Хлорорганические соединения в воде. Хлорорганические соединения (ХОС)

ХОС широко используются в сельском хозяйстве как инсектициды, акарициды в борьбе с вредителями зерновых, зернобобовых и технических культур. Многие из соединений этой группы применяются для защиты от вредителей и болезней плодовых деревьев, виноградников, овощных культур, а также лесонасаждений. Этими пестицидами проводят предпосевную обработку семян и фумигацию почвы.

Хлорорганические пестициды представлены значительным количеством соединений различной структуры. Сюда входят хлорпроизводные многоядерных углеводородов (циклопарафипов), соединений диенового ряда, терпенов, бензола и др. По силе действия на теплокровных животных хлороргапическне пестициды могут быть подразделены на 4 группы: сильнодействующие (алдрин, хлорпикрин), высокотоксичные (четыреххлористый углерод, дихлорэтан, гептахлор, гексахлоран, гексахлорбутадиен, тиодан, металлилхлорид), среднетоксичные (пертан, метоксихлор кельтан, полихлорпинен, полихлоркамфен), малотоксичные (эфирсульфонат тедиои, фталан.

Важнейшим свойством большинства хлорорганических пестицидов является стойкость к воздействию различных внешних факторов (инсоляция, температура, влага и др.), что позволяет им длительное время сохраняться в почве, воде, на растениях.

Основная часть ХОС относится к среднетоксичным соединениям, лишь отдельные препараты (алдрин, дилдрин) — к весьма опасным сильнодействующим соединениям, этим обусловлено запрещение использования их в сельском хозяйстве. Ограничено применение и таких высокотоксичных пестицидов, как гексахлорбутадиен и гептахлор. Большинство ХОС способны к материальной кумуляции, местом накопления их в организме являются органы и ткани, богатые жирами и липоидами.

Токсическое действие соединений этой группы связывают с изменением ряда ферментных систем, в частности дыхательной, с нарушением тканевого дыхания. Но мнению ряда авторов, они блокируют SH-группы тканевых белков, нарушают биосинтез белков.

ХОС, получаемые путем диенового синтеза (гептахлор и др.), в процессе метаболизма образуют в организме соответствующие эпоксиды, которые более токсичны, чем основные соединения, и более длительно задерживаются в органах и тканях.

Г. В. Курчатов (1971) рассматривает хлорорганические пестициды как липоидорастворимые неэлектролиты, которые способны проходить через все защитные барьеры организма.

Клиническая симптоматика интоксикаций ХОС характеризуется разнообразием симптомов и симптомокомплексов, что указывает на политропный характер действия веществ, входящих в эту группу.

Клиническая картина острых отравлений ХОС развивается рано (через 30 мин, иногда через 3 ч), описаны случаи развития первых признаков интоксикации через 40 с после случайного попадания их на кожу. В отдельных случаях проявления интоксикации возникают после скрытого периода, который иногда продолжается несколько часов.

В картине острых отравлений ХОС выделяют несколько клинических синдромов. Ведущими из них являются синдромы токсической энцефалопатии, острого гастрита или гастроэнтерита, острой сердечно-сосудистой недостаточности, острой токсической гепатопатии с явлениями печеночно-почечной недостаточности (П. Л. Сухинина, 1970). Е. Л. Лужников (1977), Б. М. Щепотин и Д. Я. Бондаренко (1978) выделяют также синдромы нарушения внешнего дыхания и геморрагический.

Особенности клинической симптоматики острых интоксикаций ХОС зависят от индивидуальной чувствительности организма, пути поступления и дозы препарата. При пероральном поступлении начальными признаками интоксикации являются желудочно-кишечные расстройства, в дальнейшем развивается патология нервной системы; при попадании ХОС через органы дыхания интоксикация выражается в первую очередь раздражением слизистых оболочек глаз и верхних дыхательных путей; при попадании на кожу возникает гиперемия ее, развивается острое воспаленно вплоть до изъязвлений и даже некроза.

Вслед за местными проявлениями токсического действия ХОС развиваются признаки поражения центральной нервной системы: головная боль, головокружение, шум в ушах, цианоз, могут возникнуть кровоизлияния на коже, при тяжелых интоксикациях — приступы генерализованных клонических и тонических судорог (которые могут носить эпилептиформный характер), коллапс.

Синдром токсической энцефалопатии развивается в результате поражения корковых и подкорковых отделов центральной нервной системы. В начале интоксикации он проявляется головокружением, тяжестью в голове, сонливостью, тошнотой. Позже присоединяется оглушение, потеря сознания, тонические и клонические судороги. В некоторых случаях коматозное состояние может развиться сразу. Отмечается гиперемия склер и верхней половины туловища, зрачки расширены. Возможно развитие токсического энцефалита или менингоэнцефалита, параличей конечностей.

Для острых отравлений ХОС характерно угнетение центров продолговатого мозга, в частности дыхательного. В связи с этим возможны нарушения дыхания при тяжелых формах отравления. Наряду с этим может развиться и обтурациоино-аспирационная форма асфиксии, обусловленная повышенной саливацией, бронхореей, аспирацией рвотных масс и слюны, западением языка. Все это усугубляется гипертонусом дыхательной мускулатуры, ригидностью мышц грудной клетки.

Синдром острого гастрита и гастроэнтерита чаще всего является первым признаком пероральных отравлений ХОС. Тошнота, частая рвота, иногда с примесью желчи, резкая боль в надчревной области, частый жидкий стул характерны для клинической картины таких интоксикаций.

Часто при острых отравлениях ХОС наблюдается синдром острой сердечно-сосудистой недостаточности. Особенно характерен он для острых отравлений дихлорэтаном. Отмечаются глухие тоны сердца, различные формы нарушений сердечного ритма, падение артериального давления ниже критических величин (для систолического — ниже 10,7 кПа, или 80 мм рт.ст.). Развивается картина экзотоксического шока.

