К слабым электролитам относятся все вещества ряда. Теория электролитической диссоциации

Соли, их свойства, гидролиз

Ученица 8 класс Б школы № 182

Петрова Полина

Учитель химии:

Харина Екатерина Алексеевна

МОСКВА 2009

В быту мы привыкли иметь дело лишь с одной солью – поваренной, т.е. хлоридом натрия NaCl. Однако в химии солями называют целый класс соединений. Соли можно рассматривать как продукты замещения водорода в кислоте на металл. Поваренную соль, например, можно получить из соляной кислоты по реакции замещения:

2Na + 2HCl = 2NaCl + H 2 .

кислота соль

Если вместо натрия взять алюминий, образуется другая соль – хлорид алюминия:

2Al + 6HCl = 2AlCl 3 + 3H 2

Соли – это сложные вещества, состоящие из атомов металлов и кислотных остатков. Они являются продуктами полного или частичного замещения водорода в кислоте на металл или гидроксильной группы в основании на кислотный остаток. Например, если в серной кислоте H 2 SO 4 заместить на калий один атом водорода, получим соль KHSO 4 , а если два – K 2 SO 4 .

Различают несколько типов солей.

Типы солей Определение Примеры солей
Средние Продукт полного замещения водорода кислоты на металл. Ни атомов Н, ни ОН-групп не содержат. Na 2 SO 4 сульфат натрия CuCl 2 хлорид меди (II) Ca 3 (PO 4) 2 фосфат кальция Na 2 CO 3 карбонат натрия (кальцинированная сода)
Кислые Продукт неполного замещения водорода кислоты на металл. Содержат в своем составе атомы водорода. (Они образованны только многоосновными кислотами) CaHPO 4 гидрофосфат кальция Ca(H 2 PO 4) 2 дигидрофосфат кальция NaHCO 3 гидрокарбонат натрия (питьевая сода)
Основные Продукт неполного замещения гидроксогрупп основания на кислотный остаток. Включают ОН-группы. (Образованны только многокислотными основаниями) Cu(OH)Cl гидроксохлорид меди (II) Ca 5 (PO 4) 3 (OH) гидроксофосфат кальция (CuOH) 2 CO 3 гидроксокарбонат меди (II) (малахит)
Смешанные Соли двух кислот Ca(OCl)Cl – хлорная известь
Двойные Соли двух металлов K 2 NaPO 4 – ортофосфат дикалия-натрия
Кристаллогидраты Содержат кристаллизационную воду. При нагревании они обезвоживаются – теряют воду, превращаясь в безводную соль. CuSO 4 . 5H 2 O – пятиводный сульфат меди(II) (медный купорос) Na 2 CO 3 . 10H 2 O – десятиводный карбонат натрия (сода)

Способы получения солей.

1. Соли можно получить, действуя кислотами на металлы, основные оксиды и основания:

Zn + 2HCl ZnCl 2 + H 2

хлорид цинка

3H 2 SO 4 + Fe 2 O 3 Fe 2 (SO 4) 3 + 3H 2 O

сульфат железа (III)

3HNO 3 + Cr(OH) 3 Cr(NO 3) 3 + 3H 2 O

нитрат хрома (III)

2. Соли образуются при реакции кислотных оксидов со щелочами, а также кислотных оксидов с основными оксидами:

N 2 O 5 + Ca(OH) 2 Ca(NO 3) 2 + H 2 O

нитрат кальция

SiO 2 + CaO CaSiO 3

силикат кальция

3. Соли можно получить при взаимодействии солей с кислотами, щелочами, металлами, нелетучими кислотными оксидами и другими солями. Такие реакции протекают при условии выделения газа, выпадения осадка, выделения оксида более слабой кислоты или выделения летучего оксида.

Ca 3 (PO4) 2 + 3H 2 SO 4 3CaSO 4 + 2H 3 PO 4

ортофосфат кальция сульфат кальция

Fe 2 (SO 4) 3 + 6NaOH 2Fe(OH) 3 + 3Na 2 SO 4

сульфат железа (III) сульфат натрия

CuSO 4 + Fe FeSO 4 + Cu

сульфат меди (II) сульфат железа (II)

CaCO 3 + SiO 2 CaSiO 3 + CO 2

карбонат кальция силикат кальция

Al 2 (SO 4) 3 + 3BaCl 2 3BaSO 4 + 2AlCl 3



сульфат хлорид сульфат хлорид

алюминия бария бария алюминия

4. Соли бескислородных кислот образуются при взаимодействии металлов с неметаллами:

2Fe + 3Cl 2 2FeCl 3

хлорид железа (III)

Физические свойства.

Соли – твердые вещества различного цвета. Растворимость в воде их различна. Растворимы все соли азотной и уксусной кислот, а также соли натрия и калия. О растворимости в воде других солей можно узнать из таблицы растворимости.

Химические свойства.

1) Соли реагируют с металлами.

Так как эти реакции протекают в водных растворах, то для опытов нельзя применять Li, Na, K, Ca, Ba и другие активные металлы, которые при обычных условиях реагируют с водой, либо проводить реакции в расплаве.

CuSO 4 + Zn ZnSO 4 + Cu

Pb(NO 3) 2 + Zn Zn(NO 3) 2 + Pb

2) Соли реагируют с кислотами. Эти реакции протекают, когда более сильная кислота вытесняет более слабую, при этом выделяется газ или выпадает осадок.

При проведении этих реакций обычно берут сухую соль и действуют концентрированной кислотой.

BaCl 2 + H 2 SO 4 BaSO 4 + 2HCl

Na 2 SiO 3 + 2HCl 2NaCl + H 2 SiO 3

3) Соли реагируют со щелочами в водных растворах.

Это способ получения нерастворимых оснований и щелочей.

FeCl 3 (p-p) + 3NaOH(p-p) Fe(OH) 3 + 3NaCl

CuSO 4 (p-p) + 2NaOH (p-p) Na 2 SO 4 + Cu(OH) 2

Na 2 SO 4 + Ba(OH) 2 BaSO 4 + 2NaOH

4) Соли реагируют с солями.

Реакции протекают в растворах и используются для получения практически нерастворимых солей.

