Как формулируется закон постоянства состава. Закон постоянства состава вещества

Закон постоянства состава появился в результате длительного спора (1801–1808 гг.) французских химиков Ж. Л. Пруста, считавшего, что отношения между элементами, образующими соединения, должны быть постоянными, и К. Л. Бертолле, который считал, что состав химических соединений является переменным. С помощью тщательных анализов в 1799–1806 гг. Пруст установил, что отношение количеств элементов в составе соединения всегда постоянно. Он доказал, что Бертолле сделал свои выводы о различном составе одних и тех же веществ, анализируя смеси, а не индивидуальные вещества.

В 1806 г. Пруст писал: «Соединение есть привилегированный продукт, которому природа дала постоянный состав. Природа, даже через посредство людей, никогда не производит соединения иначе, как с весами в руках – по весу и мере. От одного полюса к другому соединения имеют тождественный состав. Их внешний вид может различаться в зависимости от способа их сложения, но их свойства никогда не бывают различными. Никакой разницы мы не видим между окисью железа южного полушария и северного; японская киноварь имеет тот же состав, как испанская киноварь; хлористое серебро совершенно тождественно, происходит ли оно из Перу или из Сибири; во всем свете имеется только один хлористый натрий, одна селитра, одна сернокальциевая соль, одна сернобариевая соль. Анализ подтверждает эти факты на каждом шагу». (указать источник)

Закон постоянства состава (постоянных отношений) в итоге был признан большинством химиков, и дискуссия завершилась блестящей победой Пруста.

Согласно этому закону,

каждое химически чистое вещество (соединение) независимо от способа его получения и местонахождения обладает определенным элементным составом.

Под химически чистым веществом подразумевается вещество, в котором химическим путем нельзя обнаружить примеси.

По современным представлениям, закон постоянства состава имеет границы применения.

1. Постоянен лишь атомный состав вещества, т. е. отношение числа атомов элементов (массовый состав – отношение масс элементов – не является постоянным). Это объясняется существованием изотопов (от греч. ισος– равный, одинаковый и τόπος– место) – ядер атомов, содержащих одинаковое число протонов, но разное число нейтронов, и поэтому имеющих разную атомную массу.

Пример 2.2. Рассмотрим молекулы воды, содержащие разные изотопы водорода:

– Н 2 О (молекула содержит изотоп протий с атомной массой 1 – ); массовый состав:m(H) : m(O) = 1: 8;

– D 2 О (молекула содержит изотоп дейтерий с атомной массой 2 – ); массовый состав:m(H) : m(O) = 1: 4;

– Т 2 О (молекула содержит изотоп тритий с атомной массой 3 – ); массовый состав:m(H) : m(O) = 3: 8.

Таким образом, массовый состав молекул разный, тогда как атомный состав один и тот же – n(Н) : n(О) = 2: 1.

2. Закону постоянства состава подчиняются лишь вещества с молекулярной структурой.

Рассмотрим несколько примеров веществ.

Жидкие и твердые растворы. Очевидно, растворы являются химическими соединениями, т. к. свойства раствора не складываются из свойств его компонентов. Причем свойства раствора зависят от относительных количеств взятых веществ. Таким образом, закон постоянства состава не применим к жидким и твердым растворам.

Твердые вещества с атомными кристаллическими решетками – неметаллическими (например, карбид кремния SiC) и металлическими (например, танталдиванадий V 2 Ta).

Пусть мы имеем 10 –7 моль подобного вещества в виде очень маленького монокристалла. Значит ли это, что в таком кристалле SiC (масса его всего 4 мкг) находится точно по 10 –7 моль атомов кремния и углерода? Или в кристаллеV 2 Ta на 210 –7 моль атомов ванадия приходится точно 110 –7 моль атомов тантала? Чтобы ответить на этот вопрос, вспомним, что 10 –7 моль – это около 6·10 16 атомов! Очевидно, что в зависимости от условий получения подобных веществ, они будут содержать избыток того или другого элемента. Это отклонение от стехиометрии может быть существенным, как в случае соединения V 2 Ta, в котором содержание тантала может меняться от 31 до 37 ат.% Ta (стехиометрический состав 33 1/3 ат.% Ta). Отклонение может быть так мало, что не устанавливается современными средствами измерений и практически не сказывается на свойствах, с ним надо считаться только в теоретическом плане, как в случае SiC.