В патогенезе развития острой сердечно-сосудистой недостаточности имеет значение ряд механизмов. К ним относятся нарушения центральной регуляции сердечной деятельности в связи с токсическим угнетением сердечно-сосудистого центра продолговатого мозга, а также ослабление сократительной функции миокарда в результате непосредственного влияния ХОС на метаболические процессы в нем (нарушение процессов окислительного фосфорилирования и энергетического обмена). Немаловажную роль играет при этом гиповолемия, обусловленная потерей жидкости в результате острого гастроэнтерита. Она ведет к уменьшению объема циркулирующей крови.

Развивающийся метаболический ацидоз на фоне неполноценной респираторной его компенсации приводит к преобладанию анаэробных процессов окисления и возникновению некомпенсированного ацидоза, с чем связано нарушение микроциркуляции.

При тяжелых формах интоксикации острая сердечно-сосудистая недостаточность, не поддающаяся коррекции, может стать причиной гибели пострадавших.

Нередко при попадании в организм больших доз ФОС развивается токсическая дистрофия печени с явлениями гепатаргии. У пострадавших на 2—5-е сутки острого отравления появляется иктеричность склер и кожи, увеличивается печень, которая болезненна при пальпации. В крови повышается активность трансаминаз, лактатдегидрогеназы, альдолазы, билирубина (за счет прямой его фракции).

Одно из проявлений недостаточности печени — геморрагический синдром, возникновению которого способствует также токсическое поражение сосудистых стенок, гипоксия, тромбоцитопения.

Существенные изменения претерпевает свертывающая и противосвертывающая система крови, отмечается гипокоагуляция (повышаются содержание гепарина и фнбринолитическая активность крови).

Нарушение функции почек в ранних стадиях острой интоксикации обусловлено в основном снижением артериального давления, в связи с этим уменьшается почечный кровоток, развивается олигурия и даже анурия. Однако па 2—3-й сутки к этим изменениям могут присоединиться признаки токсической нефропатии (протеипурия, микрогематурия, цилиндрурия) с развитием азотемической уремии, которая нередко является причиной гибели пострадавших на протяжении первых 3 нед интоксикации четыреххлористым углеродом и дихлорэтаном.

При поступлении в организм значительных количеств ХОС через органы дыхания клиническая картина отравления может протекать по типу острого трахеобронхита с повышением температуры и изменениями крови (нейтрофильиый лейкоцитоз, повышение СОЭ).

Для острых отравлений хлорпикрином, обладающим выраженным раздражающим действием, характерны слезотечение, насморк, кашель, одышка, боль в груди, иногда астмоидные состояния, рассеянные влажные хрипы как проявление отека легких, который нередко развивается при тяжелом отравлении. Указанные синдромы сопровождаются, как правило, значительным повышением температуры, метгемоглобинемией, гемолизом. В терминальных стадиях развивается коллапс по типу серой асфиксии.

Клиническая картина хронических отравлений ХОС характеризуется последовательным развитием определенных неврологических синдромов. В наиболее ранней стадии интоксикации неврологические нарушения укладываются в синдром неспецифической токсической астении. Нередко обнаруживаются призпаки астеновегетативного или астеноорганического синдромов. Последний характеризуется микроорганическими симптомами, указывающими на преимущественную локализацию патологического процесса в стволе головного мозга, преобладают гнпостенические проявления астении и эпизодические церебральные ангнодистонические пароксизмы: внезапно наступает интенсивная головная боль с тошнотой, общей слабостью и профузным потом или приступообразными головокружениями (вращение окружающих предметов), сопровождающимися побледнением кожи и брадикардией.

В более поздней стадии хронической интоксикации ХОС в патологический процесс вовлекается периферическая нервная система. Распространенными формами патологии периферической нервной системы являются вегетативно-сенсорный полиневрит. Общими признаками для всех выделенных форм являются развитие патологии периферических нервов на фоне функциональных или органических нарушений центральной нервной системы, рецидивирующее течение с выраженным болевым компонентом, симметричность поражений, преимущественная локализация на верхних конечностях, отсутствие грубых нарушений двигательной функции и выраженных атрофии, частое сочетание с патологией печени.

В единичных случаях наблюдается диффузное поражение нервной системы по типу энцефалополиневрита в виде рассеянных, мелкоочаговых органических симптомов со статико-координаторными нарушениями и вовлечением в патологический процесс экстрапирамидной системы.

В более выраженных случаях поражаются гипоталамическая область, шейные вегетативные узлы, слуховые нервы.

Нарушения сердечно-сосудистой системы характеризуются главным образом вегетативно-сосудистой дистопией со склонностью к артериальной гипотонии, а также экстракардиальными расстройствами сердечного ритма (синусовая брадикардия) и функции проводимости миокарда. Нередко развивается токсическая дистрофия миокарда или миокардит токсико-аллергического характера, особенно у лиц, перенесших в прошлом острую интоксикацию ХОС.

Нередко при хронических интоксикациях ХОС можно обнаружить признаки пневмосклероза в средних и нижних отделах легких.

Уже в начальных стадиях хронической интоксикации ХОС нарушается секреторная функция желудка, в более поздних характерно развитие хронического гастрита с угнетением секреторной функции желудка вплоть до гистаминорезистентной ахилии.

Нарушения функционального состояния печени при хронической интоксикации сначала проявляются повышением активпости органоспецифических ферментов в сыворотке крови (аланин- и аспартаттрансферазы), позже присоединяются нарушения углеводной и антитоксической функции. При тяжелых формах интоксикации развивается токсический гепатит, как правило, протекающий без желтухи, нередко ему сопутствует холецистит.

Установлена определенная фазность в развитии нарушений функции почек: для начальной стадии интоксикации характерно некоторое повышение функциональной активности за счет усиления почечного кровотока и клубочковой фильтрации, на более поздних этапах в связи с развитием токсической нефропатии функция почек значительно нарушается, могут появляться признаки азотемии. В отличие от токсического некронефроза, который характерен для тяжелых острых отравлений ХОС, в частности четыреххлористым углеродом, дихлорэтаном, нефропатии при хронических интоксикациях соединениями этой группы имеют относительно доброкачественное течение и, как правило, не приводят к выраженной азотемической уремии.

