H2s какие свойства. Получение сероводорода

В атмосфере водорода, можно почувствовать неприятный запах протухших яиц. Это водород вступил в химическую реакцию с серой и образовался сероводород H 2 S. Этот запах можно почувствоват, если ехать мимо шельфа Чёрного моря. На глубине 150 м и глубже море имеет повышенную концентрацию сероводорода. Сероводород выходит наружу на мелководье. Он ядовит, поэтому что на глубине уже 150 м практически нет жизни.

Необходимо помнить, что сероводород – опасный и ядовитый газ, вызывающий поражение дыхательных путей. Смертельный исход может наступить при концентрации сероводорода в воздухе 1,2…2,8 мг/л. Опыты с сероводородом необходимо проводить только на открытом воздухе или под вытяжкой.

Человеческий организм способен улавливать молекулы сероводорода в воздухе уже при концентрации 0,0000001 мг/л. Но если пребывать в атмосфере этого газа достаточно долго, то, не смотря на концентрацию сероводорода в воздухе, наступает паралич обонятельного нерва, что влечёт отсутствие какого-либо дальнейшего ощущения газа.

Наличие сероводорода в воздухе можно легко определить путём влажной бумаги, которая смочена в специально приготовленном свинцовом растворе, то есть использовать растворимую соль свинца (кстати, соли свинца - тоже ядовиты!) в качестве индикатора. При взаимодействии сероводорода из воздуха с влажной бумагой (а точнее с раствором соли свинца) на бумаге постепенно будет появляться черный осадок. С химической точки зрения – это сульфид свинца PbS – нерастворимая соль свинца.

Конечно, нерастворимая – сильно сказано, на самом деле растворима, но в определенных растворителях, правильнее сказать – слабодисоциируемая в исходном растворе. Таким образом, легко определить присутствие сероводорода, например в яйцах, мясе.

Получение сероводорода

Получение сероводорода

Сероводород H 2 S в лабораторных (и домашних) условиях можно получить путём воздействия на сульфид железа FeS соляной кислотой HCl. Реакция будет сопровождаться интенсивным выделением газа – сероводорода. Реакция будет происходить так:

FeS + 2HCl→ H2S + FeCl2

например, для опытов дома не представляет никаких сложностей. Для этого можно использовать обыкновенный парафин от свечи. Для этого нам понадобится парафин, порошок мелкоизмельчённой серы и газовая горелка. Нужно расплавить в фарфоровой чашке (желательно в фарфоровой) около 25 г парафина и добавить туда порошок серы 15 г. После расплавления убираем горелку и даём постепенно смеси остывать, при этом необходимо помешивать получаемый раствор. Теперь, когда смесь застыла, её можно измельчить. Всё готово для получения сероводорода .

Итак, получим сероводород, для чего возьмём немного измельчённой смеси и будем медленно её нагревать, предварительно поместив смесь в пробирку с газоотводной трубкой. Нагревать нужно до температуры 170 0 С и больше. Получение сероводорода можно контролировать путём повышения или уменьшения температуры: сероводород выделяется более интенсивно при повышении температуры, при уменьшении температуры – меньше или совсем прекращается.
Так вот, в процессе химической реакции парафин (а именно водород, находящийся в парафине) взаимодействует с серой, при этом выделяется сероводород и образуется углерод.
Реакция протекает так.

Примеры решения задач. Пример 2.1.Рассчитать эквивалент и молярную массу эквивалентов H2S и NaOH в реакциях H2S + 2NaOH = Na2S + 2H2O (1) и

H 2 S + NaOH = NaHS + H 2 O (2)

Решение кислоты или основания , участвующихв кислотно-основной реакции, рассчитывается по формуле

М эк (кислоты, основания) = ,

где М – молярная масса кислоты или основания; n – для кислот – число атомов водорода, замещенных в данной реакции на металл; для оснований – число гидроксильных групп, замещенных в данной реакции на кислотный остаток.

Значение эквивалента и молярной массы эквивалентов вещества зависит от реакции, в которой это вещество участвует.

В реакции H 2 S + 2NaOH = Na 2 S + 2H 2 O (1) оба иона водорода молекулы H 2 S замещаются на металл и, таким образом, одному иону водорода эквивалентна условная частица ½ H 2 S. В этом случае

Э (H 2 S) = ½ H 2 S, а М эк (H 2 S) = .