Ионные кристаллы (например, хлорид натрия NaCl, сульфид железа (II) FeS, оксиды железа). Очевидно, все вышесказанное относится и к таким веществам – в зависимости от условий получения для них также наблюдаются отклонения от стехиометрии. Например, кристалл хлорида натрия, нагретый в парах металлического натрия, поглощает последний так, что ν(Na +)/ν(Cl –) становится больше 1, при этом кристалл синеет и становится электронным полупроводником; его плотность уменьшается.

Область составов, в которой существует данное химическое соединение, называется областью его гомогенности.

Так, область гомогенности (от греч. ὁμός – равный, одинаковый; γένω – рождать; homogenes – однородный) Va 2 Ta составляет 31–37 ат.% Ta, NaCl – 50,00–50,05 ат.% Na и т. д. В этих случаях стехиометрический состав находится внутри области гомогенности; такие соединения называются стехиометрическими (или дальтонидами в честь Дж. Дальтона, или двусторонними фазами).

Существуют и соединения, стехиометрический состав которых находится вне области гомогенности, иными словами, при стехиометрическом составе они не существуют. Такие соединения называются нестехиометрическими (или бертоллидами в честь К. Л. Бертолле, или односторонними фазами). Примерами бертоллидов могут служить оксид железа (II) – вюстит (область гомогенности его составляет 43–48 ат.% Fe, что отвечает формуле Fe (0,84–0,96) О или FeO (1,02–1,19)); сульфид железа (II) FeS (область гомогенности его 47,5–49,85 ат.% Fe, что отвечает формуле FeS (1,003–1,05)).

Задание для самостоятельной работы. Заполните таблицу, используя дополнительную литературу:

Соединение

Тип кристаллической решетки

Стехиометрический состав

Область гомогенности

Тип соединения

металлическая

33 1/3 ат.% Та

31–37 ат.% Та

стехиометрическое

Итак, кристаллические вещества атомного и ионного строения не подчиняются закону постоянства состава. Нестехиометрический состав таких соединений обеспечивается образованием дефектов кристаллической структуры.

Вещества, построенные из молекул .

В качестве примера возьмем воду. Вода различных источников имеет разные свойства (например, плотность, табл. 1.1), т. к. имеет разный изотопный состав, в основном изменяется содержание протия и дейтерия. Присутствие тяжелой воды D 2 O можно считать примесью к обычной воде и предположить, что в отсутствие этой примеси свойства воды станут независимыми от способа и источника получения. Вещество вода, как и любое другое вещество, в силу содержания примесей, имеет переменный состав и в этом смысле не подчиняется закону постоянства состава.

Уже к началу XIX в. накопилось много данных о составе отдельных веществ и их изменениях. Развитие техники количественных измерений и методов химического анализа позволило определять соотношения элементов в соединениях. Французский химик Ж. Пруст (1754–1826) после тщательнейших экспериментов с рядом веществ установил закон постоянства состава – один из основных законов химии.

Согласно закону постоянства состава, всякое чистое вещество, независимо от способов его получения и нахождения в природе, имеет постоянный качественный и количественный состав .

Это означает, что все соединения содержат элементы в строго определенных весовых пропорциях, независимо от способа получения, Так, например, сернистый газ, полученный сжиганием серы, или действием кислот на сульфиты, или любым другим способом, всегда содержит одну весовую часть серы и одну весовую часть кислорода.

Закон постоянства состава веществ был установлен в результате семилетнего спора между Прустом и его оппонентом, французским химиком К. Бертолле (1748–1822), утверждавшим, что состав соединений зависит от способа их получения.

Бертолле в результате анализа растворов, которые он считал химическими соединениями, сделал общий вывод о существовании химических соединений переменного состава. Получалось, что два элемента могут образовать непрерывный ряд соединений с изменяющимися свойствами и составом.

Пруст утверждал, что состав чистого вещества всегда один и тот же, любое химическое вещество имеет всегда одни и те же свойства, одинаковую температуру плавления, кипения, удельный вес. Пруст заявлял, что природа даже через посредство людей никогда не производит соединений иначе, как только по весу и мере. Одни и те же соединения имеют всегда тождественный состав. Внешний их вид может быть различен, но свойства – никогда. Нет разницы между окисью железа из южного полушария и из северного, хлористое серебро из Перу совершенно тождественно хлористому серебру из Сибири; во всем мире имеется только один хлористый натрий, одна селитра и т.д. Проделав в течение 1799–1887 гг. массу анализов, Пруст доказал справедливость своих выводов.