На фоне функциональных нарушений центральной нервной системы наблюдаются различные эндокринные нарушения, в том числе наиболее частое угнетение активности коркового вещества надпочечников, гиперфункция щитовидной железы, реже — нарушения функции инсулярного аппарата поджелудочной железы. Для тяжелых форм интоксикации характерна плюригландулярная недостаточность с ведущими гипоталамическими расстройствами, гипергликемией и артериальной гипертензией.

Под влиянием ХОС происходят существенные изменения в крови. К ним относится анемия, которая чаще всего имеет гипохромный характер, однако в отдельных случаях приобретает черты гипопластического процесса, в развитии которого, по-видимому, важную роль играет сенсибилизация организма указанными соединениями. Наряду с этим изменяется количество лейкоцитов: умеренная лейкопения сопровождается относительным лнмфоцитозом, эозинопенией. Снижается также количество тромбоцитов, что нередко сочетается с геморрагическим васкулитом. СОЭ имеет тенденцию к замедлению.

Хронические интоксикации ХОС отличаются затяжным течением и на годы ограничивают трудоспособность.

В диагностике интоксикаций этими соединениями имеет значение определение отдельных пестицидов и их метаболитов в крови и моче. Однако отсутствие параллелизма между степенью выраженности интоксикации и содержанием пестицидов в биосредах снижает диагностическую ценность таких исследований.

Хлорорганические соединения (ХОС) широко применяют в ка­честве инсектицидов, акарицидов и фунгицидов для борьбы с вре­дителями зерновых, зернобобовых, технических и овощных куль­тур, лесонасаждений, плодовых деревьев и виноградников, а также в медицинской и ветеринарной санитарии для уничтожения зоопа-разитов и переносчиков болезней. Они выпускаются в виде смачи­вающихся порошков, минерально-масляных эмульсий и др.

ХОС представляют собой галоидопроизводные многоядерных циклических углеводородов (ДДТ и его аналоги), циклопарафи-нов - гексахлорциклогексан (ГХЦГ), соединений диенового ряда (альдрин, дильдрин, гексахлорбутадиен, гептахлор, дилор), терпе­нов - полихлоркамфен (ПХК) и полихлорпинен (ПХП).

Все ХОС плохо растворяются в воде и хорошо - в органических растворителях, маслах и жирах, причем в пресной воде раствори­мость их выше, чем в соленой (эффект высаливания).

ХОС обладают высокой химической стойкостью к воздействию различных факторов внешней среды, относятся к группе высоко­стабильных и сверхвысокостабильных пестицидов.

Благодаря этим свойствам ХОС накапливаются в гидробионтах и передаются по пищевой цепи, увеличиваясь примерно на поря­док в каждом последующем звене. Однако не все препараты облада-


ют одинаковой персистентностью и кумулятивными свойствами. В гидросфере и организме гидробионтов они постепенно разлагаются с образованием метаболитов. По вышеназванным причинам в зонах интенсивного земледелия остатки ХОС и метаболитов в организме гидробионтов обнаруживаются постоянно, что следует учитывать при диагностике отравлений.

В пресных и морских водоемах, а также в гидробионтах помимо хлорорганических пестицидов обнаруживаются сходные с ними по-лихлорированные бифенилы (ПХБФ) и терфенилы (ПХТФ), ис­пользуемые в промышленности. По своим физико-химическим свойствам и физиологическому действию на организм, а также ме­тодам анализа они весьма близки к хлорорганическим пестицидам. Поэтому необходима дифференциация этих групп хлорированных углеводородов.

Токсичность. Механизм действия ХОС на рыб во многом сходен с их влиянием на теплокровных животных. Рыбы и другие водные организмы более чувствительны к ХОС, чем наземные животные. Особенно чувствительны к ХОС водные ракообразные и насеко­мые, которых нередко используют как индикаторные организмы.

В организм рыб ХОС поступают осмотически через жабры и че­рез пищеварительный тракт с кормом. Интенсивность поглоще­ния ХОС рыбами увеличивается при повышении температуры воды. Гидробионты способны концентрировать ХОС в гораздо больших количествах, чем в окружающей среде (воде, грунте). Ко­эффициент накопления ХОС составляет в грунте 100, зоопланкто­не и бентосе 100-300, рыбах 300-3000 и более. По этому показа­телю они относятся к группе веществ со сверхвысокой или с выра­женной кумуляцией.

ХОС накапливаются в органах и тканях, богатых жирами или липоидами. У рыб их больше всего находят во внутреннем жире, в головном мозге, желудочной и кишечной стенках, гонадах и пече­ни, меньше - в жабрах, мышцах, почках и селезенке. С возрастом рыб отмечено увеличение концентрации ХОС. При метаболизме жиров во время голодания и миграции рыб, а также при стрессо­вых состояниях накопленные в организме ХОС могут вызвать от­равления рыб.

ХОС относят к ядам политропного действия с преимуществен­ным поражением центральной нервной системы и паренхиматоз­ных органов, особенно печени. Кроме того, они вызывают рас­стройство функций эндокринной и сердечно-сосудистой систем, почек и других органов. ХОС также резко угнетают активность фер­ментов дыхательной цепи, нарушают тканевое дыхание. Некоторые препараты блокируют SH-группы тиоловых ферментов.

ХОС опасны для рыб своими отдаленными последствиями: эмб-риотоксическим, мутагенным и тератогенным действием. Они снижают иммунологическую реактивность и повышают восприим­чивость рыб к инфекционным болезням.

ХОС относятся к группе высокотоксичных для рыб соединений.


По литературным данным и результатам наших исследований (Л.И. Грищенко и др., 1983), среднесмертельные концентрации ос­новных ХОС при остром отравлении составляют (по действующему веществу): ДДТ для радужной форели и лососей 0,03-0,08 мг/л, гамма-изомера ГХЦГ для карпов и карасей 0,17-0,28, плотвы, пес­каря около 0,08, ПХК для карпов, толстолобиков и плотвы 0,22- 0,26, полихлорпинена для пресноводных рыб 0,1-0,25, кельтана для карпов 2,16 мг/л.