AgNO 3 + KBr AgBr + KNO 3

CaCl 2 + Na 2 CO 3 CaCO 3 + 2NaCl

5) Некоторые соли при нагревании разлагаются.

Характерным примером такой реакции является обжиг известняка, основной составной частью которого является карбонат кальция:

CaCO 3 CaO + CO2 карбонат кальция

1. Некоторые соли способны кристаллизироваться с образованием кристаллогидратов.

Сульфат меди (II) CuSO 4 – кристаллическое вещество белого цвета. При его растворении в воде происходит разогревание и образуется раствор голубого цвета. Выделение теплоты и изменение цвета – это признаки химической реакции. При выпаривании раствора выделяется кристаллогидрат CuSO 4 . 5H 2 O (медный купорос) . Образование этого вещества свидетельствует о том, что сульфат меди (II) реагирует с водой:

CuSO 4 + 5H 2 O CuSO 4 . 5H 2 O + Q

белого цвета сине-голубого цвета

Применение солей.

Большинство солей широко используется в промышленности и в быту. Например, хлорид натрия NaCl, или поваренная соль, незаменим в приготовлении пищи. В промышленности хлорид натрия используется для получения гидроксида натрия, соды NaHCO 3 , хлора, натрия. Соли азотной и ортофосфорной кислот в основном являются минеральными удобрениями. Например, нитрат калия KNO 3 – калийная селитра. Она также входит в состав пороха и других пиротехнических смесей. Соли применяются для получения металлов, кислот, в производстве стекла. Многие средства защиты растений от болезней, вредителей, некоторые лекарственные вещества также относятся к классу солей. Перманганат калия KMnO 4 часто называют марганцовкой. В качестве строительного материала используются известняки и гипс – CaSO 4 . 2H 2 O, который также применяется в медицине.

Растворы и растворимость.

Как уже указывалось ранее, растворимость является важным свойством солей. Растворимость - способность вещества образовывать с другим веществом однородную, устойчивую систему переменного состава, состоящую из двух или большего числа компонентов.

Растворы – это однородные системы, состоящие из молекул растворителя и частиц растворенного вещества.

Так, например, раствор поваренной соли состоит из растворителя – воды, растворенного вещества – ионов Na + ,Cl - .

Ионы (от греч. ión - идущий), электрически заряженные частицы, образующиеся при потере или присоединении электронов (или других заряженных частиц) атомами или группами атомов. Понятие и термин «ион» ввёл в 1834 М. Фарадей, который, изучая действие электрического тока на водные растворы кислот, щелочей и солей, предположил, что электропроводность таких растворов обусловлена движением ионов. Положительно заряженные ионы, движущиеся в растворе к отрицательному полюсу (катоду), Фарадей назвал катионами, а отрицательно заряженные, движущиеся к положительному полюсу (аноду), - анионами.

По степени растворимости в воде вещества делятся на три группы:

1) Хорошо растворимые;

2) Малорастворимые;

3) Практически нерастворимые.

Многие соли хорошо растворимы в воде. При решении вопроса о растворимости в воде других солей придется пользоваться таблицей растворимости.

Хорошо известно, что одни вещества в растворенном или расплавленном виде проводят электрический ток, другие в тех же условиях ток не проводят.

Вещества, распадающиеся на ионы в растворах или расплавах и поэтому проводящие электрический ток, называют электролитами .

Вещества, которые в тех же условиях на ионы не распадаются и электрический ток не проводят, называются неэлектролитами .

К электролитам относятся кислоты, основания и почти все соли. Сами электролиты электрический ток не проводят. В растворах и расплавах они распадаются на ионы, благодаря чему и протекает ток.

Распад электролитов на ионы при растворении их в воде называется электролитической диссоциацией . Ее содержание сводится к трем следующим положениям:

1) Электролиты при растворении в воде распадаются (диссоциируют) на ионы – положительные и отрицательные.

2) Под действием электрического тока ионы приобретают направленное движение: положительно заряженные ионы движутся к катоду и называются – катионы, а отрицательно заряженные ионы движутся к аноду и называются – анионами.

3) Диссоциация – обратимый процесс: параллельно с распадом молекул на ионы (диссоциацией) протекает процесс соединения ионов (ассоциация).

обратимость

Сильные и слабые электролиты.

Для количественной характеристики способности электролита распадаться на ионы введено понятие степени диссоциации (α), т. Е. Отношения числа молекул, распавшихся на ионы, кобщему числу молекул. Например, α = 1 говорит о том, что электролит полностью распался на ионы, а α = 0,2 означает, что продиссоциировала лишь каждая пятая из его молекул. При разбавлении концентрированного раствора, а также при нагревании его электропроводность повышается, так как возрастает степень диссоциации.

В зависимости от величины α электролиты условно делятся на сильные (диссоциируют практически нацело, (α 0,95) средней силы (0,95

Сильными электролитами являются многие минеральные кислоты (HCl, HBr, HI, H 2 SO 4 , HNO 3 и др.), щелочи (NaOH, KOH, Ca(OH) 2 и др.), почти все соли. К слабым принадлежат растворы некоторых минеральных кислот (H 2 S, H 2 SO 3 , H 2 CO 3 , HCN, HClO), многие органические кислоты (например, уксусная CH 3 COOH), водный раствор аммиака (NH 3 . 2 O), вода, некоторые соли ртути (HgCl 2). К электролитам средней силы часто относят плавиковую HF, ортофосфорную H 3 PO 4 и азотистую HNO 2 кислоты.

Гидролиз солей.

Термин « гидролиз » произошел от греческих слов hidor (вода) и lysis (разложение). Под гидролизом обычно понимают обменную реакцию между веществом и водой. Гидролитические процессы чрезвычайно распространены в окружающей нас природе (как живой, так и неживой), а также широко используются человеком в современных производственных и бытовых технологиях.

Гидролизом соли называется реакция взаимодействия ионов, входящих в состав соли, с водой, которая приводит к образованию слабого электролита и сопровождается изменением среды раствора.

Гидролизу подвергаются три типа солей:

а) соли, образованные слабым основанием и сильной кислотой (CuCl 2 , NH 4 Cl, Fe 2 (SO 4) 3 - протекает гидролиз по катиону)

NH 4 + + H 2 O NH 3 + H 3 O +

NH 4 Cl + H 2 O NH 3 . H 2 O + HCl

Реакция среды – кислая.

