилова, внесли в эти представления свои коррективы. Так, тропическую Индию и Индокитай с Индонезией рассматривают как два самостоятельных центра, а Юго-Западноазиатский центр разделён на Среднеазиатский и Переднеазиатский, основой Восточно-азиатского центра считают бассейн Хуанхэ, а не Янцзы, куда китайцы как народ-земледелец проникли позднее. Установлены также центры древнего земледелия в Западном Судане и на Новой Гвинее. Плодовые культуры (в том числе ягодные и орехоплодные), имея более обширные ареалы распространения, выходят далеко за пределы центров происхождения, более согласуясь с представлениями Декандоля. Причина этого заключается в преимущественно лесном происхождении (а не предгорном как для овощных и полевых культур), а также в особенностях селекции. Выделены новые центры: Австралийский, Североамериканский, Европейско-Сибирский.

Некоторые растения введены в прошлом в культуру и вне этих основных центров, но число таких растений невелико. Если ранее считалось, что основные очаги древних земледельческих культур - широкие долины Тигра , Евфрата , Ганга , Нила и других крупных рек, то Вавилов показал, что почти все культурные растения появились в горных районах тропиков, субтропиков и умеренного пояса. Основные географические центры начального введения в культуру большинства возделываемых растений связаны не только с флористическим богатством, но и с древнейшими цивилизациями.

Установлено, что условия, в которых происходила эволюция и селекция культуры, накладывают требования к условиям её произрастания. Прежде всего это влажность, длина дня, температура, продолжительность вегетации.

Китайский (Восточноазиатский) центр

Китайский центр охватывает горные области центрального и западного Китая с прилегающими к ним низменными районами. Основа этого очага - области умеренного пояса по реке Хуанхэ. Характеризуется сравнительно высоким температурным режимом, очень большой степенью увлажнения, умеренным вегетационным периодом.

    Рис - японская разновидность

    Цинкэ или Цинке (тибетский ячмень ) - голозёрная разновидность

    Просо

    Чумиза

    Гаолян

    Пайза (Echinochloa frumentacea) - японское просо, дикое просо, ежовник хлебный, однолетнее растение семейства злаков .

    Адзуки или Фасоль угловатая (Vigna angularis )

    Овёс - голозёрная разновидность

    Редька - Дайкон и Лоба

    Пекинская капуста (Brassica pekinensis)

    Китайская капуста (Brassica chinensis)

    Салат спаржевый (Lactuca asparagus)

    Лук-батун

    Лук душистый

    Хлопчатник коротковолокнистый (древесная форма) - спорно

    Перилла

    Актинидия - первичный очаг

    Грецкий орех

    Лещина

    Апельсин - возможно вторичный очаг

    Мандарин

    Кинкан

    Хурма

    Лимонник

    китайская горькая тыква

    Унаби

    Чайное дерево

    Тунговое дерево

    Белая Шелковица (тутовое дерево)

    Камфорный лавр

    Бамбук - некоторые виды

    Женьшень

    Китайский артишок

    Сахарный тростник - местные разновидности

    Мушмула японская (Локва)

    Канатник

    Малина пурпурноплодная

    Личи

    Восковница красная

Также центр является первичным очагом формообразования подсемейств Яблоневые и Сливовые и родов их составляющих, в их числе:

    Яблоня

    Груша

    Абрикос

    Вишня

    Слива

    Миндаль

    Персик

    Боярышник

Индо-малайский (Юго-восточноазиатский) центр

Индо-Малайский центр дополняет Индийский очаг происхождения культурных растений, включая весь Малайский архипелаг, Филиппины и Индокитай. Очень высокие влажность и температура, круглогодичная вегетация. Испытал некоторое влияние Китайского и Индостанского центров