Хроническое отравление карпов ПХК и полидофеном наступает при концентрациях до "/ 100 СК 50 (0,004 мг/л), кельтаном до "/ 300 СК 50 (0,007 мг/л) и сопровождается гибелью 10-60 % рыб в течение 60- 80 сут воздействия (Л.И.Грищенко и др., 1980, 1983). Токсические концентрации других препаратов не установлены. На основании изучения экспериментальных и природных токсикозов установле­ны остатки некоторых ХОС, которые обнаруживались у погибших рыб (табл. 18).

ГХЦГ Радужная Печень 11,7-14,6 - F. Braun и др.,
(линдан) форель Мускулатура 2,3-3,5 -
ПХК Карп Внутренние 4,2-7,5 1,5-1,6 Л. И. Грищенко,
(К„" К 1+) органы Г. А-Трондина
Мускулатура 1,6-1,8 0,1-0,5 и др., 1978, 1982
Кельтан Карпы Внутренние 8-24 1,5-4,4 То же
(сеголетки) органы
Мускулатура 5,8 -
Тиодан Форель, Жабры - 0,4-1,5 F. Braun и др.,
(эндо- хариус Печень - 0,6-^,5
супьфан) Мускулатура - 0,3-1,0
Карповые Рыба целиком - 1,0-^,7 Тоже
рыбы

При поступлении ХОС с кормом интоксикация наступает при достижении летального уровня их содержания в органах рыб (см. табл. 18).

Симптомы и патологоанатомические изменения. Несмотря на раз­личия в химической структуре, картина отравлений рыб хлорорга-ническими пестицидами однотипна. В первую очередь они дей­ствуют на рыб как нервные яды.

Сроки появления признаков отравления зависят от величины концентраций препаратов и времени их воздействия. При остром отравлении они наступают через несколько часов после начала кон­такта с ядом, при хроническом-через 7-10 сут.

Наиболее бурно симптомы проявляются при остром отравлении


и характеризуются повышенной возбудимостью, резким повыше­нием подвижности рыб, нарушением координации движения (пла­вание по кругу, спирали, перевертывание на бок) и полной потерей равновесия, замедлением дыхания. Гибель рыб наступает от пара­лича центра дыхания.

При вскрытии погибших рыб обнаруживают выраженное пол­нокровие внутренних органов, особенно печени и предсердия, иногда встречаются мелкоточечные кровоизлияния в жабрах. Гис­тологическими исследованиями устанавливают застойную гипере­мию сосудов печени, почек, головного мозга; зернистое и жировое перерождение, а при высоких концентрациях-вакуольную дистро­фию печеночных клеток, иногда очаговый некроз паренхимы пече­ни. В жабрах наблюдают токсический отек лепестков, незначитель­ное набухание респираторного эпителия.

При хроническом отравлении рыбы вначале перестают потреб­лять корм, угнетены или ведут себя беспокойно. Затем они теряют равновесие, перевертываются на бок и погибают. Печень погибших рыб набухшая, увеличенная в объеме, с бледноватым оттенком. Отравление сопровождается тяжелыми дистрофическими и не-кробиотическими изменениями во внутренних органах и в голов­ном мозге. В печени обнаруживают обширные очаги зернисто-жи-ровой и водяночной дистрофии, а также очаги некробиоза печеноч­ных клеток, снижение или отсутствие в них гликогена.

В почках отмечают дистрофию и последующую деструкцию эпителия канальцев; наблюдают дистрофию и некробиоз клеток гемопоэтической ткани. Жаберные лепестки отечны, респиратор­ный эпителий набухший, отслоен от мембраны, частично десква-мирован. Постоянно отмечают дистрофию нейронов головного мозга.

При остром и особенно хроническом отравлении устанавливают снижение уровня гемоглобина и количества эритроцитов, лейкопе­нию, нейтрофилию, лимфоцитопению; в эритроцитах отмечают гипохромазию, анизоцитоз, пойкилоцитоз, макро- и микроцитоз, вакуольную дистрофию.

При поступлении пестицидов с кормом обнаруживают десква-мативный катар кишечника, застойную гиперемию и дегенератив-но-некробиотические изменения в печени.

Диагностика. Диагноз ставят на основании комплексных иссле­дований, анамнестических данных, клинико-анатомической кар­тины интоксикации и обнаружения пестицидов в воде, грунте, органах рыб и в других гидробионтах. Хлорорганические пестици­ды в этих объектах определяют методами газовой и тонкослойной хроматографии.

Прямым доказательством отравления рыб служат обнаружение ХОС в воде и органах рыб на уровне вышеприведенных летальных показателей и наличие клинико-анатомических признаков инток­сикации. В сомнительных случаях данные химического анализа не­обходимо сравнивать с остатками ХОС в органах рыб из благопо-


лучных водоемов. В рыбах и других объектах из крупных естествен­ных водоемов дополнительно определяют содержание полихлорби-фенилов.

Профилактика. Она заключается в предотвращении внесения ХОС в водоохранной зоне, на склоновых участках и основной водо­сборной площади водоемов, соблюдении правил применения, хра­нения, транспортирования и утилизации пестицидов, периодичес­ком контроле их остатков в воде, грунте, гидробионтах. Присут­ствие ХОС в воде рыбохозяйственных водоемов не допускается.

Хлорорганические соединения (ХОС) широко применялись более 50 лет назад. В настоящее время имеют лишь историческое значение, практически не используются.

В эту группу входят инсектициды из группы галогенопроизводных, ациклических, ароматических углеводородов.

ХОС обладают широким спектром действия (кроме овоцидного), стойки к воздействию окружающей среды, средне и высоко токсичны, обладают выраженным остаточным действием (1-3 месяца), отличаются выраженными кумулятивными свойствами. Механизм действия ХОС на членистоногих выражается в поражении нервной системы, вызывающем необратимый паралич. Обладая сродством к жирам, поступая в организм, избирательно накапливаются в жировой ткани, в ряде случаев достигая заметной концентрации.