В реакции H 2 S + NaOH = NaHS + H 2 O (2) в молекуле H 2 S на металл замещается только один ион водорода и, следовательно, одному иону эквивалентна реальная частица – молекула H 2 S. В этом случае

Э (H 2 S) = 1 H 2 S, а М эк (H 2 S) = = 34 г/моль.

Эквивалент NaOH в реакциях (1) и (2) равен 1 NaOH, так как в обоих случаях на кислотный остаток замещается одна гидроксильная группа.

М эк (NaOH) = 40 г/моль.

Таким образом, эквивалент H 2 S в реакции (1) равен ½ H 2 S, реакции (2) −

1H 2 S, молярные массы эквивалентов H 2 S равны соответственно 17 (1) и 34 (2) г/моль; эквивалент NaOH в реакциях (1) и (2) равен 1NaOH, молярная масса эквивалентов основания составляет 40 г/моль.

Решение . Молярная масса эквивалентов оксида рассчитывается по формуле

М эк (оксида) = ,

где М – молярная масса оксида; n – число катионов соответствующего оксиду основания или число анионов соответствующей оксиду кислоты; |c.o.| – абсолютное значение степени окисления катиона или аниона.

В реакции P 2 O 5 + 3CaO = Ca 3 (PO 4) 2 эквивалент P 2 O 5 , образующего два трехзарядных аниона (РО 4) 3- , равен 1 / 6 P 2 O 5 , а

М эк (P 2 O 5) = г/моль. Эквивалент СаО, дающего один двухзарядный катион (Са 2+), равен ½ СаО, а М эк (СаО) = = 28 г/моль.

Пример 2.3. Вычислить эквивалент и молярную массу эквивалентов фосфора в соединениях РН 3 , Р 2 О 3 и Р 2 О 5 .

Решение. Чтобы определить молярную массу эквивалентов элемента в соединении, можно воспользоваться формулой

М эк (элемента) = ,

где М А – молярная масса элемента; |c.o.| – абсолютное значение степени окисления элемента.

Степень окисления фосфора в РН 3 , Р 2 О 3 , Р 2 О 5 соответственно равна ­3, +3 и +5. Подставляя эти значения в формулу, находим, что молярная масса эквивалентов фосфора в соединениях РН 3 и Р 2 О 3 равна 31/3 = 10,3 г/моль; в Р 2 О 5 ­

31/5 = 6,2 г/моль, а эквивалент фосфора в соединениях РН 3 и Р 2 О 3 равен 1 / 3 Р, в соединении Р 2 О 5 – 1 / 5 Р.

Решение . Молярная масса эквивалентов химического соединения равна сумме молярных масс эквивалентов составляющих его частей.

М эк (РН 3) = М эк (Р) + М эк (Н) = 10,3 + 1 = 11 г/моль;

М эк (Р 2 О 3) = М эк (Р) + М эк (О) = 10,3 + 8 = 18,3 г/моль;

М эк (Р 2 О 5) = М эк (Р) + М эк (О) = 6,2 + 8 = 14,2 г/моль.

Пример 2.5. На восстановление 7,09 г оксида металла со степенью окисления +2 требуется 2,24 л водорода (н.у.). Вычислить молярные массы эквивалентов оксида и металла. Чему равна молярная масса металла?

Решение. Задача решается по закону эквивалентов. Так как одно из реагирующих веществ находится в газообразном состоянии, то удобно воспользоваться формулой:

где V эк – объем одного моля эквивалентов газа. Для вычисления объема моля эквивалентов газа необходимо знать число молей эквивалентов (υ) в одном моле газа: υ = . Так, М (Н 2) = 2 г/моль; М эк (Н 2) = 1 г/моль. Следовательно, в одном моле молекул водорода Н 2 содержится υ = 2/1 = 2 моль эквивалентов водорода. Как известно, моль любого газа при нормальных условиях (н.у.) (Т=273 К, р=101,325 кПа) занимает объем 22,4 л. Значит, моль водорода займет объем 22,4 л, а так как в одном моле водорода содержится 2 моль эквивалентов водорода, то объем одного моля эквивалентов водорода равен V эк (Н 2) = 22,4 / 2 = 11,2 л. Аналогично М (О 2) = 32 г/моль, М эк (О 2) = 8 г/моль. В одном моле молекул кислорода О 2 содержится υ = 32 / 8 = 4 моль эквивалентов кислорода. Один моль эквивалентов кислорода при н.у. занимает объем V эк (О 2) = 22,4 / 4 = 5,6 л.

