Хлорсодержащие соединения. Руководство «Руководство на технологию подготовки питьевой воды, обеспечивающую выполнение гигиенических требований в отношении хлорорганических соединений» 

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Размещено на http://allbest.ru

Министерство образования и науки Российской Федерации

Санкт-Петербургское федеральное государственное автономное образовательное учреждение высшего профессионального образования национальный исследовательский университет информационных технологий, механики и оптики Университет ИТМО

Факультет: пищевых технологий

Кафедра «Мясных, рыбных продуктов и консервирования холодом»

Хлорорганические пестициды

Выполнила: Студентка 4 курса гр.4306

Михайлова В.С.

Проверил: Бурова Т.Е.

Санкт-Петербург, 2014 г.

1. Пестициды. История возникновения. Общая информация

2. Классификация пестицидов

3. Применения пестицидов

4. Хлорорганические пестициды

5. Свойства пестицидов

6. Интоксикация

7. Лечение

Список литературы

1. Пестициды. История возникновения. Общая информация

История.

В 1939 году доктор Пауль Мюллер, сотрудник швейцарской химической компании «Гейги» (позже «Сиба-Гейги», сейчас «Новатис»), обнаружил особые инсектицидные свойства Дихлордифенил трихлорметилметана, больше известного как ДДТ. Это вещество было синтезировано ранее, в 1874 году, немецким студентом - химиком Отмаром Цейдлером.

В 1948 году Мюллер получил за создание этого инсектицида Нобелевскую премию.

Благодаря простоте получения и высокой эффективности против большинства насекомых, этот препарат в течение короткого времени получил большую популярность и широкое распространение по всему миру. Во время Великой Отечественной войны благодаря применению ДДТ были остановлены многие эпидемии. Более 1 млрд человек благодаря этому препарату были избавлены от малярии. История медицины не знала подобных успехов.

Одновременно группа хлорсодержащих соединений, к которым принадлежал ДДТ, активно исследовалась.

В 1942 году она была пополнена эффективным в уничтожении вредителей препаратом - гексахлорциклогексаном (ГХЦГ) и его гамма-изомером - ланданом (ГХЦГ) впервые был синтезирован Фарадеем в 1825 году). За 40-летний период, начиная с 1947 года, когда активно заработали заводы по производству хлорорганических препаратов, их было выпущено 3 628 720 т с содержанием хлора 50-73%.

Однако вскоре выяснилось, что ДДТ и другие хлорорганические препараты имеют высокую персистентность, способны преодолевать длинные пищевые цепочки и могут сохраняться в природных объектах в течение многих лет, что послужило поводом для резкого сокращения использования хлорорганических соединений по всему миру.

В 1970-х и в начале 1980-х годов после признания опасности ДДТ для многих живых организмов в некоторых промышленных странах было введено ограничение или полное запрещение его использования (в 1986 г. Японией и США было выпущено примерно на 20% меньше хлорорганических пестицидов, чем в 1980 г). Но в целом по миру потребление линдана и ДДТ заметно не уменьшилось из-за роста их использования в странах Азии, Африки и Латинской Америки. Некоторые государства были вынуждены постоянно применять ДДТ для борьбы с возбудителями малярии и других опасных болезней.

В нашей стране в 1970 году было принято решение изъять высокотоксичные инсектициды из ассортимента пестицидов, которые применяются на фуражных и продовольственных культурах, однако в сельском хозяйстве их продолжали активно применять вплоть до 1975 года и позднее в борьбе с переносчиками инфекционных заболеваний.

Значительно позже, в 1998 г., по предложению ООН в рамках программы по охране окружающей среды была принята конвенция, которая ограничила торговлю опасными веществами и пестицидами типа ДДТ, органофосфатов и ртутных соединений. Многочисленными исследованиями было показано, что стойкие хлорорганические соединения обнаруживаются практически во всех организмах, обитающих в воде и на суше. 95 стран приняли участие в новом международном договоре. В это же время, в перечень токсикантов, обязательных для контроля, были включены дихлордифенилтрихлорэтан (ДДТ) и гексахлорциклогексан (ГХЦГ).

2. Классификация пестицидов

Пестициды делят на следующие основные классы (в зависимости от того, против каких вредных организмов используют): акарициды -- вещества для борьбы с клещами; антифидинги -- вещества, отпугивающие насекомых от растений, которыми они питаются; инсектициды -- средства, уничтожающие вредных насекомых; гербициды -- препараты для борьбы с нежелательной растительностью; зооциды -- яды, уничтожающие вредных позвоночных (вещества для борьбы с грызунами называются родентицидами, а только с крысами -- раттицидами); бактерициды, вирусоциды, фунгициды -- средства для борьбы с возбудителями бактериальных, вирусных и грибных болезней растений; нематоциды -- препараты, убивающие круглых червей -- возбудителей нематодных болезней растений; моллюскоциды -- вещества, уничтожающие вредных моллюсков (яды для борьбы с голыми слизнями называются лимацидами).

Пестициды включают также протравители семян, репелленты -- средства, отпугивающие вредных насекомых, клещей, млекопитающих и птиц, аттрактанты -- вещества для привлечения членистоногих с тем, чтобы их затем уничтожить или выявить локализацию или начало лета вредителей, хемостерилизаторы -- препараты, которые не убивают насекомых, грызунов, клещей, но вызывают у них бесплодие.

Имеются пестициды комплексного действия. Например, протравители семян содержат одновременно фунгицид, бактерицид, инсектицид и т.д. Использование таких пестицидов позволяет сократить затраты труда на обработку. В некоторых случаях пестициды объединяют в группы в зависимости от фазы развития вредного организма, против которого они применяются. Например, овициды -- яды, убивающие яйца насекомых, клещей, ларвициды -- уничтожающие личинок и т.д. По способу проникновения в организм вредителей различают кишечные пестициды, проникающие через ротовые органы и кишечник, контактные -- при контакте ядов с поверхностью тела вредителей, то есть через кожные покровы, фумигантные, попадающие в организм в парообразном или газообразном состоянии через дыхательные пути, и системные, легко проникающие в ткани растений или животных и поражающие вредителей, питающихся соком растений или животных.

Более широкий список пестицид ов и направленность их действия:

В зависимости от скорости разложения в почве пестициды разделяют на шесть групп ; с периодом распада более 18 мес (хлорорганические препараты, соединения селена), около 18 (триазиновые гербициды, пиклорам, диурон и некоторые др.), около 12 (производные галоидбензойных кислот и некоторые амиды кислот), до 6 (нитрилы кислот, производные арилоксиуксусных кислот, трефлан и его аналоги, нитрофенолы и др.), до 3 (производные арилкарбаминовых, алкилкарбаминовых кислот, некоторые производные мочевины и гетероциклические соединения), менее 3 мес (органические соединения фосфора и др.). В сельском хозяйстве предпочтительней использовать вещества, разлагающиеся за вегетационный период, на аэродромах и в борьбе с зарастанием дорог -- с большей продолжительностью действия.

По токсичности для человека и теплокровных животных пестициды разделяют на 4 группы: сильнодействующие, высокотоксичные, среднетоксичные и малотоксичные. ЛД50 (наименьшая доза пестицидов, вызывающая смертность 50% подопытных животных) для пестицидов этих групп равна соответственно до 50, 50--200, 200--1000 и свыше 1000 мг/кг. Такое деление носит условный характер, так как токсичность пестицидов для человека и животных зависит не только от абсолютного значения смертельных доз препаратов, но и от др. его свойств: возможности отдалённых последствий пестицидов при систематическом воздействии на организм; способности его накапливаться в организме и окружающей среде; стойкости во внешней среде; бластомогенных свойств (способность вызывать опухоли), мутагенных (влияющих на наследственность), эмбриотоксичных (влияющих на развитие плода), тератогенных (вызывающих уродства), аллергенных (обусловливающих извращённую повышенную чувствительность организма к пестицидам) и т.п. Механизм действия различных классов пестицидов весьма различен и изучен ещё недостаточно. Например, органические соединения фосфора и эфиры алкилкарбаминовых кислот ингибируют фермент холинэстеразу членистоногих, производные тиомочевины блокируют окислительно-восстановительные процессы в организме насекомых. В зависимости от свойств пестицидов и его назначения для обработки одного гектара требуется 0,2--40 кг (чаще 0,5--2 кг) пестицидов в пересчёте на активное вещество.

хлорорганический пестицид сельскохозяйственный токсичность

3. Применение пестицидов

Чтобы равномерно распределить такое небольшое количество пестицидов по обрабатываемой площади, их применяют в соответствующей препаративной форме (смачивающиеся порошки, концентраты эмульсий, дусты, растворы в воде и органических растворителях, аэрозоли, гранулы и др.) и вносят различными способами (опрыскивание, опыливание, фумигация, отравленные приманки, протравливание). В препаративную форму, кроме пестицидов, входят вспомогательные вещества, разбавители и эмульгаторы. Наиболее перспективны препараты для опрыскивания (смачивающиеся порошки, концентраты эмульсий, растворы в воде и органических растворителях), а также гранулы для нанесения на растения и внесения в почву. Особенно интересны растворы в нелетучих органических растворителях, используемые для ультрамалообъёмного опрыскивания (УМО), при расходе препарата от 0,5 до 10 л/га.

Обработку с.-х. культур пестицидами проводят с помощью наземных машин и авиации. При завышенных, по сравнению с официально рекомендуемыми, дозах или концентрациях пестицидов, несоответствующих способах и сроках их применения, без учёта погодных условий пестициды вызывают ожог растений, снижение жизнеспособности пыльцы, гибель пестиков и значительно снижают урожай. Растения могут загрязняться пестицидами, приобретать неприятный запах и вкус (например, при использовании гексахлорана), а также накапливать пестициды на поверхности в виде ядовитых остатков, опасных для человека и животных.