ХОС относятся к соединениям, обладающим контактно-кишечным инсектицидным действием, системным действием, в некоторых случаях фумигационными свойствами.

К группе ХОС относятся инсектициды: ГХЦГ (гексохлоран, гексахлорциклогексан, линдан), дилор (дегидрогептахлор).

ДДТ (дихлордифенилтрихлорметан) – белый кристаллический порошок, нерастворим в воде и хорошо растворим в органических растворителях. Эффективен в отношении имаго и личиночных стадий многих членистоногих. Применялся в виде дустов, эмульсий, суспензий, растворов, мыла, аэрозолей. Сохраняется на поверхности от нескольких недель до месяцев, а в почве – годами. У многих насекомых выработалась устойчивость.

Гексахлоран (ГХЦГ, гексахлорциклогексан) – нерастворим в воде, хорошо растворим в органических растворителях, обладает широким спектром действия (кроме овоцидного), является преимущественно кишечным ядом, но действует и как фумигант. Применялся в виде дустов, эмульсий, суспензий, карандашей, мыла, аэрозолей.

Применение инсектицидов из группы ХОС привело к загрязнению окружающей среды и появлению устойчивых популяций многих видов насекомых. В связи с этим их применение ограничено.

Карбаматы

Эта группа химических соединений, относящихся к производным карбаминово, тио- и дитиокарбаминовой кислот. Некоторые соединения – аллергены. Положительным свойством соединений этой группы является сравнительно быстрое разложение во внешней среде.

По механизму действия карбаматы близки к ФОС: ингибируют фермент АХ в холинэргическом синапсе нервной системы. Для этой группы соединений характерным является поражение нервной, эндокринной, кроветворной систем. На их долю приходится не более 5% применяемых препаратов.

Карбаматы характеризуются разной степенью токсичности. К I классу опасности относятся инсектициды: бендиокарб (фикам), метомил (ланнат). Ко II классу опасности относят: дикрезил, пропоксур (байгон).

Пропоксур (байгон)производится в ФРГ, РФ. По биологической активности близок к фосфорорганическим соединениям, ингибирует холинестеразу. Обладает широким спектром инсектицидного действия, наиболее эффективен при попадании в кишечник членистоногих. В воде нерастворим, хорошо растворяется в органических растворителях. Выпускается в виде 20% эмульгирующего концентрата, 1% дуста и масляного аэрозоля в баллонах, микрокапсулированых препаратов. Применяется для борьбы с мухами, тараканами, постельными клопами, комарами в стадии имаго. Токсичен, раздражающее действие не выражено.

Метомил (мускачид). Токсичен, можно использовать только в гранулах. Выпускают приманки в сочетании с половыми феромонами для борьбы с мухами.

Хлорорганическое соединение, хлоруглерод или хлорированный углеводород, - это органическое вещество, содержащее по крайней мере один ковалентно связанный атом хлора, который влияет на химическое поведение молекулы. Класс хлоралканов (алканы с одним или несколькими атомами водорода, замещенными хлором) дает общие примеры. Широкое структурное разнообразие и различные химические свойства хлорорганических соединений приводят к широкому спектру названий и областей применения. Органохлориды являются очень полезными веществами во многих областях применения, но некоторые из них представляют серьезную экологическую проблему.

Влияние на свойства

Хлорирование изменяет физические свойства углеводородов несколькими способами. Соединения, как правило, более плотные, чем вода, из-за более высокого атомного веса хлора по сравнению с водородом. Алифатические органохлориды являются алкилирующими агентами, потому что хлорид является уходящей группой.

Определение хлорорганических соединений

Многие такие соединения были выделены из природных источников, от бактерий до людей. Хлорированные органические соединения содержатся почти в каждом классе биомолекул, включая алкалоиды, терпены, аминокислоты, флавоноиды, стероиды и жирные кислоты. Органохлориды, включая диоксины, образуются в высокотемпературной среде лесных пожаров, а диоксины были обнаружены в сохранившемся пепле пожаров, вызванных молнией, которые предшествовали синтетическим диоксинам.

Кроме того, различные простые хлорированные углеводороды, включая дихлорметан, хлороформ и четыреххлористый углерод, были выделены из морских водорослей. Большая часть хлорметана в окружающей среде образуется естественным путем в результате биологического разложения, лесных пожаров и вулканов. Широко известны и хлорорганические соединения в нефти (по ГОСТу - Р 52247-2004).

Эпибатидин

Природный хлорорганический эпибатидин, алкалоид, выделенный из древесных лягушек, обладает сильным обезболивающим действием и стимулирует исследования новых обезболивающих препаратов. Лягушки получают эпибатидин через пищу, а затем изолируют его на коже. Вероятными источниками пищи являются жуки, муравьи, клещи и мухи.

Алканы

Алканы и арилалканы могут быть хлорированы в условиях свободных радикалов с ультрафиолетовым излучением. Однако степень хлорирования трудно контролировать. Арилхлориды могут быть получены галогенированием Фриделя-Крафтса с использованием хлора и кислотного катализатора Льюиса. Методы определения хлорорганических соединений включают в себя в том числе и применение этого катализатора. Другие методы также упомянуты в статье.

Реакция галоформа с использованием хлора и гидроксида натрия также способна генерировать алкилгалогениды из метилкетонов и родственных соединений. Хлороформ ранее производился таким образом.

Хлор добавляет к множественным связям алкены и алкины, давая ди- или тетрахлорсоединения.

Алкилхлориды

Алкилхлориды являются универсальными строительными блоками в органической химии. Хотя алкилбромиды и йодиды являются более реакционноспособными, алкилхлориды менее дорогие и более доступные. Алкилхлориды легко подвергаются атаке нуклеофилов.

Нагревание алкилгалогенидов с гидроксидом натрия или водой дает спирты. Реакция с алкоксидами или ароксидами дает эфиры в синтезе эфира Уильямсона; реакции с тиолами дают тиоэфиры. Алкилхлориды легко вступают в реакцию с аминами с образованием замещенных аминов. Алкилхлориды замещены более мягкими галогенидами, такими как йодид, в реакции Финкельштейна.