Подставив в формулу

численные значения, находим, что

М эк (оксида) = г/моль.

Молярная масса эквивалентов химического соединения равна сумме молярных масс эквивалентов составляющих его частей. Оксид – это соединение металла с кислородом, поэтому молярная масса эквивалентов оксида представляет собой сумму М эк (оксида) = М эк (металла) + М эк (кислорода). Отсюда М эк. (металла) = М эк. (оксида) − М эк. (кислорода) = 35,45 – 8 = 27,45 г/моль.

Молярная масса эквивалентов элемента (М эк.) связана с атомной массой элемента (М А) соотношением: М эк (элемента) = , где ½с.о.½ − степень окисления элемента. Отсюда М А = М эк (металла) ∙ ½с.о.½ = 27,45×2 = 54,9 г/моль.

Таким образом, М эк. (оксида) = 35,45 г/моль; М эк. (металла) = 27,45 г/моль; М А (металла) = 54,9 г/моль.

Пример 2.6. При взаимодействии кислорода с азотом получено 4 моль эквивалентов оксида азота (IV). Рассчитать объемы газов, вступивших в реакцию при нормальных условиях.

Решение. По закону эквивалентов число молей эквивалентов веществ, вступающих в реакцию и образующихся в результате реакции, равны между собой, т.е. υ (О 2) = υ (N 2) = υ (NO 2). Так как получено 4 моль эквивалентов оксида азота (IV), то, следовательно, в реакцию вступило 4 моль эквивалентов О 2 и 4 моль эквивалентов N 2 .

Азот изменяет степень окисления от 0 (в N 2) до +4 (в NО 2), и так как в его молекуле 2 атома, то вместе они отдают 8 электронов, поэтому

М эк (N 2) = = = 3,5 г/моль. Находим объем, занимаемый молем эквивалентов азота (IV):

28 г/моль N 2 – 22,4 л

3,5 г/моль N 2 – х

х = л.

Так как в реакцию вступило 4 моль эквивалентов N 2 , то их объем составляет V (N 2) = 2,8·4 = 11,2 л. Зная, что моль эквивалентов кислорода при н.у. занимает объем 5,6 л, рассчитываем объем 4 моль эквивалентов О2, вступивших в реакцию: V (O 2) = 5,6·4 = 22,4 л.



Итак, в реакцию вступило 11,2 л азота и 22,4 л кислорода.

Пример 2.7. Определить молярную массу эквивалентов металла, если из 48,15 г его оксида получено 88,65 г его нитрата.

Решение. Учитывая, что М эк (оксида) = М эк (металла) + М эк (кислорода), а М эк (соли) = М эк (металла) + М эк (кислотного остатка), подставляем соответствующие данные в закон эквивалентов:

; ;

М эк (металла) = 56,2 г/моль.

Пример 2.8. Вычислить степень окисления хрома в оксиде, содержащем 68,42 % (масс.) этого металла.

Решение. Приняв массу оксида за 100%, находим массовую долю кислорода в оксиде: 100 – 68,42 = 31,58%, т.е. на 68,42 частей массы хрома приходится 31,58 частей массы кислорода, или на 68,42 г хрома приходится 31,58 г кислорода. Зная, что молярная масса эквивалентов кислорода равна 8 г/моль, определим молярную массу эквивалентов хрома в оксиде по закону эквивалентов:

; М эк (Cr)= г/моль.

Степень окисления хрома находим из соотношения

М эк (Cr)= , отсюда |c. o.|= .

Задачи

№ 2.1. При взаимодействии 6,75 г металла с серой образовалось 18,75 г сульфида. Рассчитать молярные массы эквивалентов металла и его сульфида. Молярная масса эквивалентов серы равна 16 г/моль.

(Ответ: 9 г/моль; 25 г/моль).

№ 2.2. Вычислить степень окисления золота в соединении состава: 64,9% золота и 35,1% хлора. Молярная масса эквивалентов хлора 35,45 г/моль.

(Ответ: 3).