Дальнейшее развитие химии показало, что закон постоянства состава характеризует соединения с молекулярной структурой, состав же соединений с немолекулярной структурой (атомной, ионной и металлической решеткой) не является постоянным и зависит от условий получения.

В начале XX в. русский химик Курнаков, изучая сплавы металлов, открыл соединения переменного состава. В дальнейшем было выяснено, что соединения переменного состава встречаются также среди оксидов, соединений металлов с серой, азотом, углеродом, водородом а также – среди других неорганических веществ, имеющих кристаллическую структуру. Вещества переменного состава были названы бертоллидами , в отличие от соединений постоянного состава –дальтонидов . Для многих соединений переменного состава установлены пределы, в которых может изменяться их состав. Так, в диоксиде титанаTiO 2 на единицу массы титана может приходиться от0,65 до0,67 единиц массы кислорода, что соответствует формулеТi O 1,9 – 2,0 ( таб.4.1 ).

Таблица 4.1

ДАЛЬТОНИДЫ

(вещества постоянного состава)

примеры соединений

БЕРТОЛЛИДЫ

(вещества переменного состава)

примеры соединений

H 2 O

C Cl 4

CO 2

Ti O 1,9 – 2,0

V O 0,9 –1,3

Таким образом, закон постоянства состава, в отличие от закона сохранения массы вещества, не является столь всеобщим. Однако для своего времени закон постоянства состава имел фундаментальное значение. Он привел к мысли о существовании молекул и подтвердил неделимость атомов. В самом деле, почему в сернистом газе весовое отношение серы и кислорода всегда 1:1 , а не1,1:0,9 или0,95:1.05 ?  Этот результат легко объяснить, если предположить, что атомы серы соединяются с определенным числом атомов кислорода и образуют частицы сернистого газа (эти частицы впоследствии были названы молекулами).

Закон постоянства
состава вещества

Химические формулы

Всякое вещество – от самого простого
до самого сложного – имеет три различные,
но взаимосвязанные стороны:
свойство, состав, строение...

Б.М.Кедров

Цели .
Дидактическая – рассмотреть понятия «химический элемент», «сложное вещество», а также состав сложных веществ, его постоянство, что обозначает химическая формула вещества, назначение коэффициентов и индексов.
Психологическая – вызвать интерес к предмету, выработать умения логически рассуждать, грамотно выражать свои мысли.
Воспитательная – развивать умения работать коллективно, оценивать ответы своих товарищей.

Оборудование . Кристаллическая решетка сульфида железа(II), модели молекул воды, индивидуальные карточки для проверки домашнего задания, таблички-анаграммы для химической разминки, шкала для определения эмоционального состояния ученика.

ХОД УРОКА

Ориентировочно-мотивационный этап

В начале и в конце урока проводится психологическая разминка . Ее цель – определить эмоциональное состояние учащихся. У каждого ученика на внутренней стороне обложки тетради приклеена табличка с шестью лицами – шкала для определения эмоционального состояния (рис. 1). Каждый ученик ставит галочку под той рожицей, чье выражение отражает его настроение.

УЧИТЕЛЬ . Было бы замечательно, если бы к концу урока каждому удалось переместить галочку хотя бы на одну клетку влево. Для этого нужно задуматься над вопросами: может ли человек полюбить неинтересный ему учебный предмет? Что для этого нужно сделать?

Статья опубликована при поддержке мобильного онлайн переводчика «m-translate.ru ». Удобный и быстрый онлайн перевод с десятка языков, тысячи направлений перевода. Не требует установки, перевод слов, предложений и текстов, бесплатно. Чтобы начать пользоваться сервисом онлайн перевода перейдите на сайт: http://www.m-translate.ru/.

Химическая разминка .
УЧЕНИК . Вася и Петя любят составлять и разгадывать слова-анаграммы (обычно фантастические), в которых порядок букв переставлен. Попробуйте разгадать некоторые из химических анаграмм.
Переставив буквы в каждом слове, надо получить название химического элемента.
Леодруг – без этого элемента в печке не будет огня,
сликодор – без этого элемента не проживете и десяти минут,
цинвес – у этого элемента действительно большой удельный вес,
мникрей – этот элемент ищите среди камней,
орребес – блестит, а не золото.