Известно отрицательное действие при неправильном использовании пестицидов на человека, а также на пчёл, шмелей и др. насекомых опылителей, на рыб (при попадании в водоёмы), птиц, диких зверей, домашних животных, а также на природу в целом. Для предупреждения возможного вредного влияния пестицидов на человека, животных, растения, воду и т.д. необходимо при применении пестицидов учитывать их действие не только на определённого вредителя, но и на биоценозы и предвидеть конечные результаты проводимых мероприятий. Важно строго соблюдать контроль за остаточными количествами пестицидов в пищевых продуктах, правила по хранению, транспортировке и применению пестицидов, которые обязательны для всех ведомств, а также для отдельных лиц, работающих с пестицидами.

Большое внимание уделяется выделению, изучению, синтезу и разрабатыванию способов применения пестицидов новой природы действия, отличающихся высокой специфичностью,-- половым аттрактантам (феромонам), антифидингам, хемостерилизаторам, веществам, обладающим действием ювенильного гормона, выделяемого прилежащими телами мозга насекомого. Введение насекомому ювенильного гормона или его аналогов на той стадии развития, когда гормон должен отсутствовать, приводит к нарушению метаморфоза или вызывает гибель насекомого. Высокая специфичность этих групп пестицидов, видимо, позволит в будущем избирательно истреблять определённые виды насекомых, не затрагивая биоценоза в целом. Пестициды должны превратиться из средств уничтожения вредителей в средства регуляции их численности.

Наименьшая опасность применения пестицидов для полезных насекомых (энтомофагов, опылителей, медоносных пчёл) достигается при предпосевной обработке семян, посадочного материала, использовании пестицидов избирательного действия, обладающих меньшей токсичностью для энтомофагов, чем для фитофагов. Возможность применения пестицидов регламентируется во всех развитых странах соответствующими законами.

Цель регламентации -- допускать к обращению только те препараты, которые достаточно эффективны и приемлемы по гигиене труда и гигиене питания. В СССР используются отечественные и зарубежные пестициды, утвержденные Государственной комиссией по химическим средствам борьбы с вредителями, болезнями растений и сорняками при министерстве сельского хозяйства СССР. Ежегодно публикуется Список химических и биологических средств борьбы с вредителями, болезнями растений и сорняками, рекомендованных для применения в сельском хозяйстве.

Список согласовывается с министерством здравоохранения СССР и утверждается министерством сельского хозяйства СССР. Пестициды следует использовать строго по назначению и лишь там, где химические средства защиты нельзя заменить биологическими. Для многих пестицидов установлены допустимые концентрации в воздухе рабочей зоны при производстве их и предельно допустимые остаточные количества в пищевых продуктах. В связи с большим значением пестицидов для народного хозяйства их производство непрерывно возрастает. В СССР в 1965 выпущено 103,2, в 1970 -- 163,8, в 1973 -- 200 тыс. т пестицидов в пересчёте на активное вещество. В ФРГ в 1972 изготовлено 162,7 тыс. т, а в США свыше 550 тыс. т. Мировое производство пестицидов составляет около 2000 тыс. т (1973). Уменьшение масштабов применения пестицидов, учитывая побочные эффекты от их использования, возможно по мере замены пестицидов биологическими средствами. Большинство пестицидов поступает в организм человека через органы дыхания, кожу, желудочно-кишечный тракт. Особенно опасны отравления пестицидами при обработке помещений и посевного материала. Хлорорганические пестициды обладают общим токсическим действием на организм; они обычно поражают внутренние органы (печень, почки) и нервную систему. Признаки отравления мало специфичны: общая слабость, головокружение, тошнота, раздражение слизистых оболочек глаз и дыхательных путей. Большинство фосфорорганических пестицидов легко проникает в организм через кожу и обладает выраженным антихолинэстеразным действием.

Признаки острого отравления ими специфичны: слюнотечение, сужение зрачков, мышечные подёргивания, судороги.

При остром отравлении ртутьорганическими пестицидами наблюдаются повышенное выделение слюны, металлический вкус во рту, тошнота, иногда -- рвота, понос со слизью, головные боли, обморочное состояние. Все виды работ с пестицидами проводятся с обязательным использованием средств индивидуальной защиты (спецодежды, спецобуви, респиратора, противогаза, защитных очков и т.д.). К работам с пестицидами не допускаются лица с медицинскими противопоказаниями, подростки до 18 лет, беременные и кормящие женщины. Продолжительность рабочего дня не должна превышать 6 ч, при контакте с сильнодействующими пестицидами -- 4 ч.

4. Хлорорганические пестициды

Широко применяются для борьбы с вредителями зерновых, технических культур, плодовых деревьев, овощных культур, виноградников и лесонасаждений. К этой группе пестицидов относят хлорпроизводные ароматических углеводородов (ДДТ, гексахлоран, гамма-изомер гексахлорана, гексахлорбензол), хлорпроизводные терпенов (полихлорпинен, полихлоркамфен), хлорпроизводные диеновой группы (альдрин, дильдрин, гептахлор, тиодан, тедион) и др.

Среди ХОП есть сильнодействующие ядовитые вещества (альдрин и дильдрин). высокотоксичные (гептахлор, гамма-изомер гексахлорана) и мало-токсичные (гексахлорбензол).

Большинство из них плохо растворимы в воде, хорошо - в органических растворителях, и особенно в жирах. Их особенность - стойкость в окружающей среде. Например, ДДТ, алдрин, гептахлор были обнаружены в почве через 4-12 лет после их применения. Они длительное время задерживаются в верхних слоях почвы, медленно мигрируют в глубину, накапливаются в продуктах растительного и животного происхождения.

Хлорорганические пестициды в основном проникают в организм человека через органы дыхания, пищеварительный тракт и неповрежденную кожу. Основные пути выведения ХОС -- почки, желудочно-кишечный тракт. К хлорорганическим соединениям существует индивидуальная, видовая и возрастная чувствительность.

Пестициды этой группы - типичные представители веществ политропного действия, поражают преимущественно центральную нервную систему. Они накапливаются в основном в жировой ткани, повторное поступление в организм даже в малых дозах может привести к развитию хронического отравления.

5. Свойства пестицидов

В гидросфере:

При попадании в воду ХОС остаются в ней на протяжении нескольких недель или даже месяцев. Одновременно вещества поглощаются водными организмами (растениями, животными) и накапливаются в них.

В водных экосистемах происходит сорбция хлорорганических экотоксикантов взвесями, их седиментация и захоронение в донных отложениях. В значительной степени перенос хлорорганических соединений в донные отложения происходит за счет биоседиментации - накопления в составе взвешенного органического материала. Особенно высокие концентрации ХОС наблюдаются в донных отложениях морей вблизи крупных портов. Например, в западной части Балтийского моря вблизи порта Гётеборг в осадках обнаруживалось до 600 мкг/кг ДДТ.

В пресноводных водоемах ДДТ и ГХЦГ также накапливаются очень быстро, откладываясь в микроводорослях. Персистентные и липофильные экотоксиканты в наибольших количествах регистрируются в организмах высших трофических уровней водных экосистем: в жировой ткани хищных рыб, а также птиц, питающихся рыбой.

В атмосфере:

Миграция ХОС в атмосфере является одним из ключевых путей их распространения в окружающей среде. Многолетние наблюдения привели к выводу, что в основном изомеры ГХЦГ представлены в атмосфере в виде пара. Вклад паровой фазы в случае ДДТ также очень большой (более 50%).

При средних температурах хлорорганические пестициды характеризуются малым давлением насыщенного пара. Но, попав на поверхность растений и почвы, ХОС частично переходят в газовую фазу. Кроме прямого испарения с поверхности, стоит также учитывать и переход их в атмосферу вследствие ветровой эрозии почв.

Персистентные соединения в составе аэрозолей и в парообразном состоянии переносятся на значительные расстояния, поэтому сегодня загрязнение континентальных экосистем хлорорганическими инсектицидами носит глобальный характер.

Вымывание осадками служит одним из основных путей уменьшения концентрации ХОС в атмосфере. Содержание ДДТ и линдана в дождевой воде, собиравшейся в 1980-х гг. на Европейской территории СССР в биосферных заповедниках, составляло 4-240 нг/л. Это заметно выше, чем характерные уровни концентраций ДДТ (от 0,3 до 0,8 нг/л) в Северной Америке в те же годы.

В почве:

В почве препараты этой группы сохраняются от 2 до 15 лет, длительно задерживаясь в верхнем ее слое и медленно мигрируя по профилю. Время сохранения зависит от влажности почвы, ее типа, кислотности (рН) и температуры. Численность микроорганизмов также играет большую роль, так как микробы разлагают препараты.

Из почвы ХОС проникают в растения, особенно в клубне- и корнеплоды, а также в водоемы и грунтовые воды. Внесенные в почву в больших количествах, они могут угнетать процессы нитрификации в течение 1-8 нед и на короткое подавлять ее общую микробиологическую активность. Однако большого влияния на свойства почв они не оказывают.

Из-за высокой сорбционной способности почвы рассеяние и миграция любых загрязняющих примесей происходит намного медленнее, чем это наблюдается в гидросфере и атмосфере. На сорбционные характеристики земли сильно влияет содержание в ней органических веществ и влаги. Легкие песчаные почвы (песок, супесь) хуже удерживают хлорорганические экотоксиканты, которые поэтому могут легко перемещаться вниз по профилю, загрязняя подземные и грунтовые воды. Эти компоненты в богатых гумусом почвах достаточно долгое время остаются в верхних горизонтах, главным образом, в слое до 20 см.