    Рис - первичный очаг

    Хлебное дерево

    Банан

    Кокосовая пальма

    Сахарная пальма

    Саговая пальма

    Арека

    Сахарный тростник - совместно с Индостанским центром

    Помпе́льмус

    Дуриан

    Манильская пенька

    Таро

    Батат

    Пак чой

    Восковая тыква

    Чина - спорно

    Лимон - вторичный очаг

    Поме́ло

    Бергамот

    Лайм

    Померанец

    Бетель

    Кардамон

    Мангустан

    Гвоздичное дерево

    Чёрный перец

    Мускатный орех

    Лонган

    Трихозант

Индийский (Индостанский) центр

Индийский (Индостанский) центр охватывает полуостров Индостан , исключая северо-западные штаты Индии, а также Бирму и индийский штат Ассам . Характеризуется достаточно высоким увлажнением и высокими температурами, а также продолжительной вегетацией. Испытал некоторое влияние Индо-малайского центра (рис, сахарный тростник, цитрусовые )

    Баклажан

    Огурец

    Апельсин - возможно вторичный очаг

    Лимон - первичный очаг

    Цитрон

    Рис - Индийская разновидность

    Дагусса

    Фасоль золотистая

    Долихос

    Люффа

    Сахарный тростник - совместно с Индо-Малайским центром

    Джут

    Кенаф

    Пшеница шарозерная

    Манго

    Кокосовая пальма - вторичный очаг

    Эндивий

    Эскариол

    Базилик

    Горчица сизая

    Мак опийный

    Гречиха

    Сахарная пальма - совместно с Индо-малайским центром

    Хлопчатник коротковолокнистый - спорно

    Ююба

Среднеазиатский центр

Среднеазиатский центр включает северо-западную часть Индии (Пенджаб ), северную часть Пакистана , Афганистан , Таджикистан , Узбекистан и Западный Тянь-Шань . Очень низкое увлажнение (часто грунтовыми водами), достаточно высокие температуры с сильными суточными и сезонными колебаниями, умеренная продолжительность вегетации (сезон дождей ). Данный центр испытал очень сильное влияние со стороны Китайского и Переднеазиатского. Так, почти для всех произошедших здесь плодовых культур он является вторичным.

    Дыня

    Пшеница - некоторые гексаплоидные виды (Triticum compactum , Triticum inflatum )

    Чечевица - мелкозёрная рановидность

    Люцерна

    Абрикос - вторичный очаг

    Виноград - один из очагов

    Миндаль - вторичный очаг

    Фисташка - вторичный очаг

    Яблоня - вторичный очаг

    Груша - вторичный очаг

    Вишня - вторичный очаг

    Слива - вторичный очаг

    Грецкий орех - вторичный очаг

    Гранат - вторичный очаг

    Инжир - вторичный очаг

    Лук репчатый

    Лук-слизун

    Шнитт-лук

    Лук афлатунский

    Лук многоярусный

    Чеснок - основной (возможно первичный) очаг

    Фасоль золотистая - вторичный очаг

    Нут - вторичный очаг

    Конопля

Переднеазиатский центр

Переднеазиатский центр сосредоточен в Передней Азии, включая внутреннюю Малую Азию, все Закавказье, Иран и горную Туркмению. Очень низкое увлажнение, высокие температуры (в отличие от Среднеазиатского и средиземноморского центров редки отрицательные температуры), продолжительные засушливые периоды. Испытал влияние Средиземномрского и Среднеазиатского центра. Практически невозможно определить границы этих трёх центров, так как они сильно перекрываются.

    Пшеница - большинство видов (в том числе T. aestivum, T. durum, T. turgidum, T. polonicum )

    Полба - все виды и разновидности

    Ячмень - двурядный

    Овёс - вторичный очаг

    Рожь

    Горох

    Лён - масличные формы

    Ляллеманция

    Люцерна - совместно со Среднеазиатским центром

    Слива - первичный очаг

    Айва

    Фундук

    Кизил

    Яблоня - вторичный очаг

    Груша - один из основных очагов

    Вишня - вторичный очаг

    Алыча

    Инжир - первичный очаг

    Мушмула германская

    Грецкий орех - вторичный очаг

    Каштан

    Виноград - один из очагов

    Черёмуха - основной очаг

    Фисташка

    Хурма - вторичный очаг

    Боярышник - вторичный очаг

    Абрикос - вторичный очаг

    Черешня - вторичный очаг

    Финиковая пальма

    Лук-порей

    Дыня - вторичный центр

    Пастернак - первичный центр

    Шпинат

    Салат - совместно со Средиземноморским центром.