б) соли, образованные сильным основанием и слабой кислотой (К 2 CO 3 , Na 2 S - протекает гидролиз по аниону)

SiO 3 2- + 2H 2 O H 2 SiO 3 + 2OH -

K 2 SiO 3 +2H 2 O H 2 SiO 3 +2KOH

Реакция среды – щелочная.

в) соли, образованные слабым основанием и слабой кислотой (NH 4) 2 CO 3 , Fe 2 (CO 3) 3 – протекает гидролиз по катиону и по аниону.

2NH 4 + + CO 3 2- + 2H 2 O 2NH 3 . H 2 O + H 2 CO 3

(NH 4) 2 CO 3 + H 2 O 2NH 3 . H 2 O + H 2 CO 3

Часто реакция среды – нейтральная.

г) соли образованные сильным основанием и сильной кислотой (NaCl, Ba(NO 3) 2) гидролизу не подвержены.

В ряде случаев гидролиз протекает необратимо (как говорят, идет до конца). Так при смешении растворов карбоната натрия и сульфата меди выпадает голубой осадок гидратированной основной соли, которая при нагревании теряет часть кристаллизационной воды и приобретает зеленый цвет – превращается в безводный основный карбонат меди – малахит:

2CuSO 4 + 2Na 2 CO 3 + H 2 O (CuOH) 2 CO 3 + 2Na 2 SO 4 + CO 2

При смешении растворов сульфида натрия и хлорида алюминия гидролиз также идет до конца:

2AlCl 3 + 3Na 2 S + 6H 2 O 2Al(OH) 3 + 3H 2 S + 6NaCl

Поэтому Al 2 S 3 нельзя выделить из водного раствора. Эту соль получают из простых веществ.

Таких электролитов близка к 1.

К сильным электролитам относятся многие неорганические соли , некоторые неорганические кислоты и основания в водных растворах, а также в растворителях, обладающих высокой диссоциирующей способностью (спирты , амиды и др.).


Wikimedia Foundation . 2010 .

Смотреть что такое "Сильные электролиты" в других словарях:

    сильные электролиты - – электролиты, которые в водных растворах практически полностью диссоциированы. Общая химия: учебник / А. В. Жолнин … Химические термины

    Вещества, обладающие ионной проводимостью; их называют проводниками второго рода прохождение тока через них сопровождается переносом вещества. К электролитам относятся расплавы солей, оксидов или гидроксидов, а также (что встречается значительно… … Энциклопедия Кольера

    Электролиты - жидкие или твердые вещества, в которых в результате электролитической диссоциации образуются в сколько нибудь заметной концентрации ионы, обусловливающие прохождение постоянного электрического тока. Электролиты в растворах… … Энциклопедический словарь по металлургии

    Электролит химический термин, обозначающий вещество, расплав или раствор которого проводит электрический ток вследствие диссоциации на ионы. Примерами электролитов могут служить кислоты, соли и основания. Электролиты проводники второго рода,… … Википедия

    В широком смысле жидкие или твёрдые в ва и системы, в к рых присутствуют в заметной концентрации ионы, обусловливающие прохождение по ним электрич. тока (ионную проводимость); в узком смысле в ва, распадающиеся в р ре на ионы. При растворении Э.… … Физическая энциклопедия

    В ва, в к рых в заметной концентрации присутствуют ионы, обусловливающие прохождение электрич. тока (ионную проводимость). Э. также наз. проводниками второго рода. В узком смысле слова Э. в ва, молекулы к рых в р ре вследствие электролитической… … Химическая энциклопедия

    - (от Электро... и греч. lytos разлагаемый, растворимый) жидкие или твёрдые вещества и системы, в которых присутствуют в сколько нибудь заметной концентрации ионы, обусловливающие прохождение электрического тока. В узком смысле Э.… … Большая советская энциклопедия

    У этого термина существуют и другие значения, см. Диссоциация. Электролитическая диссоциация процесс распада электролита на ионы при его растворении или плавлении. Содержание 1 Диссоциация в растворах 2 … Википедия

    Электролит вещество, расплав или раствор которого проводит электрический ток вследствие диссоциации на ионы, однако само вещество электрический ток не проводит. Примерами электролитов могут служить растворы кислот, солей и оснований.… … Википедия

    ДИССОЦИАЦИЯ ЭЛЕКТРОЛИТИЧЕСКАЯ - ДИССОЦИАЦИЯ ЭЛЕКТРОЛИТИЧЕСКАЯ, распад находящихся в растворе электролитов на электрически заряженные ионы. Коеф. вант Гоффа. Вант Гофф (van t Ной) показал,что осмотическое давление раствора равно давлению, к рое производило бы растворенное… … Большая медицинская энциклопедия

Книги

  • Явление возврата Ферми-Паста-Улама и его некоторые приложения. Исследование возврата Ферми-Паста-Улама в различных нелинейных средах и разработка генераторов спектра ФПУ для медицины , Березин Андрей. Эта книга будет изготовлена в соответствии с Вашим заказом по технологии Print-on-Demand. Основные результаты работы заключаются в следующем. В рамках системы связанных уравнений Кортевега…

Теорию электролитической диссоциации предложил шведский ученый С. Аррениус в 1887 году.

Электролитическая диссоциация - это распад молекул электролита с образованием в растворе положительно заряженных (катионов) и отрицательно заряженных (анионов) ионов.

Например, уксусная кислота диссоциирует так в водном растворе:

CH 3 COOH⇄H + +CH 3 COO - .

Диссоциация относиться к обратимым процессам. Но различные электролиты диссоциируют по-разному. Степень зависит от природы электролита, его концентрации, природы растворителя, внешних условий (температуры, давления).

Степень диссоциации α - отношение числа молекул, распавшихся на ионы, к общему числу молекул:

α=v´(x)/v(x).

Степень может варьироваться от 0 до 1 (от отсутствия диссоциации до ее полного завершения). Обозначается в процентах. Определяется экспериментальным путем. При диссоциации электролита происходит увеличение числа частиц в растворе. Степень диссоциации показывает силу электролита.