№ 2.3. Вычислить молярные массы эквивалентов и эквиваленты Р 2 О 5 в реакциях, идущих по уравнениям:

Р 2 О 5 + 3MgO = Mg 3 (PO 4) 2 ;

P 2 O 5 + MgO = Mg(PO 3) 2 .

(Ответ: 23,7 г/моль; 71 г/моль).

№ 2.4 . Сколько моль эквивалентов металла вступило в реакцию с кислотой, если при этом выделилось 5,6 л водорода при нормальных условиях?

(Ответ: 0,5 моль).

№ 2.5. На нейтрализацию 0,943 г фосфористой кислоты Н 3 РО 3 израсходовано 1,291 г КОН. Вычислить молярную массу эквивалентов кислоты.

(Ответ: 41 г/моль).

№ 2.6 . Определить молярную массу эквивалентов металла и назвать металл, если 8,34 г его окисляются 0,68 л кислорода (н.у.). Металл окисляется до степени окисления +2. (Ответ: 68,7 г/моль).

№ 2.7. Вычислить степень окисления свинца в оксиде, в котором на 1 г свинца приходится 0,1544 г кислорода. (Ответ: 4).

№ 2.8. Вычислить эквивалент и молярную массу эквивалентов Al(OH) 3 в каждой из следующих реакций, выраженных уравнениями:

Al(OH) 3 + 3HCl = AlCl 3 + 3H 2 O;

Al(OH) 3 + 2HCl = AlOHCl 2 + 2H 2 O;

Al(OH) 3 + HCl = Al(OH) 2 Cl + H 2 O.

№ 2.9 . Для получения гидроксида железа (III) смешали растворы, содержащие 0,2 моль эквивалентов щелочи и 0,3 моль эквивалентов хлорида железа (III). Сколько граммов гидроксида железа (III) получилось в результате реакции? (Ответ: 7,13 г).

№ 2.10 . Из 1,3 г гидроксида металла получается 2,85 г его сульфата. Вычислить молярную массу эквивалентов этого металла. (Ответ: 9 г/моль).

№ 2.11. При взаимодействии 22 г металла с кислотой выделилось при н. у. 8,4 л водорода. Рассчитать молярную массу эквивалентов металла. Сколько литров кислорода потребуется для окисления этого же количества металла? (Ответ: 29,33 г/моль; 4,2 л.).

№ 2.12. Вычислить степень окисления мышьяка в соединении его с серой, в котором на 1 г мышьяка приходится 1,07 г серы. Молярная масса эквивалентов серы 16 г/моль. (Ответ: 5).

№ 2.13. Вычислить эквивалент и молярную массу эквивалентов Н 3 РО 4 в каждой из следующих реакций, выраженных уравнениями:

Н 3 РО 4 + КОН = КН 2 РО 4 + Н 2 О;

Н 3 РО 4 + 2КОН = К 2 НРО 4 + 2Н 2 О;

Н 3 РО 4 + 3КОН = К 3 РО 4 + 3Н 2 О.

№ 2.14. При взаимодействии водорода и азота получено 6 моль эквивалентов аммиака. Какие объемы водорода и азота вступили при этом в реакцию при нормальных условиях? (Ответ: 67,2 л; 22,4 л.)

№ 2.15. При пропускании сероводорода через раствор, содержащий 2,98 г хлорида металла, образуется 2,2 г его сульфида. Вычислить молярную массу эквивалентов металла. (Ответ: 39 г/моль).

№ 2.16 . Молярная масса эквивалентов металла равна 56,2 г/моль. Вычислить массовую долю металла в его оксиде. (Ответ: 87,54%).

№ 2.17 . Определить эквивалент и молярную массу эквивалентов азота, кислорода, углерода в соединениях NH 3 , H 2 O, CH 4 .

№ 2.19. На нейтрализацию 9,797 г ортофосфорной кислоты израсходовано 7,998 г NaOH. Вычислить эквивалент, молярную массу эквивалентов и основность Н 3 РО 4 в этой реакции. На основании расчета написать уравнение реакции. (Ответ: ½ H 3 РО 4 ; 49 г/моль; 2).

№ 2.20 . 0,43 г металла при реакции с кислотой вытеснили при н. у. 123,3 мл водорода. 1,555 г этого же металла вступают во взаимодействие с 1,415 г некоторого неметалла. Рассчитать молярную массу эквивалентов неметалла.

(Ответ: 35,5 г/моль).