    Кресс-салат

    Эстрагон - спорно

    Чабер - совместно со Средиземноморским центром.

    Майоран - совместно со Средиземноморским центром.

    Любисток

    Эгилопс

    Эспарцет

    Вика

    Могар - спорно

    Барбарис

Средиземноморский центр

Средиземноморский центр - Балканы, Греция, Италия и большая часть средиземноморского побережья. Характеризуется не очень продолжительным вегетационным периодом (в особенности северные его части), достаточным увлажнением и умеренными температурами. Испытал влияние Переднеазиатского центра.

    Овёс - первичный очаг

    Люпин

    Чина - спорно

    Лён - прядильные формы

    Клевер - первичный очаг

    Оливковое дерево

    Рожковое дерево

    Лавр благородный

    Виноград - основной очаг

    Дуб пробковый

    Горчица белая

    Капуста белокочанная

    Капуста краснокочанная

    Кольраби

    Брокколи

    Брюссельская капуста

    Савойская капуста

    Листовая капуста

    Рапс - спорно (возможно в западной европе)

    Горох - совместно с Переднеазиатским центром

    Боб садовый

    Кабачок (и некоторые другие разновидности тыквы обыкновенной ) - вторичный очаг

    Морковь

    Петрушка - первичный очаг

    Пастернак

    Сельдерей

    Свёкла

    Мангольд

    Редька

    Редис

    Репа - вторичный очаг

    Брюква

    Турнепс

    Скорцонера испанская

    Козлобородник пореелистный

    Цикорий

    Салат - совместно с Переднеазиатским центром

    Щавель кислый

    Ревень

    Спаржа

    Артишок

    Катран

    Мелисса лекарственная

    Иссоп

    Змееголовник

    Мята

    Анис

    Кориандр

    Фенхель

    Тмин

    Огуречная трава

    Хрен

    Сафлор

    Укроп

Эфиопский (Абиссинский) центр

Абиссинский центр - автономный мировой очаг культурных растений в окрестностях эфиопского нагорья: Эфиопия, юго-восточный Судан, Эритрея. Часто его расширяют на всю тропическую Африку . Характеризуется круглогодичной вегетацией, очень высокими температурами и недостаточным увлажнением (в том числе грунтовыми водами). Вплоть до Нового времени был изолирован от всех остальных центров.

    Сорго

    Тэфф

    Кофе

    Кола

    Энсета (Абиссинский банан)

    Арбуз

    Бамия (Окра)

    Ямс - некоторые виды

    Клещевина

    Кунжут

    Нут - вторичный очаг

    Просо - местные разновидности

    Масличная пальма - Западная Африка

    Вигна (коровий горох)

    Хлопчатник - диплоидные виды (стали родоночальникамии ныне существующих американских культурных видов, но сами небыли окультурены)

    Калебаса - вторичный очаг

    Кивано

    Сикомор

    Мелотрия шершавая

    Лук-шалот

Центральноамериканский центр

Центральноамериканский центр - южная Мексика, Центральная Америка, отчасти Антильские острова. Преимущественно умеренное увлажнение (увеличивается с северо-запада на юго-восток), достаточно высокие температуры, с сильными суточными и сезонными колебаниями, умеренная продолжительность вегетации (сезон дождей).