Также возможна реакция с другими псевдогалогенидами, такими как азид, цианид и тиоцианат. В присутствии сильного основания алкилхлориды подвергаются дегидрогалогенированию с образованием алкенов или алкинов.

Алкилхлориды реагируют с магнием с образованием реактивов Гриньяра, превращая электрофильное соединение в нуклеофильное. Реакция Вюрца восстанавливающим образом соединяет два алкилгалогенида с натрием.

Применение

Крупнейшим применением хлорорганической химии является производство винилхлорида. Годовой объем производства в 1985 году составил около 13 миллиардов килограммов, почти все из которых были преобразованы в поливинилхлорид (ПВХ). Определение хлорорганических соединений (по ГОСТу) является процессом, который невозможно совершить без специального стандартизованного оборудования.

Большинство низкомолекулярных хлорированных углеводородов, таких как хлороформ, дихлорметан, дихлорэтан и трихлорэтан, являются полезными растворителями. Эти растворители имеют тенденцию быть относительно неполярными; поэтому они не смешиваются с водой и эффективны при очистке, такой как обезжиривание и химическая чистка. Эта очистка также относится к методам определения хлорорганических соединений (нефть и другие вещества очень богаты этими соединениями).

Наиболее важным является дихлорметан, который в основном используется в качестве растворителя. Хлорметан является предшественником хлорсиланов и силиконов. Исторически значимым, но меньшим по масштабу является хлороформ, в основном предшественник хлордифторметана (CHClF2) и тетрафторэтена, который используется при производстве тефлона.

Двумя основными группами хлорорганических инсектицидов являются вещества типа ДДТ и хлорированные алициклические растворы. Механизм их действия немного отличается от хлорорганических соединений в нефти.

ДДТ-подобные соединения

ДДТ-подобные вещества воздействуют на периферическую нервную систему. В натриевом канале аксона они предотвращают закрытие ворот после активации и деполяризации мембраны. Ионы натрия просачиваются через нервную мембрану и создают дестабилизирующий отрицательный «постпотенциал» с повышенной возбудимостью нерва. Эта утечка вызывает повторные разряды в нейроне либо спонтанно, либо после одного стимула.

Хлорированные циклодиены включают альдрин, дильдрин, эндрин, гептахлор, хлордан и эндосульфан. Длительность воздействия от 2 до 8 часов приводит к снижению активности центральной нервной системы (ЦНС), за которой следуют повышенная возбудимость, тремор, а затем приступы. Механизм действия заключается в связывании инсектицидов на участке ГАМК в комплексе ионофоров хлорида гамма-аминомасляной кислоты (ГАМК), который препятствует поступлению хлорида в нерв.

Другие примеры включают дикофол, мирекс, кепон и пентахлорфенол. Они могут быть либо гидрофильными, либо гидрофобными, в зависимости от их молекулярной структуры.

Дифенилы

Полихлорированные дифенилы (ПХД) когда-то были широко используемыми электрическими изоляторами и теплоносителями. Их использование, как правило, было прекращено из-за проблем со здоровьем. ПХБ были заменены полибромированными дифениловыми эфирами (ПБДЭ), которые вызывают аналогичные проблемы с токсичностью и биоаккумуляцией.

Некоторые типы хлорорганических соединений обладают значительной токсичностью для растений или животных, включая человека. Диоксины, образующиеся при сжигании органических веществ в присутствии хлора, являются стойкими органическими загрязнителями, которые представляют опасность при их выбросе в окружающую среду, как и некоторые инсектициды (такие как ДДТ).

Например, ДДТ, который широко использовался для борьбы с насекомыми в середине 20-го века, также накапливается в пищевых цепях, как и его метаболиты DDE и DDD, и вызывает проблемы с репродуктивной системой (например, истончение яичной скорлупы) у некоторых видов птиц. Некоторые соединения такого типа, такие как серная горчица, азотная горчица и люизит, даже используются в качестве химического оружия из-за своей токсичности.

Интоксикация хлорорганическими соединениями

Однако наличие хлора в органическом соединении не обеспечивает токсичность. Некоторые органохлориды считаются достаточно безопасными для употребления в пищу и лекарства. Например, горох и бобы содержат природный хлорированный растительный гормон 4-хлориндол-3-уксусную кислоту и подсластитель сукралоза (Splenda) широко используются в диетических продуктах.

По состоянию на 2004 год по крайней мере 165 органохлоридов были одобрены во всем мире для использования в качестве фармацевтических препаратов, включая природный антибиотик ванкомицин, антигистамин лоратадин (кларитин), антидепрессант сертралин (золофт), антиэпилептический ламотриджин (ламиктал) и ингаляционные препараты. анестетик изофлуран. Знать эти соединения обязательно для определения хлорорганических соединений в нефти (по ГОСТу).

Выводы ученых

Рэйчел Карсон представила общественности вопрос о токсичности пестицидов ДДТ в своей книге «Тихая весна» 1962 года. Несмотря на то, что во многих странах прекращено использование некоторых видов хлорорганических соединений, таких как запрет США на ДДТ, стойкие ДДТ, ПХБ и другие остатки хлорорганических соединений по-прежнему обнаруживаются у людей и млекопитающих по всей планете через много лет после того, как производство и использование были ограничены.

В арктических районах особенно высокие уровни встречаются у морских млекопитающих. Эти химические вещества концентрируются у млекопитающих и даже содержатся в грудном молоке человека. У некоторых видов морских млекопитающих, особенно тех, которые производят молоко с высоким содержанием жира, у самцов, как правило, гораздо более высокие уровни, так как самки снижают концентрацию, передавая вещества потомству в результате лактации. Также эти вещества могут находиться в нефти, что важно учитывать во время определения хлорорганических соединений в нефти (по ГОСТу). Обычно это касается пестицидов, хотя может также относиться к любому соединению такого типа.