В растениях:

Разрушение ХОС в растениях и на их поверхности происходит очень медленно (после однократной обработки их остатки могут быть обнаружены через 30-75 дней, а поступление через корни продолжается в течение всей вегетации). Все они не оказывают отрицательного значения на защищаемые растения в рекомендуемых концентрациях, а многие даже стимулируют их рост. Из сельскохозяйственных продуктов в процессе кулинарной или термической обработки остатки этих соединений не удаляются.

Отличительной способностью препаратов этой группы также является миграция по пищевым цепям с увеличением концентрации в последующих звеньях.

Для человека и теплокровных:

ХОС обладают выраженной и резко выраженной способностью к материальной кумуляции (I и II группы гигиенической классификации). Пороговые дозы в хронических опытах не превышают 50 мг на 1 кг пищи. Повторное попадание малых количеств этих препаратов в организм способствует развитию хронического отравления, что ограничивает возможность использования этих веществ.

6. Интоксикация

Хлорорганические пестициды наиболее широко используются в различных отраслях сельского хозяйства как инсектициды, акарициды для предпосевной обработки семян, фумигации почвы, опыливания и опрыскивания зерновых, овощных, плодовых и технических культур. В эту группу пестицидов объединены различные по своей химической структуре соединения: хлорпроизводные циклопарафинов (гексахлорциклогексан), бензола (хлорбензол), терпенов (полихлорпинен), соединений диенового ряда (алдрин, гептахлор, тиодан) и др.

Особенностью этих соединений является стойкость во внешней среде, они хорошо растворяются в жирах и липидах, способны накапливаться в тканях организма.

Патогенез . Токсическое действие хлорорганических соединений связывают с изменением ряда ферментных систем и нарушением тканевого дыхания. Г. В. Курчатов рассматривает пестициды этой химической группы как липоидорастворимые неэлектролиты, способные проходить через все защитные барьеры организма.

Клиническая симптоматика острых и хронических интоксикаций хлорорганическими соединениями характеризуется большим разнообразием симптомов и симптомокомплексов, подтверждающих политропность их действия.

Клиника . Особенности клинических проявлений при острых интоксикациях во многом зависят от пути поступления яда в организм. При попадании пестицидов с вдыхаемым воздухом в первую очередь появляются признаки раздражения верхних дыхательных путей и бронхов (острый бронхит), в случаях попадания их в желудочно-кишечный тракт - диспепсические явления, острые гастроэнтероколиты, попадание на кожу сопровождается острым воспалением вплоть до развития некроза. Вслед за местными проявлениями токсического действия при попадании в организм больших количеств пестицидов появляются признаки поражения центральной нервной системы: головная боль, головокружение, шум в ушах, что сопровождается цианозом, могут появиться кожные кровоизлияния. Основной формой проявления острых интоксикаций со стороны нервной системы служит токсический энцефалит с поражением подкорковых отделов головного мозга. В тяжелых случаях возникают приступы генерализованных судорог, иногда эпилептиформного характера, коллаптоидное и коматозное состояние.

При поступлении в организм больших количеств яда возможна развитие токсико-аллергического миокардита, токсическое поражение печени (до развития цирроза печени), нефропатия. Иногда при повторном контакте после перенесенной острой интоксикации возникает поражение системы крови (гипо- и апластическая анемия, панмиелофтиз и пр.). В отдаленном периоде после острой интоксикации гексахлораном и др. соединениями могут появляться признаки поражения периферической нервной системы с развитием вегетативно-сенсорного полиневрита (полиневропатии). Патологический процесс в этих случаях характеризуется диффузным поражением нервной системы по типу энцефалополиневрита или энцефаломиелополиневрита.

Клиническая картина хронических интоксикаций хлорорганическими пестицидами характеризуется последовательным развитием токсической астении, астеновегетативного или астеноорганического синдрома. При последнем наблюдаются микроорганические симптомы, указывающие на преимущественную локализацию патологического процесса в стволе головного мозга. При этом преобладают гипостенические проявления астении и эпизодически возникают церебральные ангиодистонические пароксизмы: внезапно появляется интенсивная головная боль, сопровождающаяся тошнотой, общей слабостью, гипергидрозом, приступообразным головокружением, бледностью кожных покровов, брадикардией. В более поздних стадиях хронической интоксикации в патологический процесс вовлекается периферическая нервная система, наблюдается вегетативно-сенсорный полиневрит или смешанная форма полиневрита. При тяжелых хронических интоксикациях возможно диффузное поражение нервной системы (энцефалополиневрит) с рассеянными мелкоочаговыми органическими симптомами, статико-координаторными нарушениями и вовлечением в токсический процесс экстрапирамидной и гипоталамической областей, слуховых нервов, шейных вегетативных узлов. Нарушения нервной системы сопровождаются эндокринными расстройствами (угнетение активности коркового слоя надпочечников и инсулярного аппарата поджелудочной железы, гиперфункция щитовидной железы); при тяжелых формах интоксикации может развиться плюригляндулярная недостаточность с ведущими гипоталамическими нарушениями (гипергликемия, артериальная гипертония, ожирение). Определенное место в клинической картине хронической интоксикации занимают изменения сердечно-сосудистой системы (вегетативно-сосудистая дистония по гипо- или гипертоническому типу, дистрофия миокарда.

Начальные стадии хронической интоксикации хлорорганическими соединениями характеризуются нарушениями функций желудка, печени, почек, в более поздних стадиях могут появляться признаки хронического гастрита с гипоацидной направленностью, гепатита, нефропатии. Указанные нарушения протекают более доброкачественно, чем при острых интоксикациях.

Существенные изменения при хронических интоксикациях происходят в крови, основные из них - гипохромная анемия, лейкопения за счет гранулоцитов, тромбоцитопения; СОЭ имеет тенденцию к замедлению.

7. Лечение

Специфические антидоты не разработаны. Общая противотоксическая терапия включает внутривенное введение 10%-ного раствора кальция хлорида или кальция глюконата в дозе 1 мл/кг в сочетании с 40%-ным раствором глюкозы в дозе 2 мл/кг. Для удаления ХОС из пищеварительного канала применяют солевые слабительные средства. При ослаблении сердечной деятельности подкожно вводят 20%-ный раствор натрия кофеин-бензоата в дозе 3 мл. При хронических отравлениях рекомендуют применять фолиевую кислоту с кормом в дозах 0,1 мг на 1 кг корма, витамин А (каротин) по 200 мг внутрь и витамин Bi внутримышечно в дозах 1 мг/кг в сочетании с аскорбиновой кислотой в дозе 10 мг/кг.

Список литературы

1. Белов Д.А. Химические методы и средства защиты растений в лесном хозяйстве и озеленении: Учебное пособие для студентов. - М.: МГУЛ, 2003. - 128 с

2. Груздев Г.С. Химическая защита растений. Под редакцией Г.С. Груздева - 3-е изд., перераб. и доп. - М.: Агропромиздат, 1987. - 415 с.: ил.

3. Зинченко В.А. Химическая защита растений: средства, технология и экологическая безопасность. - М.: «КолосС», 2012. - 127 с.

4. Исидоров В.А. Введение в химическую экотоксикологию: Учеб. пособие. - СПб: Химиздат, 1999. - 144 с.

5. Мельников Н.Н. Пестициды. Химия, технология и применение. - М.: Химия, 1987. 712 с.

6. Мельников Н.Н., Новожилов К.В., Белан С.Р., Пылова Т.Н. Справочник по пестицидам - М.: Химия, 1985. - 352 с.

Размещено на Allbest.ru

...

Подобные документы

    Пестициды (ядохимикаты) - химические препараты для защиты сельскохозяйственной продукции. Классификация пестицидов по применению. Опасность и польза пестицидов. Пути поступления пестицидов в организм. Воздействие пестицидов на здоровье человека.

    презентация , добавлен 09.09.2014

    Применение и значение пестицидов. Последствия применения пестицидов. Биологическая защита растений. Трансгенные растения. Агрохимикаты и окружающая среда. Охрана окружающей среды при использовании пестицидов и агрохимикатов.

    реферат , добавлен 20.05.2004

    Перспективы химического метода защиты растений от вредных организмов. Обоснование химических мер защиты и оценка биологической и хозяйственной эффективности современного ассортимента пестицидов против сорняков, вредителей и болезней лука репчатого.

    курсовая работа , добавлен 03.08.2015

    Агроклиматическая характеристика Московской области. Характеристика и условия выращивания можжевельника. Описание вредных объектов (вредители, сорняки), пестициды, рекомендованные для их подавления. Технология применения пестицидов в защите растений.

    курсовая работа , добавлен 14.12.2011

    Почвенные и агроклиматические условия. Характеристика вредных объектов и меры борьбы с ними. Пестициды, рекомендованные для подавления вредных объектов, обоснование выбора пестицида. План мероприятий по разработке эффективного применения пестицидов.

    курсовая работа , добавлен 28.03.2010

    Пестициды и гербициды в интегрированной системе защиты растений, их влияние на свойства и структуру растений, на жизнь и здоровье человека. Краткая характеристика и механизм действия глифосата. Изучение влияния микроконцентраций гербицида "Раундап".

    дипломная работа , добавлен 23.02.2011

    Токсичность нитратов в питании человека и животных, механизм трансформации нитратов в тканях растений. Нитратредуктаза как ключевой фермент в восстановлении нитратов, причины накопления их в растениеводческой продукции и снижения накопления в растениях.