Различают сильные и слабые электролиты .

Сильные электролиты - это те электролиты, степень диссоциации которой превышает 30%.

Электролиты средней силы - это те, степень диссоциации которой делит в пределах от 3% до 30%.

Слабые электролиты - степень диссоциации в водном 0,1 М растворе меньше 3%.

Примеры слабых и сильных электролитов.

Сильные электролиты в разбавленных растворах нацело распадаются на ионы, т.е. α = 1. Но эксперименты показывают, что диссоциация не может быть равна 1, она имеет приближенное значение, но не равна 1. Это не истинная диссоциация, а кажущаяся.

Например, пусть у некоторого соединения α = 0,7. Т.е. по теории Аррениуса в растворе «плавает» 30% непродиссоцииовавших молекул. А 70% образовали свободные ионы. А электролстатическая теория дает другое определение этому понятию: если α = 0,7, то все молекулы диссоциированы на ионы, но ионы свободны лишь на 70%, а оставшиеся 30% - связаны электростатическими взаимодействиями.

Кажущаяся степень диссоциации.

Степень диссоциации зависит не только от природы растворителя и растворяемого вещества, но и от концентрации раствора и температуры.

Уравнение диссоциации можно представить в следующем виде:

AK ⇄ A- + K + .

И степень диссоциации можно выразить так:

С увеличением концентрации раствора степень диссоциации электролита падает. Т.е. значения степени для конкретного электролита не является величиной постоянной.

Так как диссоциация - процесс обратимый, то уравнения скоростей реакции можно записать следующим образом:

Если диссоциация равновесна, то скорости равны и в результате получаем константу равновесия (константу диссоциации):

К зависит от природы растворителя и от температуры, но не зависит от концентрации растворов. Из уравнения видно, что чем больше недиссоциированных молекул, тем меньше величина константы диссоциации электролита.

Многоосновные кислоты диссоциируют ступенчато, и каждая ступень имеет свое значение константы диссоциации.

Если диссоциирует многоосновная кислота, то легче всего отщепляется первый протон, а при возрастании заряда аниона, притяжение возрастает, и поэтому протон отщепляется намного труднее. Например,

Константы диссоциации ортофосфорной кислоты на каждой ступени должны сильно различаться:

I - стадия:

II - стадия:

III - стадия:

На первой ступени ортофосфорная кислота - кислота средней силы, а 2ой - слабая, на 3ей - очень слабая.

Примеры констант равновесия для некоторых растворов электролитов.

Рассмотрим пример:

Если в раствор, в котором содержатся ионы серебра внести металлическую медь, то в момент равновесия, концентрация ионов меди должна быть больше, чем концентрация серебра.

Но у константы низкое значение:

AgCl⇄Ag + +Cl - .

Что говорит о том, что к моменту достижения равновесия растворилось очень мало хлорида серебра.

Концентрация металлической меди и серебра введены в константу равновесия.

Ионное произведение воды.

В приведенной таблице есть данные:

Эту константу называют ионным произведением воды , которое зависит только от температуры. Согласно диссоциации на 1 ион Н + приходится один гидроксид-ион. В чистой воде концентрация этих ионов одинакова: [H + ] = [OH - ].

Отсюда, [H + ] = [OH - ] = = 10-7 моль/л.

Если добавить в воду постороннее вещество, например, хлороводородную кислоту, то концентрация ионов водорода возрастет, но ионное произведение воды от концентрации не зависит.

А если добавить щелочь, то повысится концентрация ионов, а количество водорода понизится.

Концентрация и взаимосвязаны: чем больше одна величина, тем меньше другая.

Кислотность раствора (рН).

Кислотность растворов обычно выражается концентрацией ионов Н + . В кислых средах рН <10 -7 моль/л, в нейтральных - рН = 10 -7 моль/л, в щелочных - рН > 10 -7 моль/л.
Кислотность раствора выражают через отрицательный логарифм концентрации ионов водорода, называя ее рН .

рН = - lg [ H + ].

Взаимосвязь между константой и степенью диссоциации.

Рассмотрим пример диссоциации уксусной кислоты:

Найдем константу:

Молярная концентрация С=1/ V , подставим в уравнение и получим:

Эти уравнения являются законом разведения В. Оствальда , согласно которому константа диссоциации электролита не зависит от разведения растовра.

РАСТВОРЫ
ТЕОРИЯ ЭЛЕКТРОЛИТИЧЕСКОЙ ДИССОЦИАЦИИ

ЭЛЕКТРОЛИТИЧЕСКАЯ ДИССОЦИАЦИЯ
ЭЛЕКТРОЛИТЫ И НЕЭЛЕКТРОЛИТЫ

Теория электролитической диссоциации

(С. Аррениус, 1887г.)

1. При растворении в воде (или расплавлении) электролиты распадаются на положительно и отрицательно заряженные ионы (подвергаются электролитической диссоциации).

2. Под действием электрического тока катионы (+) двигаются к катоду (-), а анионы (-) – к аноду (+).

3. Электролитическая диссоциация - процесс обратимый (обратная реакция называется моляризацией).

4. Степень электролитической диссоциации (a ) зависит от природы электролита и растворителя, температуры и концентрации. Она показывает отношение числа молекул, распавшихся на ионы (n ) к общему числу молекул, введенных в раствор (N ).

a = n / N 0< a <1

Механизм электролитической диссоциации ионных веществ

При растворении соединений с ионными связями (например , NaCl ) процесс гидратации начинается с ориентации диполей воды вокруг всех выступов и граней кристаллов соли.

Ориентируясь вокруг ионов кристаллической решетки, молекулы воды образуют с ними либо водородные, либо донорно-акцепторные связи. При этом процессе выделяется большое количество энергии, которая называется энергией гидратации.

Энергия гидратации, величина которой сравнима с энергией кристаллической решетки, идет на разрушение кристаллической решетки. При этом гидратированные ионы слой за слоем переходят в растворитель и, перемешиваясь с его молекулами, образуют раствор.