    Кукуруза

    Фасоль обыкновенная

    Тыква обыкновенная - первичный очаг

    Батат

    Ангурия (Антильский огурец)

    Какао

    Перец овощной

    Подсолнечник

    Топинамбур

    Авокадо

    Хлопчатник обыкновенный - спонтанный тетраплоидный гибрид Африканского и Южноамериканского

    Агава

    Табак

    Махорка

    Папайя

    Пекан

    Томат - вторичный очаг

    Физалис

    Чайот

    Хикама

Южноамериканский (Перуано-Эквадоро-Боливийский или Андийский) центр

Южноамериканский (Перуано-эквадоро-боливийский) центр охватывает горные области и плоскогорья Колумбии , Эквадора , Перу , Боливии . Достаточно высокие температуры, недостаточное увлажнение. Испытал некоторое влияние Центральноамериканского центра (причём взаимно).

    Папайя - совместно с Центральноамериканским центром

    Картофель - вид Solanum andigena и некоторые другие

    Настурция клубненосная

    Кислица клубненосная

    Уллюко клубненосный

    Якон

    Томат - первичный центр

    Тамарилло

    Кока

    Арахис

    Хинное дерево

    Гевея

    Циклантера

    Ананас

    Аноа

    Хлопчатник перуанский (тонковолокнистый)

    Фейхоа

    Бразильский орех

    Страстоцвет

    Фасоль лимская

    Тыква крупноплодная (Тыква лечебная)

    Тыква мускатная

    Тыква фиголистная

    Кукуруза - вторичный центр

    Амарант

    Гигантская гранадилла

    Сладкая гранадилла

    Жёлтая гранадилла

    Банановая гранадилла

    Чулюпа

    Наранхилла

    Кокона

    Пепино

    Лукума

    Арракача

    Мака перуанская

Дополнительно к основному Южноамериканскому центру выделено ещё два субцентра:

Чилоандский субцентр

Остров Чилоэ вблизи Чили . Имеет низкие температуры и повышенное увлажнение.

    Картофель - вид Solanum tuberosum

    Земляника чилийская

    Угни

Бразильско-парагвайский субцентр

Расположен в верховьях реки Парана в юго-восточной части Бразильского нагорья . Имеет достаточные увлажнение и температуры, круглогодичную вегетацию.

    Маракуйя

    Падуб парагвайский

    Имбу

    Маниок - совместно с Андийским центром

Иногда (в особенности для плодовых культур) выделяют также:

Австралийский центр

Включает Австралийский континент и Новую Зеландию. Недостаточное увлажнение, высокие температуры, круглогодичная вегетация. Образовался в Новейшее время .

    Эвкалипт

    Акация

    Австралийский орех

    Киви (Актинидия) - вторичный очаг

    Унаби - вторичный очаг

    Шпинат Новозеландский

    Новозеландский лён

Североамериканский центр

Включает преимущественно восток современных США. Высокая влажность, умеренные температуры, достаточная продолжительность вегетации. Испытал влияние Центральноамериканского центра (а с момента открытия Америки и Евразиатских).

    Цицания водная

    Слива канадская (чёрная)

    Слива американская

    Крыжовник американский

    Клюква крупноплодная

    Орех калифорнийский - Juglans californica

    Орех чёрный

    Земляника виргинская

    Малина чёрная

    Голубика

    Ежевика

    Виноград - вторичный центр (гибриды европейского Vitis vinifera и местного Vitis labrusca )

    Люпин

    Рябчик камчатский

    Ирга

    Азимина

Европейско-Сибирский центр

Включает обширные территории умеренного пояса Евразии. На большей части имеет сравнительно хорошее увлажнение, непродолжительный период вегетации и невысокие температуры. Отличительным признаком региона можно назвать также продолжительный период с отрицательными температурами и устойчивым снежным покровом. Испытал сильное влияние Средиземноморского и Переднеазиатского центров.