    реферат , добавлен 07.05.2012

    Принципы классификации пестицидов. Характеристика применяемых пестицидов для защиты ячменя обыкновенного (Hordeum vulgare) от вредителей и болезней. Организация планирования защитных мероприятий. Разработка годового плана работ по защите растений.

    курсовая работа , добавлен 09.02.2016

    Обоснование выбора пестицидов, способов и сроков их применения. Токсикологическая и гигиеническая характеристики выбранных пестицидов. Календарный план мероприятий по химической защите растений. Интегрированная система защиты картофеля для хозяйства.

    курсовая работа , добавлен 08.01.2013

    Химическая защита сельхозкультур от вредителей. Обоснование выбора, особенности действия и применения инсектицидов, фунгицидов, пестицидов, гербицидов. Химическая борьба с сорняками. Охрана окружающей среды от отрицательного воздействия пестицидов.

МИНИСТЕРСТВО ЖИЛИЩНО-КОММУНАЛЬНОГО ХОЗЯЙСТВА РСФСР

ОРДЕНА ТРУДОВОГО КРАСНОГО ЗНАМЕНИ
АКАДЕМИЯ КОММУНАЛЬНОГО ХОЗЯЙСТВА им. К.Д. ПАМФИЛОВА

РУКОВОДСТВО
НА ТЕХНОЛОГИЮ ПОДГОТОВКИ ПИТЬЕВОЙ ВОДЫ,
ОБЕСПЕЧИВАЮЩУЮ
ВЫПОЛНЕНИЕ ГИГИЕНИЧЕСКИХ ТРЕБОВАНИЙ
В ОТНОШЕНИИ ХЛОРОРГАНИЧЕСКИХ СОЕДИНЕНИЙ

Отдел научно-технической информации АКХ

Москва 1989

Рассмотрены гигиенические аспекты и причины загрязнения питьевых вод токсичными летучими хлорорганическими соединениями. Представлены технологические приемы очистки и обеззараживания воды, предотвращающие образование хлорорганических соединений, и методы их удаления. Изложена методика выбора того или иного приема в зависимости от качества исходной воды и технологии ее обработки.

Руководство разработано НИИ коммунального водоснабжения и очистки воды АКХ им. К.Д. Памфилова (канд. техн. наук И.И. Демин, В.З. Мельцер, Л.П. Алексеева, Л.Н. Паскуцкая, канд. хим. наук Я.Л. Хромченко) и предназначено для специалистов научно-исследовательских, проектных и производственных организаций, работающих в области очистки природных вод, а также для работников СЭС, контролирующих гигиенические показатели качества питьевой воды.

Руководство составлено на основе исследований, проведенных в полупроизводственных и производственных условиях с участием ЛНИИ АКХ, НИКТИГХ, УкркоммунНИИпроект, НИИОКГ им. А.Н. Сысина и 1 ММИ им. И.М. Сеченова.

По решению ученого совета НИИ КВОВ АКХ первоначальное название работы «Рекомендации по совершенствованию технологии очистки и обеззараживания воды с целью уменьшения галогенорганических соединений в питьевой воде» заменено на настоящее.

I. ОБЩИЕ ПОЛОЖЕНИЯ

В практике подготовки питьевой воды одним из основных приемов обработки, обеспечивающим ее надежное обеззараживание, а также позволяющим поддерживать санитарное состояние очистных сооружений, является хлорирование.

Исследования последних лет показали, что в воде могут присутствовать токсичные летучие галогенорганические соединения (ЛГС). В основном это соединения, относящиеся к группе тригалогенметанов (ТГМ): хлороформ, дихлорбромметан, дибромхлорметан, бромоформ и др., обладающие канцерогенной и мутагенной активностью.

Гигиеническими исследованиями, проведенными за рубежом и в нашей стране, выявлена взаимосвязь между количеством онкологических заболеваний и употреблением населением хлорированной воды, содержащей галогенорганические соединения.

В ряде стран установлены ПДК суммы ТГМ в питьевой воде (мкг/л): в США и Японии - 100, в ФРГ и ВНР - 50, в Швеции - 25.

По результатам исследований, проведенных 1 Московским медицинским институтом им. И.М. Сеченова, НИИ общей и коммунальной гигиены им. А.Н. Сысина и Институтом экспериментальной и клинической онкологии АМН СССР, были выявлены 6 высокоприоритетных летучих хлорорганических соединений (ЛХС), и Минздрав СССР утвердил ориентировочно-безопасные уровни их воздействия на человека (ОБУЗ) с учетом бластомогенной активности (способность веществ вызывать различные виды онкологических заболеваний) (таблица).

Таблица

Высокоприоритетные ЛХС и их допустимые концентрации в питьевой воде, мг/л

Соединение

ОБУВ по токсикологическому признаку вредности

ОБУВ с учетом бластомогенной активности

Хлороформ

0,06

Четыреххлористый углерод

0,006

1,2-дихлорэтан

0,02

1,1-дихлорэтилен

0,0006

Трихлорэтилен

0,06

Тетрахлорэтилен

0,02

В руководстве рассмотрены причины загрязнения питьевых вод летучими хлорорганическими загрязнениями и влияние качества исходной воды на их конечную концентрацию. Изложены технологические приемы очистки и обеззараживания воды, позволяющие уменьшить концентрацию ЛХС до допустимых пределов. Приведена методика выбора предлагаемых приемов в зависимости от качества исходной воды и технологии ее обработки.

Технологические приемы, представленные в руководстве, разработаны на основе специально проведенных исследований в лабораторных и полупроизводственных условиях и испытаны на действующих водопроводных станциях.

Известны два возможных источника попадания ЛХС в питьевую воду:

1) в результате загрязнения источников водоснабжения промышленными сточными водами, содержащими ЛХС. При этом поверхностные источники водоснабжения, как правило, содержат небольшие количества ЛХС, так как в открытых водоемах активно идут процессы самоочищения; кроме того, ЛХС удаляются из воды путем поверхностной аэрации. Содержание ЛХС в подземных водоисточниках может достигать значительных величин, и концентрация их возрастает при поступлении новых порций загрязнений;

2) образование ЛХС в процессе водоподготовки, в результате взаимодействия хлора с органическими веществами, присутствующими в исходной воде. К органическим веществам, ответственным за образование ЛХС, относятся оксосоединения, имеющие одну или несколько карбонильных групп, находящихся в орто- пара- положении, а также вещества, способные к образованию карбонильных соединений при изомеризации, окислении или гидролизе. К таким веществам относятся прежде всего гумусовые и нефтепродукты. Кроме того, на концентрацию образующихся ЛХС существенное влияние оказывает содержание в исходной воде планктона.

Основные концентрации ЛХС образуются на этапе первичного хлорирования воды при введении хлора в неочищенную воду. В хлорированной воде обнаружено свыше 20 различных ЛХС. Наиболее часто отмечается присутствие ТГМ и четыреххлористого углерода. При этом количество хлороформа обычно на 1-3 порядка превышает содержание других ЛХС, и в большинстве случаев концентрация их в питьевой воде выше установленного норматива в 2-8 раз.

Процесс образования ЛХС при хлорировании воды сложный и продолжительный во времени. Существенное влияние на него оказывает содержание в исходной воде органических загрязнений, время контакта воды с хлором, доза хлора и рН воды (рис. ).

Многочисленными исследованиями установлено, что летучие хлорорганические соединения, присутствующие в исходной воде и образовавшиеся при ее хлорировании, на сооружениях традиционного типа не задерживаются. Максимальная их концентрация отмечается в резервуаре чистой воды.

В настоящее время на действующих водопроводных станциях предварительное хлорирование часто осуществляется весьма высокими дозами хлора с целью борьбы с планктоном, снижения цветности воды, интенсификации процессов коагуляции и т.п. При этом хлор иногда вводится в отдаленных от водоочистных сооружений точках (ковши, каналы и т.д.). На многих водопроводных станциях хлор вводится только на этапе предварительного хлорирования, доза хлора в этом случае достигает 15-20 мг/л. Такие режимы хлорирования создают наиболее благоприятные условия для образования ЛХС вследствие длительного контакта присутствующих в воде органических веществ с высокими концентрациями хлора.

Для предотвращения образования ЛХС в процессе водоподготовки необходимо изменить режим предварительного хлорирования воды, при этом концентрацию ЛХС в питьевой воде можно уменьшить на 15-30 % в зависимости от применяемого приема.

Так, при выборе дозы хлора следует руководствоваться только соображениями дезинфекции воды. Доза предварительного хлорирования не должна превышать 1-2 мг/л.

При высокой хлорпоглощаемости воды следует проводить дробное хлорирование, в этом случае расчетная доза хлора вводится не сразу, а небольшими порциями (частично перед сооружениями I ступени очистки воды, частично перед фильтрами).

Дробное хлорирование целесообразно применять также при транспортировании неочищенной воды на значительные расстояния. Разовая доза хлора при дробном хлорировании не должна превышать 1-1,5 мг/л.

С целью сокращения времени контакта неочищенной воды с хлором предварительное обеззараживание воды следует проводить непосредственно на очистных сооружениях. Для этого хлор подается в воду после барабанных сеток или микрофильтров на входы воды в смеситель или после воздухоотделительной камеры.

Для оперативного регулирования процесса хлорирования воды и эффективного использования хлора необходимо иметь коммуникации для транспортирования хлора в водозаборные сооружения, в водоприемные колодцы 1 подъема, в смесители, трубопроводы осветленной и фильтрованной воды, в резервуары чистой воды.

Кроме того, для профилактики биологического и бактериального обрастания сооружений (периодическая промывка отстойников и фильтров хлорированной водой) можно применять передвижные, хлораторные установки.