Механизм электролитической диссоциации полярных веществ

Аналогично диссоциируют и вещества, молекулы которых образованы по типу полярной ковалентной связи (полярные молекулы). Вокруг каждой полярной молекулы вещества (например , HCl ), определенным образом ориентируются диполи воды. В результате взаимодействия с диполями воды полярная молекула еще больше поляризуется и превращается в ионную, далее уже легко образуются свободные гидратированные ионы.

Электролиты и неэлектролиты

Электролитическая диссоциация веществ, идущая с образованием свободных ионов объясняет электрическую проводимость растворов.

Процесс электролитической диссоциации принято записывать в виде схемы, не раскрывая его механизма и опуская растворитель (H 2 O ), хотя он является основным участником.

CaCl 2 « Ca 2+ + 2Cl -

KAl(SO 4) 2 « K + + Al 3+ + 2SO 4 2-

HNO 3 « H + + NO 3 -

Ba(OH) 2 « Ba 2+ + 2OH -

Из электронейтральности молекул вытекает, что суммарный заряд катионов и анионов должен быть равен нулю.

Например , для

Al 2 (SO 4) 3 ––2 (+3) + 3 (-2) = +6 - 6 = 0

KCr(SO 4) 2 ––1 (+1) + 3 (+3) + 2 (-2) = +1 + 3 - 4 = 0

Сильные электролиты

Это вещества, которые при растворении в воде практически полностью распадаются на ионы. Как правило, к сильным электролитам относятся вещества с ионными или сильно полярными связями: все хорошо растворимые соли, сильные кислоты (HCl , HBr , HI , HClO 4 , H 2 SO 4 , HNO 3 ) и сильные основания (LiOH , NaOH , KOH , RbOH , CsOH , Ba (OH ) 2 , Sr (OH ) 2 , Ca (OH ) 2 ).

В растворе сильного электролита растворённое вещество находится в основном в виде ионов (катионов и анионов); недиссоциированные молекулы практически отсутствуют.

Слабые электролиты

Вещества, частично диссоциирующие на ионы. Растворы слабых электролитов наряду с ионами содержат недиссоциированные молекулы. Слабые электролиты не могут дать большой концентрации ионов в растворе.

К слабым электролитам относятся:

1) почти все органические кислоты (CH 3 COOH , C 2 H 5 COOH и др.);

2) некоторые неорганические кислоты (H 2 CO 3 , H 2 S и др.);

3) почти все малорастворимые в воде соли, основания и гидроксид аммония (Ca 3 (PO 4 ) 2 ; Cu (OH ) 2 ; Al (OH ) 3 ; NH 4 OH ) ;

4) вода.

Они плохо (или почти не проводят) электрический ток.

СH 3 COOH « CH 3 COO - + H +

Cu (OH ) 2 « [ CuOH ] + + OH - (первая ступень)

[ CuOH ] + « Cu 2+ + OH - (вторая ступень)

H 2 CO 3 « H + + HCO - (первая ступень)

HCO 3 - « H + + CO 3 2- (вторая ступень)

Неэлектролиты

Вещества, водные растворы и расплавы которых не проводят электрический ток. Они содержат ковалентные неполярные или малополярные связи, которые не распадаются на ионы.

Электрический ток не проводят газы, твердые вещества (неметаллы), органические соединения (сахароза, бензин, спирт).

Степень диссоциации. Константа диссоциации

Концентрация ионов в растворах зависит от того, насколько полно данный электролит диссоциирует на ионы. В растворах сильных электролитов, диссоциацию которых можно считать полной, концентрацию ионов легко определить по концентрации (c ) и составу молекулы электролита (стехиометрическим индексам), например :

Концентрации ионов в растворах слабых электролитов качественно характеризуют степенью и константой диссоциации.

Степень диссоциации (a ) - отношение числа распавшихся на ионы молекул (n ) к общему числу растворенных молекул (N ):

a = n / N

и выражается в долях единицы или в % (a = 0,3 – условная граница деления на сильные и слабые электролиты).

Пример

Определите мольную концентрацию катионов и анионов в 0,01 М растворах KBr , NH 4 OH , Ba (OH ) 2 , H 2 SO 4 и CH 3 COOH .

Степень диссоциации слабых электролитов a = 0,3.

Решение

KBr , Ba (OH ) 2 и H 2 SO 4 - сильные электролиты, диссоциирующие полностью (a = 1).

KBr « K + + Br -

0,01 M

Ba(OH) 2 « Ba 2+ + 2OH -

0,01 M

0,02 M

H 2 SO 4 « 2H + + SO 4

0,02 M

[ SO 4 2- ] = 0,01 M

NH 4 OH и CH 3 COOH – слабые электролиты (a = 0,3)

NH 4 OH + 4 + OH -

0,3 0,01 = 0,003 M

CH 3 COOH « CH 3 COO - + H +

[ H + ] = [ CH 3 COO - ] = 0,3 0,01 = 0,003 M

Степень диссоциации зависит от концентрации раствора слабого электролита. При разбавлении водой степень диссоциации всегда увеличивается, т.к. увеличивается число молекул растворителя (H 2 O ) на одну молекулу растворенного вещества. По принципу Ле Шателье равновесие электролитической диссоциации в этом случае должно сместиться в направлении образования продуктов, т.е. гидратированных ионов.

Степень электролитической диссоциации зависит от температуры раствора. Обычно при увеличении температуры степень диссоциации растет, т.к. активируются связи в молекулах, они становятся более подвижными и легче ионизируются. Концентрацию ионов в растворе слабого электролита можно рассчитать, зная степень диссоциации a и исходную концентрацию вещества c в растворе.

Пример

Определите концентрацию недиссоциированных молекул и ионов в 0,1 М раствора NH 4 OH , если степень диссоциации равна 0,01.

Решение

Концентрации молекул NH 4 OH , которые к моменту равновесия распадутся на ионы, будет равна a c . Концентрация ионов NH 4 - и OH - - будет равна концентрации продиссоциированных молекул и равна a c (в соответствии с уравнением электролитической диссоциации)

NH 4 OH

NH 4 +

OH -

c - a c

A c = 0,01 0,1 = 0,001 моль/л

[ NH 4 OH ] = c - a c = 0,1 – 0,001 = 0,099 моль/л

Константа диссоциации (K D ) - отношение произведения равновесных концентраций ионов в степени соответствующих стехиометрических коэффициентов к концентрации недиссоциированных молекул.