УЧИТЕЛЬ. Если вы легко справились с этим заданием, скажите себе: «Я – умница».
Проверка домашнего задания по теме «Химические знаки». Повторить знаки химических элементов и значения их относительных атомных масс. Обратить внимание на различие массы атома (в атомных единицах массы) и относительной атомной массы (безразмерной величины) на их общий признак – одинаковое численное значение. Затем провести фронтальную самостоятельную работу по индивидуальным карточкам в течение 5–10 мин.
Карточка 1 . Назовите элементы по их химическим знакам: N, S, Ag, Al, O, I.
Карточка 2 . Напишите химические знаки элементов: железо, водород, натрий, бром, цинк, хлор.

Операционно-исполнительный этап

УЧИТЕЛЬ. Сегодня мы познакомимся с одним из основных законов химии – это закон постоянства состава вещества. Мне хочется, чтобы вы за строгой формулировкой закона увидели живого, трудолюбивого и любознательного человека из Франции – Жозефа Луи Пруста. Он в течение семи лет исследовал множество веществ, чтобы доказать утверждение, которое в современной формулировке умещается в три строчки. Об этом очень красиво сказал в своих стихах его земляк, малоизвестный у нас французский поэт Арман Сюлли-Прюдом, лауреат Нобелевской премии, современник Д.И.Менделеева.
УЧЕНИЦА
«Взор химика пытлив, ему порядок мил,
Среди своих реторт, мензурок и приборов,
Таких загадочных для любопытных взоров,
Стремится он постичь капризы тайных сил.
Он многое из них уже установил,
Следя за их игрой, участник их раздоров,
И скоро он велит, властитель этих споров,
Признать и чтить закон, который он открыл.
Завидую тебе, взыскательный ученый,
Чьи зоркие глаза мир видят обнаженный,
Как в день творения, исток всех прочих дней.
Веди ж меня в загадочное царство!
Я верю: только в нем отыщется лекарство
От всех бесчисленных печалей и скорбей».

УЧИТЕЛЬ. Чтобы получить сульфид железа(II), мы смешивали железо и серу в соотношении 7:4. Если смешать их в другой пропорции, например 10:4, то химическая реакция произойдет, но 3 г железа в реакцию не вступит. Почему наблюдается такая закономерность? Известно, что в сульфиде железа(II) на каждый один атом железа приходится один атом серы (демонстрация кристаллической решетки, рис. 2). Следовательно, для реакции нужно брать вещества в таких массовых соотношениях, чтобы сохранялось соотношение атомов железа и серы (1:1). Поскольку численные значения атомных масс Fe, S и их относительных атомных масс A r (Fe), A r (S) совпадают, можно записать: A r (Fe):A r (S) = 56:32 = 7:4.
Отношение 7:4 сохраняется постоянно, в каких бы единицах массы ни выражать массу веществ
(г, кг, т, а.е.м.). Большинство химических веществ обладает постоянным составом.

Закон постоянства состава веществ был открыт французским ученым Прустом в 1808 г. Вот как этот закон звучал в его изложении: «От одного полюса Земли до другого соединения имеют одинаковый состав и одинаковые свойства. Никакой разницы нет между оксидом железа из Южного полушария и Северного. Малахит из Сибири имеет тот же состав, как и малахит из Испании. Во всем мире есть лишь одна киноварь».
Современная формулировка закона : каждое химически чистое вещество с молекулярным строением независимо от места нахождения и способа получения имеет один и тот же постоянный качественный и количественный состав.

Учащиеся записывают определение в тетрадь. Затем они выполняют самостоятельную работу . Текст заданий заранее написан на доске. Двое учащихся решают задачи на обратной стороне доски, остальные решают в тетрадях. После выполнения работы ученики обмениваются тетрадями, происходит взаимопроверка. Учитель может выборочно проверить некоторые тетради.
Вариант 1 . Для получения сульфида железа(II) взяли 3,5 г железа и 4 г серы. Какое вещество останется неизрасходованным и какова его масса?
Вариант 2 . Чтобы получить сульфид железа(II), взяли 15 г железа и 8 г серы. Какое вещество взято в избытке и какова масса этого избытка?