Хлорорганические пестициды можно классифицировать по их молекулярным структурам. Циклопентадиеновые пестициды представляют собой алифатические циклические структуры, полученные в результате реакций Пентахлорциклопентадиена Дильса-Альдера, и включают хлордан, нонахлор, гептахлор, эпоксид гептахлора, дильдрин, альдрин, эндрин, мирекс и кепон. Другими подклассами хлорорганических пестицидов являются семейство ДДТ и изомеры гексахлорциклогексана. Все эти пестициды имеют низкую растворимость и летучесть и устойчивы к процессам разрушения в окружающей среде. Их токсичность и стойкость в окружающей среде привели к их ограничению или приостановке для большинства видов применения в Соединенных Штатах.

Пестициды

Хлорорганические пестициды очень эффективны для уничтожения вредителей, особенно насекомых. Но многие из этих химических продуктов негативно воспринимаются экологическими активистами и потребителями из-за одного хорошо известного и ныне запрещенного хлорорганического пестицида: дихлордифенилтрихорэтана, более известного как ДДТ.

Хлорорганические пестициды относятся к химическим веществам с углеродом, хлором и водородом. Как пояснила Служба рыбного хозяйства и дикой природы США, хлор-углеродные связи особенно прочны, что не позволяет этим химическим веществам быстро разрушаться или растворяться в воде. Химическое вещество также привлекает жир и накапливается в жировой ткани животных, которые его потребляют.

Долговечность химического состава хлорорганических пестицидов является одной из причин, по которой он так же эффективен, как и инсектицид, и потенциально вреден - он может защищать сельскохозяйственные культуры в течение длительного времени, но также может оставаться в организме животного.

Наряду с ДДТ агентство по охране окружающей среды США запретило использование других хлорорганических пестицидов, таких как альдрин, дильдрин, гептахлор, мирекс, хлордекон и хлордан. В Европе аналогичным образом запрещены многие хлорорганические пестициды, но в обоих этих регионах хлорорганические химические вещества по-прежнему являются активными ингредиентами в ряде продуктов для борьбы с вредителями в домашних условиях, в саду и в окружающей среде, согласно данным EPA. Хлорорганические пестициды также чрезвычайно популярны в развивающихся странах по всему миру для использования в сельском хозяйстве.

Независимо от того, исследуете ли вы сельскохозяйственные угодья, чтобы убедиться, что они все еще заполнены летними хлорорганическими пестицидами, или осматриваете воду на наличие хлорорганических соединений, тестирование - лучший способ узнать, есть ли эти химические вещества рядом с вами. EPA методы 8250A и 8270B могут быть использованы для проверки этих химических веществ. 8250A может тестировать отходы, почву и воду, в то время как 8270B использует газовую хроматографию/масс-спектрометрию (ГХ/МС).

Хотя хлорорганические пестициды наиболее известны тем, что они наносят ущерб способности некоторых птиц откладывать здоровые яйца, известно, что эти химические вещества негативно влияют на людей, которые потребляют или вдыхают пестициды. Случайное вдыхание или употребление загрязненной рыбы или тканей животных является наиболее вероятным способом проглатывания хлорорганических пестицидов. Чтобы подтвердить, что кто-то имеет признаки отравления хлорорганическим соединением, кровь или мочу обычно отправляют в университет или государственное учреждение, которое использует ГХ/МС для проверки химических соединений.

Признаки отравления

Предупреждающие признаки токсичности хлорорганических пестицидов включают судороги, галлюцинации, кашель, кожную сыпь, рвоту, боль в животе, головные боли, спутанность сознания и, возможно, дыхательную недостаточность согласно Мэтью Вонгу, доктору философии, доктору философии, и медицинскому центру Beth Israel Deaconess, Medscape. Хотя в США и Европе существуют запреты на многие из этих пестицидов, их использование в других частях света и хранение в некоторых частях США и Европы создают ситуации, когда отравления хлорорганическими соединениями все еще возможны.

Хлорорганические пестициды включают в себя большое количество стойких химических веществ, которые являются одновременно эффективными и несут значительный риск по всему миру.

Хотя галогенированные органические соединения относительно редки по природе по сравнению с негалогенированными, многие такие соединения были выделены из природных источников, от бактерий до людей. Существуют примеры природных хлорсодержащих соединений, обнаруживаемых почти в каждом классе биомолекул, включая алкалоиды, терпены, аминокислоты, флавоноиды, стероиды и жирные кислоты.

Органохлориды, в том числе диоксины, образуются в высокотемпературной среде лесных пожаров, а диоксины были обнаружены в сохранившемся пепле пожаров, вызванных молнией, которые предшествовали синтетическим диоксинам. Кроме того, различные простые хлорированные углеводороды, включая дихлорметан, хлороформ и четыреххлористый углерод, были выделены из морских водорослей.

Большая часть хлорметана в окружающей среде образуется естественным путем в результате биологического разложения, лесных пожаров и вулканов. Природный хлорорганический эпибатидин, алкалоид, выделенный из древесных лягушек, обладает сильным обезболивающим действием и стимулирует исследования новых обезболивающих препаратов.

Диоксины

Некоторые типы хлорорганических соединений обладают значительной токсичностью для растений или животных, включая человека. Диоксины, образующиеся при сжигании органических веществ в присутствии хлора, и некоторые инсектициды, такие как ДДТ, являются стойкими органическими загрязнителями, которые представляют опасность для окружающей среды. Например, чрезмерное использование ДДТ в середине двадцатого века, которое накапливается у животных, привело к серьезному сокращению популяций некоторых птиц. Хлорированные растворители при неправильном обращении с ними и их утилизации создают проблемы с загрязнением подземных вод.

Некоторые органохлориды, такие как фосген, даже использовались в качестве боевых отравляющих веществ. Некоторые из искусственно созданных и токсичных органохлоридов, таких как ДДТ, будут накапливаться в организме с каждым воздействием, что в конечном итоге приведет к смертельному количеству, потому что организм не может их разрушить или избавиться от них. Однако присутствие хлора в органическом соединении никоим образом не обеспечивает токсичность. Многие хлорорганические соединения достаточно безопасны для употребления в пищу и лекарства.