Она является константой равновесия процесса электролитической диссоциации; характеризует способность вещества распадаться на ионы: чем выше K D , тем больше концентрация ионов в растворе.

Диссоциации слабых многоосновных кислот или многокислотных оснований протекают по ступеням, соответственно для каждой ступени существует своя константа диссоциации:

Первая ступень:

H 3 PO 4 « H + + H 2 PO 4 -

K D 1 = () / = 7,1 10 -3

Вторая ступень:

H 2 PO 4 - « H + + HPO 4 2-

K D 2 = () / = 6,2 10 -8

Третья ступень:

HPO 4 2- « H + + PO 4 3-

K D 3 = () / = 5,0 10 -13

K D 1 > K D 2 > K D 3

Пример

Получите уравнение, связывающее степень электролитической диссоциации слабого электролита (a ) с константой диссоциации (закон разбавления Оствальда) для слабой одноосновной кислоты НА .

HA « H + + A +

K D = () /

Если общую концентрацию слабого электролита обозначить c , то равновесные концентрации Н + и A - равны a c , а концентрация недиссоциированных молекул НА - (c - a c ) = c (1 - a )

K D = (a c a c) / c(1 - a ) = a 2 c / (1 - a )

В случае очень слабых электролитов (a £ 0,01 )

K D = c a 2 или a = \ é (K D / c )

Пример

Вычислите степень диссоциации уксусной кислоты и концентрацию ионов H + в 0,1 M растворе, если K D (CH 3 COOH ) = 1,85 10 -5

Решение

Воспользуемся законом разбавления Оствальда

\ é (K D / c ) = \ é((1,85 10 -5) / 0,1 )) = 0,0136 или a = 1,36%

[ H + ] = a c = 0,0136 0,1 моль/л

Произведение растворимости

Определение

Поместим в химический стакан какую-либо труднорастворимую соль, например , AgCl и добавим к осадку дистиллированной воды. При этом ионы Ag + и Cl - , испытывая притяжение со стороны окружающих диполей воды, постепенно отрываются от кристаллов и переходят в раствор. Сталкиваясь в растворе, ионы Ag + и Cl - образуют молекулы AgCl и осаждаются на поверхности кристаллов. Таким образом, в системе происходят два взаимно противоположных процесса, что приводит к динамическому равновесию, когда в единицу времени в раствор переходит столько же ионов Ag + и Cl - , сколько их осаждается. Накопление ионов Ag + и Cl - в растворе прекращается, получается насыщенный раствор . Следовательно, мы будем рассматривать систему, в которой имеется осадок труднорастворимой соли в соприкосновении с насыщенным раствором этой соли. При этом происходят два взаимно противоположных процесса:

1) Переход ионов из осадка в раствор. Скорость этого процесса можно считать постоянной при неизменной температуре: V 1 = K 1 ;

2) Осаждение ионов из раствора. Скорость этого процесса V 2 зависит от концентрации ионов Ag + и Cl - . По закону действия масс:

V 2 = k 2

Так как данная система находится в состоянии равновесия, то

V 1 = V 2

k 2 = k 1

K 2 / k 1 = const (при T = const)

Таким образом, произведение концентраций ионов в насыщенном растворе труднорастворимого электролита при постоянной температуре является постоянной величиной . Эта величина называется произведением растворимости (ПР ).

В приведенном примереПР AgCl = [ Ag + ] [ Cl - ] . В тех случаях, когда электролит содержит два или несколько одинаковых ионов, концентрация этих ионов, при вычислении произведения растворимости должна быть возведена в соответствующую степень.

Например , ПР Ag 2 S = 2 ; ПР PbI 2 = 2

В общем случае выражение произведения растворимости для электролита A m B n

ПР A m B n = [A] m [B] n .

Значения произведения растворимости для разных веществ различны.

Например , ПР CaCO 3 = 4,8 10 -9 ; ПР AgCl = 1,56 10 -10 .

ПР легко вычислить, зная ра c творимость соединения при данной t ° .

Пример 1

Растворимость CaCO 3 равна 0,0069 или 6,9 10 -3 г/л. Найти ПР CaCO 3 .

Решение

Выразим растворимость в молях:

S CaCO 3 = ( 6,9 10 -3 ) / 100,09 = 6,9 10 -5 моль/л

M CaCO 3

Так как каждая молекула CaCO 3 дает при растворении по одному иону Ca 2+ и CO 3 2- , то
[ Ca 2+ ] = [ CO 3 2- ] = 6,9 10 -5 моль/л ,
следовательно,
ПР CaCO 3 = [ Ca 2+ ] [ CO 3 2- ] = 6,9 10 –5 6,9 10 -5 = 4,8 10 -9

Зная величину ПР , можно в свою очередь вычислить растворимость вещества в моль/л или г/л.

Пример 2

Произведение растворимости ПР PbSO 4 = 2,2 10 -8 г/л.

Чему равна растворимость PbSO 4 ?

Решение

Обозначим растворимость PbSO 4 через X моль/л. Перейдя в раствор, X молей PbSO 4 дадут X ионов Pb 2+ и X ионов SO 4 2- , т.е.:

= = X

ПР PbSO 4 = = = X X = X 2

X = \ é(ПР PbSO 4 ) = \ é(2,2 10 -8 ) = 1,5 10 -4 моль/л.

Чтобы перейти к растворимости, выраженной в г/л, найденную величину умножим на молекулярную массу, после чего получим:

1,5 10 -4 303,2 = 4,5 10 -2 г/л .

Образование осадков

Если

[ Ag + ] [ Cl - ] < ПР AgCl - ненасыщенный раствор

[ Ag + ] [ Cl - ] = ПР AgCl - насыщенный раствор

[ Ag + ] [ Cl - ] > ПР AgCl - перенасыщенный раствор

Осадок образуется в том случае, когда произведение концентраций ионов малорастворимого электролита превысит величину его произведения растворимости при данной температуре. Когда ионное произведение станет равным величине ПР , выпадение осадка прекращается. Зная объем и концентрацию смешиваемых растворов, можно рассчитать, будет ли выпадать осадок образующейся соли.