Чтобы исключить возможность образования хлорорганических соединений при приготовлении хлорной воды, в хлораторных должна использоваться только очищенная вода из хозяйственно-питьевого водопровода.

3. Очистка воды от растворенных органических веществ до хлорирования

Органические вещества, присутствующие в исходной воде, являются основными источниками образования ЛХС в процессе водоподготовки. Предварительная очистка воды от растворенных и коллоидных органических загрязнений до хлорирования, уменьшает концентрацию ЛХС в питьевой воде на 10-80 % в зависимости от глубины их удаления.

Предварительная очистка воды коагуляцией . Частичная очистка воды от органических загрязнений коагулированием и осветлением (хлор при этом вводится в обрабатываемую воду после I ступени очистки воды) позволяет уменьшить концентрацию ЛХС в питьевой воде на 25-30 %.

При проведении полной предварительной очистки воды, включающей коагулирование, осветление и фильтрование, концентрация органических веществ уменьшается на 40-60 %, соответственно, уменьшается концентрация ЛХС, образующихся при последующем хлорировании.

С целью максимального удаления органических веществ необходимо интенсифицировать процессы очистки воды (применять флокулянты, тонкослойные модули в отстойных сооружениях и осветителях со взвешенным осадком, новые фильтрующие материалы и др.).

При использовании технологии очистки воды без предварительного хлорирования следует обращать внимание на выполнение требований ГОСТ 2874-82 «Вода питьевая. Гигиенические требования и контроль за качеством» в отношении времени контакта воды с хлором при ее обеззараживании, а также на санитарное состояние сооружений, проводя периоди ческую дезинфекцию в соответствии с работами [, ].

Необходимо также регулярно удалять осадок из сооружений I ступени очистки воды.

Сорбционная очистка воды . Применение порошкообразного активированного угля (ПАУ) для очистки воды уменьшает образование ЛХС на 10-40 %. Эффективность удаления органических веществ из воды зависит от природы органических соединений и в основном от дозы ПАУ, которая может изменяться в широких пределах (от 3 до 20 мг/л и более).

Обрабатывать воду ПАУ следует до ее хлорирования и в соответствии с рекомендациями СНиП 2.04.02-84 .

Применение сорбционных фильтров с загрузкой из гранулированных активированных углей без предварительного хлорирования воды позволяет удалить из воды до 90 % растворенных органических веществ и соответственно уменьшить образование ЛХС в процессе водоподготовки. С целью повышения эффективности сорбционных фильтров по отношению к органическим веществам их следует располагать в технологической схеме очистки воды после этапов коагуляционной обработки и осветления воды, т.е. после фильтров или контактных осветлителей.

Предварительная обработка воды окислителями (озон, перманганат калия, ультрафиолетовое облучение и др.) увеличивает межрегенерационный период работы фильтров.

Хлорорганические соединения, находящиеся в промышленных отходах, поглощаются частицами вещества и почвой, а в гидросфере - частицами органических и неорганических веществ и осадками.[ ...]

Хлорорганические соединения представляют собой газы, жидкости или твердые вещества со своеобразным запахом.[ ...]

Хлорорганические соединения поглощаются активированным углем. При последующем прокаливании угля на газовой горелке пламя ее окрашивается в зеленый цвет. При этом длительность окрашивания пламени пропорциональна концентрации хлорорга-нических соединений в воздухе.[ ...]

Хлорорганические соединения нашли широкое применение во многих отраслях промышленности в качестве растворителей лаков, красок, жиров, парафина, искусственных смол, в качестве исходного продукта для органического синтеза и для других технологических процессов.[ ...]

Хлорорганическим растворителям присущи следующие ценные качества: способность растворять разнообразные вещества, легко смешиваться с другими органическими растворителями, значительная устойчивость по отношению к огню. Горючесть их уменьшается с увеличением содержания хлора в молекуле. Сырьем для их получения является хлор, а также газы крекинга нефти - этилен и гомологи. Свойства хлорорганических соединений, получение, применение и токсичность описаны Г. С. Петровым, А. Б. Ашкинази, Н. Д. Розенбаумом, Н. В. Лазаревым и др.[ ...]

Хлорорганические соединения, определение в воздухе 82 сл.[ ...]

Хлорорганические соединения с давних пор играют главную роль среди инсектицидов и акарицидов. К ним относятся хорошо известные и важные соединения, такие, как ДДТ, его значительно позже найденный аналог метоксихлор, ГХЦГ, активным компонентом которого является у-ГХЦГ, или линдан (в настоящее время все еще имеет важное значение в защите растений), и соединения диенового ряда. Метил-бромид применяется также как средство борьбы с амбарными вредителями.[ ...]

Хлорорганические соединения - углеводороды, являются наркотиками, некоторые действуют на внутренние органы (печень, почки), а также на нервную систему. Предельно допустимые концентрации некоторых хлорированных соединений даны в табл. 47.[ ...]

Соединения этой группы были первыми средствами, нашедшими широкое применение для борьбы с различными вредителями сельского хозяйства. До последнего времени эти соединения (ДДТ, гексахлоран, гептахлор и др.) были ¡наиболее распространенными. Причина этого заключалось в том, что эти высокоэффективные соединения считались почти нетоксичными. Массовое применение химических веществ в сельском хозяйстве показало, что хлорорганические соединения не являются безвредными средствами. В настоящее время хлорорганические соединения применяются с большими ограничениями и постепенно вытесняются другими, менее токсичными, пестицидами.[ ...]

Хлорорганические соединения. ДДТ, ГХЦГ, полихлорпинен, алд-рин, эфирсульфонат и другие хлорорганические соединения - пестициды, давно нашедшие широкое применение в сельскохозяйственном производстве. Они используются в борьбе с вредителями зерновых, зернобобовых, технических культур, виноградников, овощных и полевых культур, в лесном хозяйстве, ветеринарии и даже в медицинской практике. Отличительная их особенность - стойкость к воздействию различных факторов внешней среды (температура, солнечная радиация, влага и др.). Так, ДДТ выдерживает нагревание до 115-120°С в течение 15 ч и почти не разрушается при кулинарной обработке. Этот препарат, обладая высокими кумулятивными свойствами, постепенно накапливается в окружающей среде (вода, почва, пищевые продукты). Его находили в почве через 8-12 лет после применения.[ ...]

Хлорорганические соединения не мешают определению, а спирты с таким же временем удерживания - мешают.[ ...]

Хлорорганические соединения обладают наркотическим и обще-■оксическим действием.[ ...]

Все эти хлорорганические соединения, обнаруживаемые не только во внутренних морях, но и в океанах до глубины 5000 м, уже при концентрациях порядка 1 нг/л на 50-60 % ингибируют фотосинтез фитопланктона, т. е. примерно вдвое снижают его способность ассимилировать С02. Кроме того, персистентные хлорорганические соединения склонны к биоаккумулированию и биомагнификации - накоплению в высших звеньях трофической цепи до уровней токсического воздействия. В результате многие виды (например, орлан-белохвост, балтийский тюлень) оказались на грани исчезновения, а экосистемы, в которые они входят, в значительной степени нарушены.[ ...]

Заметим, что хлорорганические соединения используют в производстве красителей, для обезжиривания металлов, в качестве растворителей при химической чистке одежды, в процессах экстракции на предприятиях пищевой промышленности. Многие из этих процессов протекают при повышенной температуре, что сопряжено с риском образования диоксинов Так, значительные количества ПХДД были найдены в дистиллятах три-хлорэтилена, применяемого на текстильных фабриках для чистки тканей .[ ...]

Определение хлорорганических соединений методом сжигания в приборе НИИ гигиены им. Ф. Ф. Эрисмана.[ ...]

Можно сжигать хлорорганические соединения в фарфоровой или кварцевой трубке с платиновой спиралью при 850- 900° с последующим поглощением продуктов сжигания и определением в них иона хлора (поглощение мышьяковистой кислотой, осаждение АдЫОз и нефелометрическое определение). Сжигание производят также и в стеклянных колонках с накаленной платиновой проволокой.[ ...]

Инсектициды на основе хлорорганических соединений проникают в организм человека через пищеварительный тракт или кожу, если они применялись в растворенном виде. При этом мембраны нервных клеток располагаются так, что сохраняется проницаемость для осмотического переноса потока ионов Ка +. Нарушенный действием пестицидов потенциал покоя после возбуждения либо совсем не возвращается к исходному значению, либо снижается частично. Таким образом, хлорорганические соединения изменяют возбудимость нервных клеток. Сначала при этом повреждаются моторные нервные пути, а затем при более высоких концентрациях и сенсорные нейроны. У человека воздействие пестицидов наблюдается только при попадании в организм значительных количеств пестицидов, следовые количества не оказывают заметного действия. Однако надо относиться с осторожностью к попаданию в организм даже следовых количеств хлорорганических соединений, так как они могут накапливаться и вступать во взаимодействие с другими чужеродными веществами.[ ...]

Прибор для определения хлорорганических соединений (рис. 14). Прибор состоит из двух частей - очистительной и аналитической. Очистительная система состоит из двух поглотительных приборов, предназначенных для очистки воздуха от хлора и хлористого водорода. Один из поглотительных приборов содержит 5% раствор едкой щелочи, другой - 0,01% раствор мышьяковистой кислоты. Аналитическая система состоит из двух стеклянных колонок для сжигания, в которые впаяны платиновые спирали длиной 7 см, сечением 0,3 мм и микропоглотителей. Микропоглотитель представляет собой стеклянную трубку длиной 70 мм и диаметром 7-8 мм с суженным концом и шлифом в верхней части, в которую плотно вставлена стеклянная спираль в 20 витков. Трубка со спиралью другим концом упирается в дно пробирки длиной 40 мм и диаметром 12 мм. Для отбора проб воздуха применяются газовые пипетки на 0,5-1 л. Уравнительные склянки емкостью 1 л служат для вытеснения из пипеток анализируемого воздуха.[ ...]