В этой статье мы рассмотрим получение сероводорода из серы. Подробнее разберем физические и химические свойства данного вещества.

Строение

Для того чтобы проанализировать основное получение сероводорода, необходимо выяснить особенности его строения. В составе данного вещества содержатся один атом серы и два водорода. Они являются неметаллами, поэтому между элементами образуются В сероводороде угловое строение. Между серой и водородом образуется угол в 92 градуса, что чуть меньше, чем в воде.

Физические свойства

Запах сероводорода, напоминающий тухлые яйца, знаком всем. При нормальных условиях данное вещество находится в газообразном состоянии. Оно не имеет цвета, плохо растворимо в воде, ядовито. В среднем при 20 градусах по Цельсию в воде будет растворяться 2,4 объема сероводорода. У сероводородной воды выявлены незначительные диссоциация вещества протекает ступенчато. Ядовитый сероводород опасен даже в незначительных дозах. Содержание в воздухе около 0,1 процента сероводорода приводит к параличу дыхательного центра с потерей сознания. Например, легендарный естествоиспытатель Плиний Старший погиб в 79 веке до нашей эры именно от сероводорода, который образовывался при извержении Везувия.

Причина отравляющего действия сероводорода в его химическом взаимодействии с гемоглобином крови. Железо, содержащееся в этом белке, образует сульфид с сероводородом.

Предельно допустимой концентрацией в воздухе сероводорода считается 0,01 мг/л. В качестве противоядия используется вдыхание чистого кислорода либо воздуха, в составе которого есть незначительное количество хлора.

Работа с сероводородом предполагает соблюдение определенных правил безопасности. Все эксперименты, касающиеся данного газообразного вещества, осуществляются в герметичных приборах и вытяжных шкафах.

Способы получения сероводорода

Каково получение сероводорода в лаборатории? Самым распространенным вариантом является взаимодействие водорода с серой. Данная химическая реакция относится к соединению, проводится в вытяжном шкафу.

Кроме того, получение сероводорода возможно и при обмене между твердым сульфидом железа (2) и раствором серной либо соляной кислоты. Чтобы получить такой результат, в пробирку достаточно взять несколько кусков сульфида, не превышающих по размеру горошину. Далее в пробирку (до половины объема) добавляют раствор кислоты, закрывают газоотводной трубкой. Прибор помещают под вытяжку, пробирку нагревают. Химическое взаимодействие сопровождается выделением пузырьков газа. Такое получение сероводорода позволяет создавать количество вещества, достаточное для рассмотрения его химических свойств.

Какие еще бывают способы? В лаборатории допускается получение сероводорода путем взаимодействия металлического железа (под вытяжкой) с кристаллической серой, с последующим взаимодействием сульфида с серной кислотой.

Химические свойства

Сероводород взаимодействует с кислородом воздуха, горит он голубоватым цветом. В случае полного сгорания продуктами реакции являются (4) и вода. Учитывая, что печной газ является кислотным оксидом, в растворе он образует слабую окрашивающую синюю в красный цвет.

В случае недостаточного количества сероводорода образуется кристаллическая сера. Данный процесс считается промышленным способом получения из сероводорода чистой серы.

У данного химического вещества выявлены и отличные восстановительные способности. Они проявляются, к примеру, при взаимодействии с солями, галогенами. Для того чтобы провести в лабораторных условиях подобную реакцию, в пробирки с хлором и бромом наливают раствор сероводорода, наблюдают обесцвечивание. В качестве продукта реакции наблюдают образование кристаллической серы.

При химической реакции сероводорода с водой происходит образование катиона гидроксония Н3О+.

Сероводород способен образовывать два вида соединений: сульфиды (средние соли) и гидросульфиды

У щелочных и щелочноземельных металлов сульфиды являются бесцветными соединениями. У тяжелых металлов (меди, никеля, свинца) они имеют черный цвет. Сульфид марганца обладает розовым цветом. Многие соли не растворяются в воде.

Качественной реакцией на сульфиды считают взаимодействие с раствором сульфата меди (2). Продуктом подобного взаимодействия будет выпадение черного осадка сульфида меди (2).

Заключение

В природе это вещество находится в минеральных источниках, вулканических газах. Данное соединение является продуктом гниения животных и растительных организмов, его отличает характерный запах сероводорода. Природные сульфиды обнаружены в составе редких металлов, в металлургии из них получают соответствующие элементы. Важно помнить и о том, что сероводород является сильным отравляющим веществом.