    Сахарная свёкла

    Лён - вторичный очаг

    Клевер красный

    Клевер белый

    Рыжик

    Яблоня - вторичный очаг

    Вишня - первичный очаг

    Черешня

    Облепиха

    Чёрная смородина

    Крыжовник

    Лещина

    Груша - вторичный очаг

    Земляника садовая - гибрид чилийской и виргинской

    Земляника мускатная (Клубника)

    Жимолость

    Лук алтайский

    Репа - первичный очаг

    Арония черноплодная - происходит из Северной Америки, но окультурена в России

    Рябина домашняя

    Брусника

    Красная смородина

    Шиповник

    устанавливает параллелизм в наследств, изменчивости организмов. Сформулирован Н. И. Вавиловым в 1920. Изучая изменчивость признаков у видов и родов злаков и др. семейств, Н. И. Вавилов обнаружил, что: 1. Виды и роды, генетически близкие между собой, характеризуются тождественными рядами наследственной изменчивости с такой правильностью, что зная ряд форм для одного вида, можно предвидеть нахождение тождественных форм у других видов и родов. Чем ближе генетически расположены в общей системе роды и линнеоны, тем полнее тождество в рядах их изменчивости. 2. Целые семейства растений в общем характеризуются определённым циклом изменчивости, проходящей через все роды, составляющие семейство». Хотя исходно закон касался изменчивости у растений, Н. И. Вавилов указывал на применимость его к животным. Теоретич. основой гомологии рядов фе-нотипич. изменчивости у близких таксономич. групп является представление о единстве их происхождения путём дивер-генпии под действием естеств. отбора. Поскольку общие предки существующих ныне видов обладали определ., спепифич. набором генов, то и их потомки должны обладать, за небольшими исключениями, таким же набором генов. Учитывая, что каждый ген может мутировать в разных направлениях (множеств, аллелизм) и что мутационный процесс имеет ненаправленный характер, естественно предполагать, что спектр изменений одинаковых генов у особей близких видов будет сходным. Т. о., в основе закона гомологич. рядов (3. г. р.) лежит параллелизм генотипич. изменчивости у особей со сходным набором генов. Являясь теоретич. основой сравнительной генетики, закон объясняет полиморфность видов и, т. о., обосновывает целостность вида, несмотря на существование в его пределах морфологически чётко различающихся форм. С др. стороны, закон вносит ясность в явление фенотипич. «однородности» мн. видов, края может быть связана с их ге-терозиготностью и явлением доминирования, что и выявляется при инбридинге. 3. г. р., отражая общую закономерность мутационного процесса и формообразования организмов, является биол. основой методов целенаправленного получения нужных наследств, изменений. Он указывает селекционерам направления искусств, отбора, или, как писал Н. И. Вавилов, «что следует искать», причём методы поиска могут быть разными: от нахождения нужных форм в природе или выявления их при инбридинге до получения этих форм с использованием мутагенов. Биохимич. механизмы 3. г. р. широко изучаются на разных объектах - от изменений метаболизма бактерий в процессах микробиол. синтеза до наследств, заболеваний человека.



Последние материалы раздела:

SA. Парообразование. Испарение, конденсация, кипение. Насыщенные и ненасыщенные пары Испарение и конденсация в природе сообщение
SA. Парообразование. Испарение, конденсация, кипение. Насыщенные и ненасыщенные пары Испарение и конденсация в природе сообщение

Все газы явл. парами какого-либо вещества, поэтому принципиальной разницы между понятиями газ и пар нет. Водяной пар явл. реальным газом и широко...

Программа и учебные пособия для воскресных школ А тех, кто вокруг, не судить за грехи
Программа и учебные пособия для воскресных школ А тех, кто вокруг, не судить за грехи

Учебно-методический комплект "Вертоград" включает Конспекты учителя, Рабочие Тетради и Сборники тестов по следующим предметам:1. ХРАМОВЕДЕНИЕ...

Перемещение Определить величину перемещения тела
Перемещение Определить величину перемещения тела

Когда мы говорим о перемещении, важно помнить, что перемещение зависит от системы отсчета, в которой рассматривается движение. Обратите внимание...