Наряду с индивидуальными хлорорганическими соединениями проводилось исследование способности к биохимическому окислению дихлорфенольных сточных вод от производства 2,4-Д, отработанной серной кислоты от производства монохлоруксусной кислоты и общего стока химзавода.[ ...]

Другое характерное свойство хлорорганической группы веществ - способность накапливаться в тканях и жире животных. Большинство препаратов этой группы относится к среднетоксичным соединениям. Только некоторые из них (алдрин, дилдрин) принадлежат к сильнодействующим и очень опасным по своей летучести веществам. Хлорорганические соединения могут вызывать острые или хронические отравления с поражением печени, центральной и периферической нервной системы и других жизненно важных органов и систем.[ ...]

Обесцвечивания и снижения содержания хлорорганических соединении в сточных водах целлюлозно-бумажных производств достигают путем их обработки грибами - белой плесенью. Процесс очистки включает разделение сточных вод ультрафильтрацией с последующей обработкой фильрата грибами с целью обеззараживания и сжиганием выделенных высокомолекулярных соединений (концентрата). Эффективность очистки в течение короткого времени обработки превышает в несколько раз традиционные методы очистки. Считают, что в ближайшем будущем этот процесс найдет промышленное применение.[ ...]

Среди пестицидов наибольшую опасность представляют стойкие хлорорганические соединения (ДДТ, ГХБ, ГХЦГ), которые могут сохраняться в почвах в течение многих лет и даже малые их концентрации в результате биологического накопления могут стать опасными для жизни организмов. Но и в ничтожных концентрациях пестициды подавляют иммунную систему организма, а в более высоких концентрациях обладают выраженными мутагенными и канцерогенными свойствами. Попадая в организм человека, пестициды могут вызвать не только быстрый рост злокачественных новообразований, но и поражать организм генетически, что может представлять серьезную опасность для здоровья будущих поколений. Вот почему применение наиболее опасного из них - ДДТ в нашей стране и в ряде других стран запрещено.[ ...]

Предельно допустимые концентрации установлены для отдель-1ых хлорорганических соединений в зависимости от степени их ток-ичности.[ ...]

Ежегодное потребление хлора в России достигает 2 млн т. Используется хлор в производстве хлорорганических соединений (винилхлорида, хлоропренового каучука, дихлорэтана, хлорбензола и др.). В большинстве случаев применяется для отбеливания тканей и бумажной массы, обеззараживания питьевой воды, как дезинфицирующее средство и в других отраслях промышленности. Хранят и перевозят его в стальных баллонах, контейнерах и железнодорожных цистернах под давлением.[ ...]

Наряду с контролем промышленных предприятий необходимо контролировать содержание стойких хлорорганических соединений (ПХБ, ДДТ, ГХЦГ и др.) в агроландшафтах Последние являются одним из основных вторичных источников загрязнения окружающей среды этими веществами Накопление ХОС в агроландшафтах явилось результатом масштабного и длительного применения в сельском хозяйстве ХОП Так, обследование сельскохозяйственных территорий Прикубанской низменности показало, что прессинг на почвенный покров остаточных количеств ХОП соизмерим с нагрузкой промышленных загрязнителей. Особого внимания заслуживают повышенные содержания ПХБ и остатков ДДТ в почвах под отдельными сельскохозяйственными культурами и многолетними насаждениями, а также поля испарений, куда сбрасываются коммунальные и промышленные сточные воды, содержащие ХОС, Г1АУ, канцерогенные металлы. После испарения воды на них образуются грязные слои почвы, легко сдуваемые в виде пылевой пудры даже небольшим ветром. В таких условиях частицы пыли могут попадать в легкие и пищевод проживающих в данной местности людей и способствовать возникновению раковых заболеваний.[ ...]

Инсектициды применяют главным образом для обработки посевов зерновых и бобовых культур. Среди инсектицидов большую роль играют хлорорганические соединения - ДДТ, гексахлорциклогексан, выпуск которых основан на отечественной хлорной промышленности . Изменение потребления пестицидов приведено в табл. 162.[ ...]

Природный осадок и поверхностная пленка являются зонами концентрирования загрязняющих воду веществ. На дно оседают нерастворимые в воде соединения, а сам осадок является хорошим сорбентом для многих веществ. Например, нерастворимые в воде хлорорганические соединения оседают на дне и сохраняются там длительное время. Предполагают, что вода является хранилищем устойчивых пестицидов. Донные осадки могут обладать окислительно-восстановительными свойствами и биологической активностью, могут катализировать некоторые реакции.[ ...]

В Приложении 3 приведены результаты опытов по огневому обезвреживанию в циклонных реакторах некоторых видов сточных вод, кубовых остатков и водных растворов, содержащих хлорорганические соединения. В этих опытах в отходящих дымовых газах содержались НС1 и СЬ. По данным , органические соединения хлора в отходящих газах присутствуют при наличии в них оксида углерода и несгоревших углеводородов. В рассматриваемых опытах в дымовых газах обнаружены лишь следы СО, а углеводороды отсутствовали. Это дает основание считать, что содержание органического хлора в отходящих газах должно быть невысоким. В опыте на сточной воде производства дианата, проведенном при пониженных температурах (/0,г= 1000 °С), в отходящих газах содержалось 80- 160 мг/м3 органического хлора. Для полного окисления хлорорганических примесей температуру отходящих газов целесообразно поддерживать на уровне 1100°С при коэффициенте расхода воздуха 1,05-1,1.[ ...]

Диоксины - высокотоксичные вещества сложной химической структуры, ксенобиотики, имеющие техногенное происхождение, связанное главным образом с производством и использованием хлорорганических соединений и их утилизацией.[ ...]

Хлоргаз по выходе из цеха электролиза проходит сушку, где он освобождается от водяных паров и транспортируется затем по трубопроводу на производство хлорной извести, жидкого хлора, хлорорганических соединений и т. п.[ ...]

При промышленном получении хлора и щелочей методом электролиза хлоридов, переработке руд титана, ниобия, тантала и других металлов методом хлорирующего обжига, получения хлористоводородной кислоты и многих хлорорганических соединений в атмосферу выбрасываются газы, содержащие хлор, хлороводород и другие соединения хлора. В последнее время источниками поступления НС1 в окружающую среду стали печи сжигания хлорсодержащих промышленных отходов и бытового мусора, содержащего полимерные материалы.[ ...]

Большое экономическое значение для нашей страны и мирового сельского хозяйства имеет борьба с колорадским жуком. До конца 50-х гг. в Европе и США против колорадского жука в основном применялся ДДТ. Запрет на ряд хлорорганических соединений привел к более интенсивному использованию карбаматных и фос-форорганических препаратов. В 1976 г. появились данные о том, что в ряде штатов QIIÍA применение карбофурана увеличивало численность колорадского жука.[ ...]

Экологическая ситуация в регионе за последние годы существенно изменилась. Так, на примере АО "Каустик", валовой выброс загрязняющих веществ снижен к 1999 г. (по сравнению с 1992 г.) на 4320,797 т (59,63%). В том числе снижены выбросы по ртути (на 57,6%), по хлорвинилу (на 88,5%), по сумме хлорорганических соединений без учета хлорвинила (на 77,60%), по аммиаку (на 17,10%). Поэтому необходим постоянный мониторинг состояния различных типов экосистем и выбор системы методов контроля и оценки окружающей среды, применительно к особенностям конкретного региона.[ ...]

Более 100 лет метод обеззараживания воды хлором является в России наиболее распространенным способом борьбы с загрязнением. В последние годы было установлено, что хлорирование воды представляет серьезную угрозу для здоровья людей, поскольку попутно образуются крайне вредные хлорорганические соединения и диоксины. Добиться снижения концентрации указанных веществ в питьевой воде можно путем замены хлорирования на озонирование или обработку УФ - лучами. Эти прогрессивные методы широко внедряются на станциях водоподготовки многих стран Западной Европы и США. В нашей стране, к сожалению, из-за экономических трудностей применение экологически эффективных технологий осуществляется крайне медленно.[ ...]

Чем устойчивее и токсичнее пестициды, тем серьезнее их негативное воздействие на живую природу и человека. При этом устойчивость к факторам окружающей среды (солнечный свет, кислород, микробиологические разложения и т. д., способность ядохимикатов сохраняться длительное время) в большей мере определяет их опасность. Пестициды на основе хлорорганических, фосфорорганических и карбаматных соединений значительно отличаются по своей стойкости. ДДТ - типичное хлорорганическое соединение - способен более 50 лет циркулировать в биосфере. Более того, продукты его разложения (например, ДДЕ) - опасные и стойкие вещества, порой они более токсичны, чем исходное вещество.[ ...]

Реальную картину присутствия остаточных количеств химических средств,защиты растений в наиболее важной для человека части окружающей среды - пище можно получить только с помощью контрольных анализов. Все упомянутые ядохимикаты представляют собой хлорорганические соединения, устойчивость которых общеизвестна.[ ...]