Например, горох и бобы содержат природный хлорированный растительный гормон 4-хлориндол-3-уксусную кислоту (4-Cl-IAA) и подсластитель сукралоза (Splenda) широко используются в диетических продуктах. По состоянию на 2004 год во всем мире было одобрено, по меньшей мере, 165 хлорорганических соединений для применения в качестве фармацевтических препаратов, включая антигистамин лоратадин (кларитин), антидепрессант сертралин (золофт), антиэпилептический ламотриджин (ламиктал) и ингаляционный анестетик изофлуран.

Открытие Рэйчел Карсон

Книгой «Безмолвная весна» (1962 года) Рэйчел Карсон обратила внимание общественности на проблему токсичности хлорорганических соединений. В то время как многие страны прекратили использование некоторых типов этих соединений (таких как запрет США на ДДТ в результате работы Карсона), стойкие органохлориды продолжают наблюдаться у людей и млекопитающих по всей планете на потенциально опасных уровнях спустя много лет после производства. Их использование было ограничено.

Хлорорганические соединения (по ГОСТу) входят в список веществ, опасных для человека.

Хлорорганические соединения (ХОС)

гексахлоран, гексабензол, ДДТ и др. также используются в качестве инсектицидов. Все ХОС хорошо растворяются в жирах и липидах, поэтому накапливаются в нервных клетках, блокируют дыхательные ферменты в клетках. Смертельная доза ДДТ: 10-15 г.

Физико-химические свойства хлорорганических соединений.

Хлорорганические соединения, используемые в качестве инсектицидов, приобретают особое и самостоятельное значение в сельском хозяйстве. Эта группа соединений с определенным назначением имеет своим прототипом широко известное сейчас вещество ДДТ.

По своему строению хлорорганические соединения, представляющие токсикологический интерес, можно разделить на 2 группы производные:

  • 1. алифатического ряда (хлороформ, хлор¬пикрин, четыреххлористый углерод, ДДТ, ДДД и др.)
  • 2. производные ароматического ряда (хлорбензолы, хлорфенолы, алдрин и др.).

В настоящее время синтезировано огромное количество соединений, содержащих хлор, которые в основном обязаны своей активностью именно этому элементу. К их числу следует отнести алдрин, диэлдрин и др. Содержание хлора в хлорированных углеводородах составляет в среднем от 33 до 67%.. Но, ограничиваясь лишь 12 основными представителями (с включением сюда и различных изомеров или подобных соединений), мы можем по структуре этих веществ сделать некоторые обобщения об их токсичности.

Из фумигантов (дихлорэтан, хлорпикрин и парадихлорбензол) особенной токсичностью отличается хлорпикрин, в период первой мировой войны являвшийся представителем БОВ удушающего и слезоточивого действия. Остальные 9 представителей являются собственно инсектицидами, причем в основном контактными. По химическому строению это или производные бензола (гексахлоран, хлориндан), нафталина (алдрин, диэлдрин и их изомеры), или соединения смешанного характера, но в которые входят компоненты ароматического ряда (ДДТ, ДДД, пертан, хлортен, метоксихлор).

Все вещества этой группы вне зависимости от своего физического состояния (жидкости, твердые тела) плохо растворяются в воде, обладают более или менее специфическим запахом и ис¬пользуются или для фумигации (в этом случае они обладают высокой летучестью), или в качестве контактных инсектицидов. Формами их применения служат дусты для опыления и эмульсии для опрыскивания. Промышленное производство, равно как и использование в сельском хозяйстве строго регламентированы соответствующими инструкциями, предупреждающими возможность отравления людей и отчасти животных. В отношении последних еще очень многие вопросы не могут считаться окончательно решенными.

Симптомы: При попадании яда на кожу возникает дерматит. При ингаляционном поступлении - раздражение слизистой оболочки носоглотки, трахеи, бронхов. Возникают носовые кровотечения, боль в горле, кашель, хрипы в легких, покраснение и резь в глазах. При поступлении внутрь - диспепсические расстройства, боли в животе, через несколько часов судороги икроножных мышц, шаткость походки, мышечная слабость, ослабление рефлексов. При больших дозах яда возможно развитие коматозного состояния. Может быть поражение печени и почек. Смерть наступает при явлениях острой сердечно-сосудистой недостаточности.

Первая помощь: аналогична при отравлении ФОС. После промывания желудка рекомендуется внутрь смесь "ГУМ": 25 г танина, 50 г активированного угля, 25 г окиси магния (жженая магнезия), размешать до консистенции пасты. Через 10-15 минут принять солевое слабительное.

Лечение. Глюконат кальция (10 % раствор), хлористый кальций (10 % раствор) 10 мл внутривенно. Никотиновая кислота (3 мл 1 % раствора) под кожу повторно. Витаминотерапия. При судорогах - барбамил (5 мл 10 % раствора) внутримышечно. Форсированный диурез (алкалинизация и водная нагрузка). Лечение острой сердечно-сосудистой и острой почечной недостаточности. Терапия гипохлоремии: в вену 10-30 мл 10 % раствора хлорида натрия.



Последние материалы раздела:

SA. Парообразование. Испарение, конденсация, кипение. Насыщенные и ненасыщенные пары Испарение и конденсация в природе сообщение
SA. Парообразование. Испарение, конденсация, кипение. Насыщенные и ненасыщенные пары Испарение и конденсация в природе сообщение

Все газы явл. парами какого-либо вещества, поэтому принципиальной разницы между понятиями газ и пар нет. Водяной пар явл. реальным газом и широко...

Программа и учебные пособия для воскресных школ А тех, кто вокруг, не судить за грехи
Программа и учебные пособия для воскресных школ А тех, кто вокруг, не судить за грехи

Учебно-методический комплект "Вертоград" включает Конспекты учителя, Рабочие Тетради и Сборники тестов по следующим предметам:1. ХРАМОВЕДЕНИЕ...

Перемещение Определить величину перемещения тела
Перемещение Определить величину перемещения тела

Когда мы говорим о перемещении, важно помнить, что перемещение зависит от системы отсчета, в которой рассматривается движение. Обратите внимание...