Пример 3

Выпадает ли осадок при смешении равных объемов 0,2 M растворов Pb (NO 3 ) 2 и NaCl .
ПР
PbCl 2 = 2,4 10 -4 .

Решение

При смешении объем раствора возрастает вдвое и концетрация каждого из веществ уменьшится вдвое, т.е. станет 0,1 M или 1,0 10 -1 моль/л. Таковы же будут концентрации Pb 2+ и Cl - . Следовательно, [ Pb 2+ ] [ Cl - ] 2 = 1 10 -1 (1 10 -1 ) 2 = 1 10 -3 . Полученная величина превышает ПР PbCl 2 (2,4 10 -4 ) . Поэтому часть соли PbCl 2 выпадает в осадок. Из всего сказанного выше можно сделать вывод о влиянии различных факторов на образование осадков.

Влияние концентрации растворов

Труднорастворимый электролит с достаточно большой величиной ПР нельзя осадить из разбавленных растворов. Например , осадок PbCl 2 не будет выпадать при смешении равных объемов 0,1 M растворов Pb (NO 3 ) 2 и NaCl . При смешивании равных объемов концентрации каждого из веществ станут 0,1 / 2 = 0,05 M или 5 10 -2 моль/л . Ионное произведение [ Pb 2+ ] [ Cl 1- ] 2 = 5 10 -2 (5 10 -2 ) 2 = 12,5 10 -5 . Полученная величина меньше ПР PbCl 2 , следовательно выпадения осадка не произойдет.

Влияние количества осадителя

Для возможно более полного осаждения употребляют избыток осадителя.

Например , осаждаем соль BaCO 3 : BaCl 2 + Na 2 CO 3 ® BaCO 3 ¯ + 2 NaCl . После прибавления эквивалентного количества Na 2 CO 3 в растворе остаются ионы Ba 2+ , концентрация которых обусловлена величиной ПР .

Повышение концентрации ионов CO 3 2- , вызванное прибавлением избытка осадителя (Na 2 CO 3 ) , повлечет за собой соответственное уменьшение концентрации ионов Ba 2+ в растворе, т.е. увеличит полноту осаждения этого иона.

Влияние одноименного иона

Растворимость труднорастворимых электролитов понижается в присутствии других сильных электролитов, имеющих одноименные ионы. Если к ненасыщенному раствору BaSO 4 понемногу прибавлять раствор Na 2 SO 4 , то ионное произведение, которое было сначала меньше ПР BaSO 4 (1,1 10 -10 ) , постепенно достигнет ПР и превысит его. Начнется выпадение осадка.

Влияние температуры

ПР является постоянной величиной при постоянной температуре. С увеличением температуры ПР возрастает, поэтому осаждение лучше проводить из охлажденных растворов.

Растворение осадков

Правило произведения растворимости важно для переведения труднорастворимых осадков в раствор. Предположим, что надо растворить осадок Ba С O 3 . Раствор, соприкасающийся с этим осадком, насыщен относительно Ba С O 3 .
Это означает, что
[ Ba 2+ ] [ CO 3 2- ] = ПР BaCO 3 .

Если добавить в раствор кислоту, то ионы H + свяжут имеющиеся в растворе ионы CO 3 2- в молекулы непрочной угольной кислоты:

2H + + CO 3 2- ® H 2 CO 3 ® H 2 O + CO 2 ­

Вследствие этого резко снизится концентрация иона CO 3 2- , ионное произведение станет меньше величины ПР BaCO 3 . Раствор окажется ненасыщенным относительно Ba С O 3 и часть осадка Ba С O 3 перейдет в раствор. При добавлении достаточного количества кислоты можно весь осадок перевести в раствор. Следовательно, растворение осадка начинается тогда, когда по какой-либо причине ионное произведение малорастворимого электролита становится меньше величины ПР . Для того, чтобы растворить осадок, в раствор вводят такой электролит, ионы которого могут образовывать малодиссоциированное соединение с одним из ионов труднорастворимого электролита. Этим объясняется растворение труднорастворимых гидроксидов в кислотах

Fe(OH) 3 + 3HCl ® FeCl 3 + 3H 2 O

Ионы OH - связываются в малодиссоциированные молекулы H 2 O .

Таблица. Произведение растворимости (ПР) и растворимость при 25 AgCl

1,25 10 -5

1,56 10 -10

AgI

1,23 10 -8

1,5 10 -16

Ag 2 CrO 4

1,0 10 -4

4,05 10 -12

BaSO 4

7,94 10 -7

6,3 10 -13

CaCO 3

6,9 10 -5

4,8 10 -9

PbCl 2

1,02 10 -2

1,7 10 -5

PbSO 4

1,5 10 -4

2,2 10 -8

Инструкция

Суть данной теории заключается в том, что при расплавлении (растворении в воде) практически все электролиты раскладываются на ионы, которые как положительно, так и отрицательно заряженные (что и называется электролитической диссоциацией). Под воздействием электрического тока отрицательные ( «-») к аноду (+), а положительно заряженные (катионы, «+»), движутся к катоду (-). Электролитическая диссоциация – это обратимый процесс (обратный процесс носит название «моляризация»).

Степень (a) электролитической диссоциации находится в зависимости от самого электролита, растворителя, и от их концентрации. Это отношение числа молекул (n) , которые распались на ионы к общему числу введенных в раствор молекул (N). Получаете: a = n / N

Таким образом, сильные электролиты - вещества, полностью распадающиеся на ионы при растворении в воде. К сильным электролитам, как правило, вещества с сильнополярными или связями: это соли, которые хорошо растворимы, (HCl, HI, HBr, HClO4, HNO3, H2SO4), а также сильные основания (KOH, NaOH, RbOH, Ba(OH)2, CsOH, Sr(OH)2, LiOH, Ca(OH)2). В сильном электролите вещество, растворенное в нем, находится по большей части в виде ионов ( ); молекул, которые недиссоциированные - практически нет.

Слабые электролиты - такие вещества, которые диссоциируют на ионы лишь частично. Слабые электролиты вместе с ионами в растворе содержат молекулы недиссоциированные. Слабые электролиты не дают в растворе сильной концентрации ионов.