УЧИТЕЛЬ. А сейчас послушайте выступление о знаменитом споре между французскими учеными Ж.Л.Прустом и К.Л.Бертолле, который длился около 10 лет на страницах французских журналов в начале XIX в.
УЧЕНИК. Да, спор двух французских химиков длился с 1799 по 1809 г., а затем был продолжен химиками Англии, Швеции, Италии, России и других стран. Этот спор можно с полным правом назвать первой научной дискуссией такого масштаба и по времени возникновения, и по стратегической важности обсуждаемых проблем. Эта дискуссия определила пути развития химии на столетия вперед.
В 1799 г. профессор Королевской лаборатории в Мадриде, француз по происхождению, Жозеф Луи Пруст опубликовал статью «Исследования меди». В статье подробно освещены анализы соединений меди и сделан вполне обоснованный вывод, что химически индивидуальное соединение всегда, независимо от способа его образования, обладает постоянным составом. К такому же выводу Пруст пришел и позже, в 1800–1806 гг., исследуя химические соединения свинца, кобальта и других металлов.
В 1800–1803 гг. английский химик Джон Дальтон обосновал этот закон теоретически, установив атомное строение молекул и наличие определенных атомных масс элементов. Чисто теоретически Дальтон пришел к открытию еще одного основного закона химии – закона кратных отношений, находящегося в единстве с законом постоянства состава.
В то же самое время профессор Нормальной школы в Париже Клод Луи Бертолле, уже знаменитый химик, опубликовал ряд статей, в которых отстаивал вывод о том, что состав химических соединений зависит от способа их получения и часто бывает не постоянным, а переменным. Бертолле выступил против законов Пруста и Дальтона, аргументируя это все новыми и новыми опытами по получению сплавов, твердых оксидов металлов. Он воспользовался и данными самого Пруста, указав на то, что в природных сульфидах и оксидах металлов содержится избыток серы и кислорода по сравнению с полученными в лаборатории.
Развитие химии показало, что обе стороны были правы. Точка зрения Пруста и Дальтона для химии 1800-х гг. была понятна, конкретна и почти очевидна. Пруст и Дальтон заложили основы атомно-
молекулярного учения о составе и строении химических соединений. Это была магистральная линия развития химии. Точка зрения Бертолле была практически неприемлема для тогдашней химии, т. к. она отражала химизм процессов, изучение которых началось в основном лишь
с 1880-х гг. И только будущее показало, что и Бертолле был прав!
По предложению академика Н.С.Курнакова вещества постоянного состава были названы дальтонидами (в честь английского химика и физика Дальтона), а вещества переменного состава – бертоллидами (в память о французском химике Бертолле). (Более подробно об этом можно прочитать в работах .)

УЧИТЕЛЬ. Подведем итоги сообщения. Во-первых, известны вещества немолекулярного строения с переменным составом. Во-вторых, закон постоянства состава веществ справедлив для веществ молекулярного строения. В-третьих, существует категория веществ молекулярного строения, для которых закон постоянства состава неверен. Это полимеры, с ними мы познакомимся на уроках химии позднее.
Что же подразумевается под количественным и качественным составами веществ? На основе закона Пруста можно записать химические формулы веществ при помощи химических знаков.
Рассмотрим в качестве примера состав молекулы воды. Она состоит из атомов водорода и кислорода (качественный состав), причем по массе в воде содержится водорода – 11,19%, а кислорода – 88,81% (количественный состав). Есть несколько способов выражения состава воды.
1-й способ . В состав молекулы воды входят два атома водорода и один атом кислорода (используем слова).
2-й способ . Эту же мысль можно выразить рисунком (используем условные обозначения):
3-й способ . Формула воды –
Н 2 О (используем химические знаки и индексы).
Индекс показывает количество атомов данного элемента в молекуле.
Итак, состав дальтонидов выражается простыми формулами с целочисленными стехиометрическими индексами, например
Н 2 О, НСl, СН 4 . Состав бертоллидов непостоянен, у них дробные стехиометрические индексы. Так, оксид титана(II) ТiO в действительности имеет состав от ТiO 0,7 до ТiO 1,3 .
Ответьте мне на вопрос: что показывает коэффициент? (Ответ учащихся: число молекул данного вещества.)
Рассмотрим пример: 3Н 2 О. Какое количество молекул воды отображает эта запись? Сколько атомов водорода в одной молекуле воды, в трех молекулах воды? Сколько атомов кислорода в одной молекуле воды, в трех молекулах воды? (Демонстрация моделей молекул воды.) Читаем формулу: «три-аш-два-о».
Демонстрация увеличенного рисунка 15 на с. 24 учебника «Химия-8» , представляющего запись: 3CuCl 2 , 5Al 2 O 3 , 3FeCl 2 .
УЧИТЕЛЬ. Как прочитать формулы указанных веществ? Сколько молекул данного вещества отображает химическая формула? Сколько атомов каждого элемента входит в одну молекулу данного вещества? Сколько атомов каждого элемента в трех (пяти) молекулах данного вещества?
Химическая формула – это условная запись состава вещества посредством химических знаков и индексов.