Сероводородная кислота. Сероводород встречается в природе в месторождениях нефти и газа, в водах минеральных источников, он растворен в глубоких слоях (ниже 150 - 200 м) Черного моря. Применяют сероводород в производстве серы и серной кислоты, различных химических веществ, тяжелой воды, для приготовления лечебных ванн, в аналитической химии. Токсичен.

Современная энциклопедия . 2000 .

Смотреть что такое "СЕРОВОДОРОД, H2S" в других словарях:

    сероводород H 2 S - сероводород H2S: Бесцветный ядовитый газ, имеющий запах тухлых яиц; Источник: СТО Газпром 5.12 2008: Газ горючий природный. Определение серосодержащих компонентов хроматографическим методом … Словарь-справочник терминов нормативно-технической документации

    СЕРОВОДОРОД - СЕРОВОДОРОД, H2S (молекулярный вес 34,07), бесцветный газ с характерным запахом тухлых яиц. Литр газа при нормальных условиях (0°, 760 мм) весит 1,5392 г. Темп, кипения 62°, плавления 83°; С. входит в состав газообразных выделений… … Большая медицинская энциклопедия

    - (H2S), бесцветный, ядовитый газ с запахом тухлых яиц. Образуется в процессах гниения, содержится в сырой нефти. Получают действием серной кислоты на сульфиды металлов. Используется в традиционном КАЧЕСТВЕННОМ АНАЛИЗЕ. Свойства: температура… … Научно-технический энциклопедический словарь

    Сероводород … Википедия

    СЕРОВОДОРОД И СУЛЬФИДЫ - см. СЕРОВОДОРОД И СУЛЬФИДЫ (H2S, NaHS, NH4)2S, Fe2S3, PbS и др). Сероводород и сульфиды присутствуют в природных водах в небольших количествах и образуются при разложении органических веществ. Они содержатся в сточных водах коммунально бытового… … Болезни рыб: Справочник

    - (сернистый водород) H2S, бесцветный газ с запахом тухлых яиц; tпл?85,54 .С, tкип?60,35 .С; при 0 .С сжижается под давлением 1 МПа. Восстановитель. Побочный продукт при очистке нефтепродуктов, коксовании угля и др.; образуется при разложении… … Большой Энциклопедический словарь

    Бесцветный ядовитый газ H2S с неприятным специфическим запахом. Обладает слабокислотными свойствами. 1 л С. при t 0 °C и давлении 760 мм составляет 1,539 г. Встречается в нефтях, в природных водах, в газах биохимического происхождения, как… … Геологическая энциклопедия

    H2S бесцветный газ с характерным запахом тухлых яиц; плотн. 1,538 кг/м3. С. легко сжижается, например при О °С под давлением 1 МПа; (кип 60,38 °С. Хорошо растворяется в воде с образованием слабой сероводородной кислоты H2S. В природе С.… … Большой энциклопедический политехнический словарь

    H2S, то же, что Сернистый водород … Большая советская энциклопедия

    H2S, бесцв. газ с запахом тухлых яиц; tnл 85,7 °С, tnл 60,35 °С; при О °С сжижается под давлением 1 МПа. Восстановитель. Побочный продукт при очистке нефтепродуктов, коксовании угля и др.; образуется при разложении белковых в в. Содержится в нек… … Естествознание. Энциклопедический словарь

FeS + 2HCl = FeCl 2 + H 2 S

    Взаимодействие сульфида алюминия с холодной водой

Al 2 S 3 + 6H 2 O = 2Al(OH) 3 + 3H 2 S

    Прямой синтез из элементов происходит при пропускании водорода над расплавленной серой:

H 2 + S = H 2 S.

    Нагревание смеси парафина с серой.

1.9. Сероводородная кислота и её соли

Сероводородной кислоте присущи все свойства слабых кислот. Она реагирует с металлами, оксидами металлов, основаниями.

Как двухосновная, кислота образует два типа солей – сульфиды и гидросульфиды . Гидросульфиды хорошо растворимы в воде, сульфиды щелочных и щелочно-земельных металлов также, сульфиды тяжелых металлов практически нерастворимы.