К слабым относятся:
- органические кислоты (почти все) (C2H5COOH, CH3COOH и пр.);
- некоторые из кислот (H2S, H2CO3 и пр.);
- практически все соли, малорастворимые в воде, гидроксид аммония, а также все основания (Ca3(PO4)2; Cu(OH)2; Al(OH)3; NH4OH);
- вода.

Они практически не проводят электрический ток, или проводят, но плохо.

Обратите внимание

Хотя чистая вода проводит электрический ток очень плохо, она все-таки имеет измеримую электрическую проводимость, объясняемую тем, что вода немного диссоциирует на гидроксид-ионы и ионы водорода.

Полезный совет

Большинство электролитов – вещества агрессивные, поэтому при работе с ними будьте предельно осторожны и соблюдайте правила техники безопасности.

Сильное основание - неорганическое химическое соединение, образованное гидроксильной группой -ОН и щелочным (элементы I группы периодической системы: Li, K, Na, RB, Cs) или щелочноземельным металлом (элементы II группы Ba, Ca). Записываются в виде формул LiOH, KOH, NaOH, RbOH, CsOH, Са(ОН) ₂, Ва(ОН) ₂.

Вам понадобится

  • выпарительная чашка
  • горелка
  • индикаторы
  • металлический стержень
  • Н₃РО₄

Инструкция

Сильные основания проявляют , характерные для всех . Наличие в растворе определяется по изменению окраски индикатора. К пробе с исследуемым раствором добавьте , фенолфталеин или опустите лакмусовую бумажку. Метилоранж дает желтую окраску, фенолфталеин – пурпурную, а лакмусовая бумага окрашивается в синий цвет. Чем сильнее основание, тем интенсивнее окрашивается индикатор.

Если необходимо узнать какие именно щелочи вам представлены, то проведите качественный анализ растворов. Наиболее распространенные сильные основания – лития, калия, натрия, бария и кальция. Основания вступают в реакцию с кислотами (реакции нейтрализации) с образованием соли и воды. При этом можно выделить Са(ОН) ₂, Ва(ОН) ₂ и LiOH. При с кислотой образуются нерастворимые . Остальные гидроксиды осадков не дадут, т.к. все соли К и Na растворимы.
3 Са(ОН) ₂ + 2 Н₃РО₄ --→ Ca₃(PO₄)₂↓+ 6 H₂О

3 Ва(ОН) ₂ +2 Н₃РО₄ --→ Ва₃(PO₄)₂↓+ 6 H₂О

3 LiOH + Н₃РО₄ --→ Li₃РО₄↓ + 3 H₂О
Процедите их и высушите. Внесите высушенные осадки в пламя горелки. По изменению окраски пламени можно качественно определить ионы лития, кальция и бария. Соответственно вы определите где какой гидроксид. Соли лития окрашивают пламя горелки в карминово-красный цвет. Соли бария – в зеленый, а соли кальция – в малиновый.

Оставшиеся щелочи образуют растворимые ортофосфаты.

3 NaOH + Н₃РО₄--→ Na₃РО₄ + 3 H₂О

3 KOH + Н₃РО₄--→ K₃РО₄ + 3 H₂О

Необходимо выпарить воду до сухого остатка. Выпаренные соли на металлическом стержне поочередно внесите в пламя горелки. Там, соль натрия – пламя окрасится в ярко-желтый цвет, а калия – в розово-фиолетовый. Таким образом имея минимальный набор оборудования и реактивов вы определили все данные вам сильные основания.

Электролит – вещество, которое в твердом состоянии является диэлектриком, то есть не проводит электрического тока, однако, в растворенном или расплавленном виде становится проводником. Почему происходит такая резкая смена свойств? Дело в том, что молекулы электролита в растворах или расплавах диссоциируют на положительно заряженные и отрицательно заряженные ионы, благодаря чему эти вещества в таком агрегатном состоянии способны проводить электрический ток. Электролитическими свойствами обладает большинство солей, кислот, оснований.

Инструкция

Какие вещества относятся к сильным ? Такие вещества, в растворах или расплавах которых подвергаются практически 100% молекул, причем вне зависимости от концентрации раствора. В перечень входит абсолютное большинство растворимых щелочей, солей и некоторые кислоты, такие как соляная, бромистая, йодистая, азотная и т.д.

А как ведут себя в растворах или расплавах слабые электролиты ? Во-первых, они диссоциируют в очень малой степени (не больше 3% от общего количества молекул), во-вторых, их идет тем хуже и медленнее, чем выше концентрация раствора. К таким электролитам относятся, например, (гидроксид аммония), большинство органических и неорганических кислот (включая плавиковую – HF) и, разумеется, всем нам знакомая вода. Поскольку лишь ничтожно малая доля ее молекул распадается на водород-ионы и гидроксил-ионы.

Запомните, что степень диссоциации и, соответственно, сила электролита находятся в зависимости факторов: природы самого электролита, растворителя, температуры. Поэтому само это разделение в известной степени условно. Ведь одно и то же вещество может при различных условиях быть и сильным электролитом, и слабым. Для оценки силы электролита была введена специальная величина – константа диссоциации, определяемая на основе закона действующих масс. Но она применима лишь по отношению к слабым электролитам; сильные электролиты закону действующих масс не подчиняются.

Источники:

  • сильные электролиты список

Соли – это химические вещества, состоящие из катиона, то есть положительно заряженного иона, металла и отрицательно заряженного аниона – кислотного остатка. Типов солей много: нормальные, кислые, основные, двойные, смешанные, гидратные, комплексные. Это зависит от составов катиона и аниона. Как можно определить основание соли?



Последние материалы раздела:

Развитие критического мышления: технологии и методики
Развитие критического мышления: технологии и методики

Критическое мышление – это система суждений, способствующая анализу информации, ее собственной интерпретации, а также обоснованности...

Онлайн обучение профессии Программист 1С
Онлайн обучение профессии Программист 1С

В современном мире цифровых технологий профессия программиста остается одной из самых востребованных и перспективных. Особенно высок спрос на...

Пробный ЕГЭ по русскому языку
Пробный ЕГЭ по русскому языку

Здравствуйте! Уточните, пожалуйста, как верно оформлять подобные предложения с оборотом «Как пишет...» (двоеточие/запятая, кавычки/без,...