Поскольку скорость интенсивности антропогенного воздействия на природу возрастает экспоненциально, через несколько десятилетий оно будет полностью определять изменение состава атмосферы, подавляя указанные выше природные факторы. Модельные исследования показали, что уже в период 21-го 11-летнего солнечного цикла (1975-1986 гг.) в изменения содержания озона и фотохимически с ним связанных соединений азота в средней и верхней стратосфере почти одинаковый вклад вносили колебания УФ излучения Солнца, вызванные изменениями активности Солнца и ростом содержания активного хлора, разрушающего озон в этих слоях атмосферы. Последний фактор является результатом роста антропогенного выброса в атмосферу хлорорганических соединений, прежде всего ХФУ-11 и -12, который был весьма интенсивен в 70-е годы и составлял около 10 % в год, 80-е годы - 5% в год . Очевидно, в текущем 22-м (1986-1997 гг.) и особенно в следующем 23-м солнечных циклах этот антропогенный фактор будет определять изменения состава не только нижней, но и глобальной верхней стратосферы. Поэтому при оценке наиболее важных долговременных изменений содержания озона и других радиационно-активных газов в атмосфере, определяющих их воздействие на биосферу и климат, следует учитывать лишь изменения антропогенных факторов, формирующие эволюцию состава атмосферы. В последнее время были составлены и опубликованы несколько сценариев ожидаемых антропогенных выбросов С02 и других МГ в атмосферу и их содержания в ее разных частях.[ ...]

В настоящее время антропогенная нагрузка на природные водоемы, являющиеся источниками для получения питьевой воды, неуклонно возрастает. Наиболее опасными для человека загрязнителями являются различные патогенные микроорганизмы. Поэтому в технологии водоподготовки важнейшая роль принадлежит процессу обеззараживания и, в частности, хлорированию. Однако использование хлора приводит к образованию хлорорганических соединений, доминирующее значение среди которых принадлежит трагалогенме-танам (ТГМ). Последние относятся к токсичным органическим соединениям и отнесены ко II классу опасности. Поэтому знание общих закономерностей образования ТГМ необходимо для обоснованного управления технологией водоподготовки с целью снижения количества ТГМ в питьевой воде.[ ...]

Многообразие экологических требований и сложность производственных систем создали в последнее десятилетие своеобразную ситуацию, когда вероятность привлечения фирм и компаний к различным формам ответственности за непреднамеренные экологические нарушения резко возросла. Любопытным в этой связи представляется судебный процесс, возбужденный "Гринпис", в отношении одной английской химической компании, которая загрязняла Ирландское море и реку Темзу незаконными сбросами сточных вод рядом своих предприятий во Флитвуде и Уилтоне. Анализ проб сточных вод, отобранных "Гринпис" у 34 выпускных отверстий в сентябре 1992 г., показал содержание в них 100 хлорорганических соединений и других химических веществ, сбрасываемых в водную среду без разрешения. Ассоциация химической промышленности опровергает заявление "Гринпис", ссылаясь на строгий контроль как самой деятельности предприятий, так и их сбросов, Национальным речным управлением. Ситуация оказалась весьма странной: наличие многочисленных незаконных сбросов при строгом внешнем контроле. Упомянутый судебный процесс по мнению английских экспертов в области природоохранного права свидетельствует о необходимости самоконтроля предприятий с помощью так называемого экологического аудирования .[ ...]

Не вдаваясь в детали, перечислю основные результаты этих работ В статье приведены следующие данные. Установлено, что на протяжении 1990-1999 гг. содержание в воде крезолов, хлороформа и фенолов было значительным и приближалось к ПДК, а временами превосходило соответствующий норматив.

Хлорорганические соединения (ХОС) - галопроизводные полициклических углеводородов и углеводородов алифатического ряда. Ранее широко применялись в качестве пестицидов.

Показать все


Эти вещества обладают высокой химической стойкостью к воздействиям различных факторов внешней среды. ХОС - высокостабильные и сверхстабильные , для которых наиболее характерно концентрирование в последовательных звеньях пищевых цепей.

Вплоть до 1980-х годов по масштабам производства и применения в сельском хозяйстве первое место среди других занимали и (Линдан). Это стало причиной повсеместного загрязнения всех объектов окружающей среды остаточными количествами хлорорганических . Положение наглядно характеризуется тем фактором, что даже в снежном покрове Антарктиды к концу прошлого столетия накопилось более 3000 тонн .

История

В 1939 году доктор Пауль Мюллер, сотрудник швейцарской химической компании «Гейги» (позже «Сиба-Гейги», сейчас «Новатис»), обнаружил особые инсектицидные свойства , больше известного как . Это вещество было синтезировано ранее, в 1874 году, немецким студентом - химиком Отмаром Цейдлером. В 1948 году Мюллер получил за создание этого ин-сектицида Нобелевскую премию.

Благодаря простоте получения и высокой против большинства насекомых, этот препарат в течение короткого времени получил большую популярность и широкое распространение по всему миру. Во время Великой Отечественной войны благодаря применению были остановлены многие эпидемии. Более 1 млрд человек благодаря этому препарату были избавлены от малярии. История медицины не знала подобных успехов.

Одновременно группа хлорсодержащих соединений, к которым принадлежал , активно исследовалась. В 1942 году она была пополнена эффективным в уничтожении препаратом - и его гамма-изомером - впервые был синтезирован Фарадеем в 1825 году). За 40-летний период, начиная с 1947 года, когда активно заработали заводы по производству хлорорганических препаратов, их было выпущено 3 628 720 т с содержанием хлора 50-73%.

Однако вскоре выяснилось, что и другие хлорорганические препараты имеют высокую , способны преодолевать длинные пищевые цепочки и могут сохраняться в природных объектах в течение многих лет, что послужило поводом для резкого сокращения использования хлорорганических соединений по всему миру.

В 1970-х и в начале 1980-х годов после признания опасности для многих живых организмов в некоторых промышленных странах было введено ограничение или полное запрещение его использования (в 1986 г. Японией и США было выпущено примерно на 20% меньше хлорорганических , чем в 1980 г). Но в целом по миру потребление линдана и заметно не уменьшилось из-за роста их использования в странах Азии, Африки и Латинской Америки. Некоторые государства были вынуждены постоянно применять для борьбы с возбудителями малярии и других опасных болезней.

В нашей стране в 1970 году было принято решение изъять высокотоксичные из ассортимента , которые применяются на фуражных и продовольственных культурах, однако в сельском хозяйстве их продолжали активно применять вплоть до 1975 года и позднее в борьбе с переносчиками инфекционных заболеваний.

Значительно позже, в 1998 г., по предложению ООН в рамках программы по охране окружающей среды была принята конвенция, которая ограничила торговлю опасными веществами и типа , органофосфатов и ртутных соединений. Многочисленными исследованиями было показано, что стойкие хлорорганические соединения обнаруживаются практически во всех организмах, обитающих в воде и на суше. 95 стран приняли участие в новом международном договоре. В это же время, в перечень токсикантов, обязательных для контроля, были включены и .

Физико-химические свойства

ХОС отличаются высокой стойкостью к воздействию факторов внешней среды (влаги, температуры, солнечной инсоляции и пр.).

В организме насекомых, а также других живых существ производных хлорированных углеводородов происходит по трем основным направлениям:

От направленности процессов зависят токсикологические свойства соединения и его избирательность.

Действие на вредные организмы

. Систематическое использование хлорорганических ведет к появлению устойчивых популяций насекомых, при этом возникает групповая приобретенная .

Токсикологические свойства и характеристики

В гидросфере

. При попадании в воду ХОС остаются в ней на протяжении нескольких недель или даже месяцев. Одновременно вещества поглощаются водными организмами (растениями, животными) и накапливаются в них.

В водных экосистемах происходит сорбция хлорорганических экотоксикантов взвесями, их седиментация и захоронение в донных отложениях. В значительной степени перенос хлорорганических соединений в донные отложения происходит за счет биоседиментации - накопления в составе взвешенного органического материала. Особенно высокие концентрации ХОС наблюдаются в донных отложениях морей вблизи крупных портов. Например, в западной части Балтийского моря вблизи порта Гётеборг в осадках обнаруживалось до 600 мкг/кг .

В атмосфере

. Миграция ХОС в атмосфере (фото) является одним из ключевых путей их распространения в окружающей среде. Многолетние наблюдения привели к выводу, что в основном изомеры представлены в атмосфере в виде пара. Вклад паровой фазы в случае также очень большой (более 50%).

При средних температурах хлорорганические характеризуются малым давлением насыщенного пара. Но, попав на поверхность растений и почвы, ХОС частично переходят в газовую фазу. Кроме прямого испарения с поверхности, стоит также учитывать и переход их в атмосферу вследствие ветровой эрозии почв. Персистентные соединения в составе аэрозолей и в парообразном состоянии переносятся на значительные расстояния, поэтому сегодня загрязнение континентальных экосистем хлорорганическими носит глобальный характер.

Вымывание осадками служит одним из основных путей уменьшения концентрации ХОС в атмосфере. Содержание и линдана в дождевой воде, собиравшейся в 1980-х гг. на Европейской территории СССР в биосферных заповедниках, составляло 4-240 нг/л. Это заметно выше, чем характерные уровни концентраций (от 0,3 до 0,8 нг/л) в Северной Америке в те же годы.

В почве

. В почве препараты этой группы сохраняются от 2 до 15 лет, длительно задерживаясь в верхнем ее слое и медленно мигрируя по профилю. Время сохранения зависит от влажности почвы, ее типа, кислотности (рН) и температуры. Численность микроорганизмов также играет большую роль, так как микробы разлагают препараты.

Из почвы ХОС проникают в растения, особенно в клубне- и корнеплоды, а также в водоемы и грунтовые воды. Внесенные в почву в больших количествах, они могут угнетать процессы нитрификации в течение 1-8 нед и на короткое подавлять ее общую микробиологическую активность. Однако большого влияния на свойства почв они не оказывают.