Ученики записывают определение в тетрадь.

Рефлексивно-оценочный этап

Беседа с учащимися по вопросам.
1. Кем и когда был открыт закон постоянства состава веществ?
2. Дайте определение этого закона.
3. В чем состояла суть спора между химиками Прустом, Дальтоном и Бертолле?
4. Что отображает химическая формула вещества?
5. Что показывают коэффициент и индексы в химической формуле?
6. Есть ли разница в составе веществ, имеющих формулы: СО и СО 2 , Н 2 О и Н 2 О 2 ?
7. Используя химические знаки, индексы и коэффициенты, запишите обозначения
двух молекул воды,
трех молекул оксида азота (если известно, что в молекуле оксида азота на один атом азота приходится два атома кислорода),
трех молекул сероводорода (в его молекуле на два атома водорода приходится один атом серы),
четырех молекул оксида фосфора (в каждой молекуле этого оксида на два атома фосфора приходится пять атомов кислорода).
Ученики делают записи в тетради, один ученик – на обратной стороне доски. Проверка: обмен тетрадями с соседом по парте, сверка по ответу на доске, анализ ошибок.
Задание на дом. Учебник «Химия-8» , § 9, с. 22–23; § 10, с. 24–25. Двум учащимся дается задание подготовить небольшие сообщения по биографии Пруста.
Итоги урока . Объявить оценки за урок отвечавшим ученикам, поблагодарить всех за работу на уроке. Провести оценку эмоционального состояния по шкале (см. рис. 1). Учитель еще раз напоминает вопросы, над которыми необходимо подумать для эффективной работы на уроках.

ЛИТЕРАТУРА

1. Соловейчик С.Л. Час ученичества. М.: Педагогика, 1986.
2. Леенсон И.А. Химические элементы и химические законы. Рабочая тетрадь. М.: Изд-во гимназии «Открытый мир», 1995.
3. Кузнецов В.И., Рахимбекова X. Дискуссии в развитии науки и диалоговая форма обучения. Химия в школе, 1991, № 6.
4. Кузнецов В.И. Эволюция представлений об основных законах химии. М.: Наука, 1967.
5. Рудзитис Г.Е., Фельдман Ф.Г. Химия-8. М.: Просвещение, 1991.

Всякое чистое вещество, независимо от способа его получения, имеет постоянный количественный и качественный состав.

Качественный состав вещества показывает, из атомов каких элементов построены его молекулы. Количественный состав показывает, сколько атомов каждого элемента входит в состав молекулы (формульной единицы) вещества или массовую долю элемента в веществе. Например, молекулы аммиака (NH 3) состоят из атомов химических элементов азота (N) и водорода (Н). Это качественный состав. Причем, одна молекула состоит из трех атомов Н и одного атома N. Это количественный состав. Аммиак мы можем получить многими способами:

1. N 2 + 3H 2 = 2NH 3 ;

2. NH 4 NO 3 + NaOH = NaNO 3 + H 2 O + NH 3 ;

3. NH 4 Cl NH 3 + HCl.

Однако, согласно закону постоянства состава, независимо от способа получения, молекула NH 3 всегда будет состоять из одного атома N и трех атомов Н.

Закон постоянства состава вещества всегда выполняется лишь для веществ молекулярной структуры, т.е. для всех жидкостей, газов и твердых веществ, имеющих молекулярную кристаллическую решетку.

Для твердых веществ, имеющих атомную, ионную или металлическую кристаллическую решетку закон постоянства состава вещества часто не выполняется. Это обусловлено двумя причинами:

1. Наличием в узлах кристаллической решетки чужеродных атомов или ионов в виде примесей.

2. Наличием в кристаллической решетке различных дефектов, например, вакансий или пустот.

Количество таких дефектов, число и вид чужеродных примесных включений в кристаллической решетке вещества в этом случае будет зависеть от способа его получения. А, значит, от способа получения вещества будет зависеть и его состав.

Из закона постоянства состава вытекает важный вывод:

Соотношения между массами элементов, входящих в состав данного соединения, а также соотношения между их химическим количеством постоянны и не зависят от способа получения этого соединения и от его имеющегося количества.

В связи с этим становится возможным определять эмпирические или простейшие формулы веществ на основании значений массовых долей химических элементов, входящих в их состав. Для веществ немолекулярного строения в роли эмпирических формул выступают их формульные единицы.