Сульфиды щелочных и щелочноземельных металлов не окрашены, остальные имеют характерную окраску, например, сульфиды меди (II), никеля и свинца – черные, кадмия, индия, олова – желтые, сурьмы – оранжевый.

Ионные сульфиды щелочных металлов M 2 S имеют структуру типа флюорита, где каждый атом серы окружен кубом из 8 атомов металла и каждый атом металла – тетраэдром из 4 атомов серы. Сульфиды типа MS характерны для щелочноземельных металлов и имеют структуру типа хлорида натрия, где каждый атом металла и серы окружен октаэдром из атомов другого сорта. При усилении ковалентного характера связи металл – сера реализуются структуры с меньшими координационными числами.

Сульфиды цветных металлов встречаются в природе как минералы и руды, служат сырьем для получения металлов.

Получение сульфидов

    Прямое взаимодействие простых веществ при нагревании в инертной атмосфере

    Восстановление твердых солей оксокислот

BaSO 4 + 4C = BaS + 4CO (при 1000°С)

SrSO 3 + 2NH 3 = SrS + N 2 + 3H 2 O (при 800°С)

CaCO 3 + H 2 S + H 2 = CaS + CO + 2H 2 O (при 900°С)

    Малорастворимые сульфиды металлов осаждают из их растворов действием сероводорода или сульфида аммония

Mn(NO 3) 2 + H 2 S = MnS↓ + 2HNO 3

Pb(NO 3) 2 + (NH 4) 2 S = PbS↓ + 2NH 4 NO 3

Химические свойства сульфидов

    Растворимые сульфиды в воде сильно гидролизованны, имеют щелочную среду:

Na 2 S + H 2 O = NaHS + NaOH;

S 2- + H 2 O = HS - + OH - .

    Окисляются кислородом воздуха, в зависимости от условий возможно образование оксидов, сульфатов и металлов:

2CuS + 3O 2 = 2CuO + 2SO 2 ;

CaS + 2O 2 = CaSO 4 ;

Ag 2 S + O 2 = 2Ag + SO 2 .

    Сульфиды, особенно растворимые в воде, являются сильными восстановителями:

2KMnO 4 + 3K 2 S + 4H 2 O = 3S + 2MnO 2 + 8KOH.

1.10. Токсичность сероводорода

На воздухе сероводород воспламеняется около 300 °С. Взрывоопасны его смеси с воздухом, содержащие от 4 до 45% Н 2 S. Ядовитость сероводорода часто недооценивают и работы с ним ведут без соблюдения достаточных мер предосторожности. Между тем уже 0,1 % Н 2 S в воздухе быстро вызывает тяжелое отравление. При вдыхании сероводорода в значительных концентрациях может мгновенно наступить обморочное состояние или даже смерть от паралича дыхания (если пострадавший не был своевременно вынесен из отравленной атмосферы). Первым симптомом острого отравления служит потеря обоняния. В дальнейшем появляются головная боль, головокружение и тошнота. Иногда через некоторое время наступают внезапные обмороки. Противоядием служит, прежде всего, чистый воздух. Тяжело отравленным сероводородом дают вдыхать кислород. Иногда приходится применять искусственное дыхание. Хроническое отравление малыми количествами Н 2 S обусловливает общее ухудшение самочувствия, исхудание, появление головных болей и т.д. Предельно допустимой концентрацией Н 2 S в воздухе производственных помещений считается 0,01 мг/л.



Последние материалы раздела:

Пробный ЕГЭ по русскому языку
Пробный ЕГЭ по русскому языку

Здравствуйте! Уточните, пожалуйста, как верно оформлять подобные предложения с оборотом «Как пишет...» (двоеточие/запятая, кавычки/без,...

Математические, статистические и инструментальные методы в экономике: Ключ к анализу и прогнозированию
Математические, статистические и инструментальные методы в экономике: Ключ к анализу и прогнозированию

В современном мире, где экономика становится все более сложной и взаимосвязанной, невозможно переоценить роль аналитических инструментов в...

SA. Парообразование. Испарение, конденсация, кипение. Насыщенные и ненасыщенные пары Испарение и конденсация в природе сообщение
SA. Парообразование. Испарение, конденсация, кипение. Насыщенные и ненасыщенные пары Испарение и конденсация в природе сообщение

Все газы явл. парами какого-либо вещества, поэтому принципиальной разницы между понятиями газ и пар нет. Водяной пар явл. реальным газом и широко...