Из-за высокой сорбционной способности почвы рассеяние и миграция любых загрязняющих примесей происходит намного медленнее, чем это наблюдается в гидросфере и атмосфере. На сорбционные характеристики земли сильно влияет содержание в ней органических веществ и влаги. Легкие песчаные почвы (песок, супесь) хуже удерживают хлорорганические экотоксиканты, которые поэтому могут легко перемещаться вниз по профилю, загрязняя подземные и грунтовые воды. Эти компоненты в богатых гумусом почвах достаточно долгое время остаются в верхних горизонтах, главным образом, в слое до 20 см. Как видно из табл.

Характерной особенностью хлорорганических соединений является высокая персистентность, т.е. устойчивость к воздействию факторов внешней среды, они сохраняются в почве несколько лет, а в животноводческих помещениях - несколько месяцев. Так, ДДТ обнаруживали в почве через 8-12 лет после его применения, ГХЦГ - в течение 4-12 лет. Остатки линдана обнаруживали спустя четыре с половиной года. Эти соединения длительное время задерживаются в верхнем слое почвы и медленно мигрируют в ее глубину. XOC - липотропные вещества, они накапливаются в первую очередь в органах и тканях, богатых липидами, хорошо преодолевают плацентарный барьер. При алиментарном поступлении XOC хорошо всасываются слизистыми оболочками пищеварительного тракта с последующим образованием в организме животных метаболитов, токсичность которых неравнозначна. Метаболизм хлорпроизводных ациклических углеводов (гексахлорциклогексана и его аналогов, гамма-изомера ГХЦГ и др.) в организме животных протекает интенсивно. Поэтому мясо от обработанных этими препаратами животных рекомендовалось реализовать для питания людям не ранее чем через два месяца.
В организме животных и птиц XOC поступают при обработке кожных покровов (втирание, купание), через пищевой канал (с кормами, содержащими их остатки), а также в результате непосредственного введения их в желудок. Возможно общетоксическое действие при проникновении через неповрежденную кожу и дыхательные пути. Характерным и весьма отрицательным свойством XOC является способность к кумуляции. Повторное попадание их в организм различными путями в малых количествах способствует развитию хронического отравления, что представляет опасность для здоровья животных и людей.
Из организма XOC выделяются в основном с фекалиями, в меньшей степени с мочой. Способность XOC выделяться с молоком обуславливается наличием их в нем не только после обработки препаратами, но и поступлением XOC в организм с кормами или пищевыми продуктами.
ХОСы плохо растворимы в воде и хорошо - в органических растворителях и жирах. Большинство XOC относится к среднетоксическим соединениям. Это яды политропного действия с преимущественным поражением ЦНС и паренхиматозных органов, в частности печени. Наряду с этим имеет место нарушение функций эндокринной и сердечно-сосудистой систем, крови и почек.
Клиническая картина отравления XOC
При остром отравлении животных отмечается повышенная возбудимость, слюноотделение, нарушение координации движений и ритма дыхания, тремор, судороги тонического и клонического типов. Смерть наступает от паралича дыхательного центра.
Хроническое отравление животных характеризуется нарастающим ухудшением аппетита, потерей массы тела, вялостью, пугливостью, потускнением шерстных покровов, появлением рвоты, учащением дефекации и мочеиспускания. Далее атаксия, тремор, приступы клонико-тонических судорог, параличи, смерть от остановки дыхания.
При поступлении через дыхательные пути XOC вызывают раздражение конъюнктивы, слизистых оболочек носа, трахеи и бронхов.
Патоморфологические изменения при отравлении ХОС. При остром отравлении животных наблюдается резко выраженное полнокровие внутренних органов и головного мозга, мелкоочаговые и диффузные кровоизлияния в легких. При микроскопическом исследовании - разрыхление и отек стенок сосудов; в коре головного мозга - дистрофические изменения нервных клеток; в мышце сердца - единичные мелкоочаговые инфильтраты из клеток печени и почек. У животных, погибших в результате хронической интоксикации, отмечается застой крови в легких и органах брюшной полости. При микроскопическом исследовании - периваскулярный и перицеллюлярный отек с дистрофическими изменениями нервных клеток головного мозга, очаги кровоизлияний и дегенеративно-воспалительные изменения в легких, печени, почках: мутное набухание и жировая дистрофия клеток печени; паренхиматозная дистрофия эпителия извитых канальцев в почках, сопровождающаяся гиперемией и отеком; дистрофические изменения миокарда; очаговый отек легких, воспалительные процессы в слизистой и подслизистой оболочках желудка.
Политропное действие XOC проявляется в поражениях нервной системы, носящих характер диффузного процесса по типу токсического энцефаломиелополинефрита.
Первая помощь и лечение при отравлении XOС. Средства антидот-ной терапии отсутствуют, лечение ограничивается использованием симптоматических общеукрепляющих средств.
При возбуждении нервной системы рекомендованы барбитураты, но при угнетении дыхательного центра применение их противопоказано. При угрозе остановки дыхания вводят внутривенно лобелин. Следует избегать применения адреналина вследствие неблагоприятного влияния его на сердечную мышцу, сенсибилизированную хлорорганическими соединениями.
Для поддержания деятельности сердечно-сосудистой системы вводят кордиамин или раствор глюкозы со строфантином внутривенно. Раствор камфоры под кожу через каждые 0,5-1 час до выхода пострадавшего из коллапса.
При появлении судорог вводят внутримышечно сернокислую магнезию или хлоргидрат перорально или перректально.
При появлении резкого возбуждения ЦНС показано введение гексенала внутривенно или мединала внутримышечно. Препараты морфина противопоказаны.
При кислородной недостаточности эффективна оксигенотерапия. При отеке легких целесообразно кровопускание с последующим введением внутривенно 40% раствора глюкозы.
Лечение хронических интоксикаций XOC сводится к применению витаминотерапии (С, B1, B2, B12), введению глюкозы с аскорбиновой и никотиновой кислотами (внутривенно), биогенных стимуляторов (алоэ, плазмол, фибс и др.), применению липотропных средств и липокаина при наличии признаков поражения печени. В случаях токсической анемии назначают препараты железа. Явления геморрагического диатеза устраняют применением рутина и аскорбиновой кислоты.
В случаях аллергических явлений - применение десенсибилизирующей терапии (хлористый кальций, аскорбиновая кислота, димедрол). Лечебная диета заключается в повышенном употреблении липотропных (например, творог) и ограничении холестеринсодержащих продуктов, ограничение углеводов и белков. Из хлорпроизводных алициклических углеводородов - гамма-изомер ГХЦГ - линдан - долгие годы применялся в России и за рубежом как инсектоакарицид для животноводства и растениеводства. Это белый кристаллический порошок. Летуч. He разрушается сильными кислотами, устойчив к действию света и воды, взрывоопасен. Выпускали 90% технический препарат, 16% минерально-масляную эмульсию гамма-изомера ГХЦГ, шашки Г-17, 6-ную к.э. гексалина и 6% к.э. гексаталпа.
Все вышеназванные препараты, основой которых является гамма-изомер ГХЦГ, на основании приказа М3 России №138 от 02.03.89г. запрещены. Вместе с тем, в Россию для борьбы с эктопаразитами плотоядных завозится из Франции и Венгрии комплексный препарат, содержащий линдан, - аурикан. Этот препарат обладает акарицидным действием против возбудителя отодектоза собак и кошек.
Аурикан - ушные капли, композиционный препарат, состоящий из:
- Линдана - 0,1 г;
- Преднизолона натрия - 0,03 г;
- Гексамидина изотионата - 0,05 г;
- Тетракаина гидрохлорида - 0,2 г;
- Ксилена - 0,5 г;
- Глицерина - 2 г;
- Дистиллированной воды - 100 мл.
Линдан - гексахлорциклогексан, действует на имаго и яйца членистоногих, он нерастворим в воде, но растворим в спирте и маслах. Доза 20 мг/кг вызывает у собак признаки токсикоза, брадикардию, дистрофию печени, патологию почек и т.д. Используется гамма-изомер в концентрации 1%.
Преднизолон - кортикостероид, обеспечивающий противовоспалительный, антиаллергический эффект, улучшает углеводный, белковый и липидный обмен, способствует деградации коллагена, стимулирует эритропоэз, уменьшает абсорбцию и увеличивает выделение почками кальция.
Гексамидин - изотионат, обеспечивает антибактериальную и антигрибковую активность, его действие отмечается через 24 часа после накожного применения, низкотоксичен для теплокровных.
Тетракаина гидрохлорид - в зависимости от дозы может способствовать или предупреждать судороги, не является вязоконструктором. Низкотоксичен: ЛД50 при внутривенном введении для мышей составляет 7 мг/кг, для кроликов и собак 0,43 мг/кг.
Глицерин придает вязкость препарату.
По внешнему виду аурикан - слабоопалесцирующая жидкость, срок годности 3,5 года с момента изготовления.



Последние материалы раздела:

Развитие критического мышления: технологии и методики
Развитие критического мышления: технологии и методики

Критическое мышление – это система суждений, способствующая анализу информации, ее собственной интерпретации, а также обоснованности...

Онлайн обучение профессии Программист 1С
Онлайн обучение профессии Программист 1С

В современном мире цифровых технологий профессия программиста остается одной из самых востребованных и перспективных. Особенно высок спрос на...

Пробный ЕГЭ по русскому языку
Пробный ЕГЭ по русскому языку

Здравствуйте! Уточните, пожалуйста, как верно оформлять подобные предложения с оборотом «Как пишет...» (двоеточие/запятая, кавычки/без,...