Закон кратных отношений

Если два элемента образуют между собой несколько молекулярных соединений, то массы одного элемента, приходящиеся на одну и ту же массу другого, относятся между собой как небольшие целые числа.

Пример 1. Найдем эмпирическую формулу вещества, состоящего из атомов натрия, фосфора и кислорода, массовые доли, которых в нем составляют, соответственно: 42,073%; 18,903% и 39,024%.

Дано:

ω,%(Na) = 42,073; ω,%(P) = 18,903; ω,%(O) = 39,024.

Найти: Эмпирическую формулу Na x P y O z - ?

Решение:

Массовые доли элементов (Э), выраженные в %, численно соответствуют массе атомов этих элементов m(Э) в 100 граммах вещества. Следовательно, если у нас имеется 100 г вещества, то массы содержащихся в нём элементов Na, P и О будут соответственно равны 42,073 г; 18,903 г и 39,024 г. Воспользуемся отношением

, где

n(Э) – количество вещества; число моль атомов элемента Э, моль;

m(Э) – масса атомов химического элемента, г;

M(Э) – масса одного моль атомов химического элемента Э, г/моль.

; ;

.

В одном моль вещества число моль атомов каждого элемента (n(Na), n(P), n(O)) будет целым числом, но соотношение между ними будет такое же, как и в 100 граммах вещества. Представим в связи с этим соотношение между n(Na), n(P) и n(O) как соотношение простых целых чисел, наблюдающееся в одном моль вещества.

n(Na) : n(P) : n(O) = 1,8: 0,6: 2,4

Разделим каждый член этого соотношения на 0,6.

n (Na) : n (P) : n (O) = 1,8/0,6: 0,6/ 0,6: 2,4/ 0,6 = 3: 1: 4.

В таком же количественном соотношении атомы Na, Р и О находятся в веществе: x = 3, y = 1, z = 4.

Простейшая его формула Na 3 РО 4 .

Ответ: Эмпирическая формула вещества: Na 3 РО 4 .

Для большинства веществ немолекулярной структуры такие эмпирические формулы совпадают с формульными единицами этих веществ. У веществ молекулярной структуры их истинная, т.е. молекулярная формула не всегда совпадает с установленной таким образом эмпирической формулой. В этом случае для нахождения истиной (молекулярной) формулы вещества необходимо знать его молярную или молекулярную массу.

Пример 2. Найдем молекулярную формулу углеводорода, массовые доли углерода и водорода в котором, соответственно, равны 85,72% и 14,28%, а его относительная молекулярная масса равна 28.

Дано:

ω,%(С) = 85,72; ω,%(Н) = 14,28; М r (углеводорода) = 28.

Найти: Молекулярную формулу углеводорода, С x H y - ?

Решение:

Найдем число моль атомов С и Н, содержащихся в 100 граммах углеводорода.

, .

Представим соотношение между n(С) и n(Н) как соотношение простых целых чисел:

n(C) : n(H) = 7,14: 14,28 = 7,14/7,14: 14,28/7,14 = 1: 2; х = 1, y = 2.

Значит, эмпирическая формула вещества С x H y – СН 2 .

Найдем относительную молекулярную массу СН 2: сложив относительные атомные массы всех атомов, входящих в состав молекулы.

M r (CH 2) = A r (C) + 2·A r (H) = 12 + 1 × 2 = 14.

Определим соотношение между M r (углеводорода) и M r (CH 2):

.

Это значит, что численное значение индексов x и y в молекулярной формуле в 2 раза больше, чем в эмпирической. Таким образом, молекулярная формула вещества равна С 2 Н 4 .

Ответ: Молекулярная формула углеводорода С 2 Н 4 .

Пример 3. При взаимодействии азота с кислородом образуются пять оксидов. На 1 грамм азота в образующихся молекулах приходится 0,57, 1,14, 1,71, 2,28, 2,85 грамма кислорода. Выведите молекулярные формулы образующихся оксидов.

Дано:

1 г (N) : 0, 57 г (О); 1 г (N) : 1,14 г (О); 1 г (N) : 1,71 г (О); 1 г (N): 2,28 г (О); 1 г (N): 2,85 г (О).

Найти: N x O y образующихся оксидов - ?

Решение:

По закону кратных отношений, на 1 г N в оксидах приходится О: 0,57 г, 1,14 г, 1,71 г, 2,28 г, 2,85 г. Эти массы кислорода относятся как простые целые числа:

0,57: 1,14: 1,71: 2,28: 2,85 = .

Для установления формулы, например, для первого оксида берут не массы, а количества веществ. Так в первом оксиде N x O y x: y = n (N) : n (O) = .

Химия относится к разряду точных наук, и наряду с математикой и физикой устанавливает закономерности существования и развития материи, состоящей из атомов и молекул. Все процессы, протекающие как в живых организмах, так и среди объектов неживой природы, имеют в своей основе явления превращения массы и энергии. вещества, изучению которого будет посвящена эта статья, и лежит в основе протекания процессов в неорганическом и органическом мире.

Атомно-молекулярное учение

Чтобы понять суть законов, управляющих материальной действительностью, нужно иметь представление о том, из чего она состоит. По словам великого российского ученого М. В. Ломоносова «Во тьме должны пребывать физики и, особенно, химики, не зная внутреннего частиц строения». Именно он в 1741 году, сначала теоретически, а затем и подтвердив опытами, открыл законы химии, служащие основой для изучения живой и неживой материи, а именно: все вещества состоят из атомов, способных образовывать молекулы. Все эти частицы находятся в непрерывном движении.

Открытия и ошибки Дж. Дальтона

Спустя 50 лет идеи Ломоносова стал развивать английский ученый Дж. Дальтон. Ученый выполнил важнейшие расчеты по определению атомных масс химических элементов. Это послужило главным доказательством таких предположений: массу молекулы и вещества можно вычислить, зная атомный вес частиц, входящих в её состав. Как Ломоносов, так и Дальтон считали, что, независимо от способа получения, молекула соединения всегда будет иметь неизменный количественный и качественный состав. Первоначально именно в таком виде был сформулирован закон постоянства состава вещества. Признавая огромный вклад Дальтона в развитие науки, нельзя умолчать о досадных ошибках: отрицании молекулярного строения простых веществ, таких как кислород, азот, водород. Ученый считал, что молекулы есть только у сложных Учитывая огромный авторитет Дальтона в научных кругах, его заблуждения негативно повлияли на развитие химии.

Как взвешивают атомы и молекулы

Открытие такого химического постулата, как закон постоянства состава вещества, стало возможным благодаря представлению о сохранении массы веществ, вступивших в реакцию и образовавшихся после нее. Кроме Дальтона, измерение атомных масс проводил И. Берцелиус, составивший таблицу атомных весов химических элементов и предложивший современное их обозначение в виде латинских букв. В настоящее время массу атомов и молекул определяют с помощью Результаты, полученные в данных исследованиях, подтверждают существующие законы химии. Ранее ученые использовали такой прибор, как масс-спектрометр, но усложненная методика взвешивания явилась серьёзным недостатком в спектрометрии.

Почему так важен закон сохранения массы веществ

Сформулированный М. В. Ломоносовым выше названный химический постулат доказывает тот факт, что во время реакции атомы, входящие в состав реагентов и продуктов, никуда не исчезают и не появляются из ничего. Их количество сохраняется без изменения до и после Так как масса атомов константна, данный факт логически приводит к закону сохранения массы и энергии. Более того, ученый декларировал эту закономерность, как всеобщий принцип природы, подтверждающий взаимопревращение энергии и постоянство состава вещества.

Идеи Ж. Пруста как подтверждение атомно-молекулярной теории

Обратимся к открытию такого постулата, как закон постоянства состава. Химия конца 18 - начала 19 века - наука, в рамках которой велись научные споры между двумя французскими учеными, Ж. Прустом и К. Бертолле. Первый утверждал, что состав веществ, образовавшихся в результате химической реакции, зависит главным образом от природы реагентов. Бертолле был уверен, что на состав соединений - продуктов реакции влияет еще и относительное количество взаимодействующих между собой веществ. Большинство химиков в начале исследований поддержали идеи Пруста, который сформулировал их следующим образом: состав сложного соединения всегда постоянный и не завит от того, каким способом оно было получено. Однако дальнейшее исследование жидких и твердых растворов (сплавов) подтвердило мысли К. Бертолле. К этим веществам закон постоянства состава был неприменим. Более того, он не действует для соединений с ионными кристаллическими решетками. Состав этих веществ зависит от методов, которыми их добывают.

Каждое химическое вещество, независимо от способа его получения, имеет постоянный качественный и количественный состав. Эта формулировка характеризует закон постоянства состава вещества, предложенный Ж. Прустом в 1808 году. В качестве доказательств он приводит следующие образные примеры: малахит из Сибири имеет такой же состав, как и минерал, добытый в Испании; в мире есть только одно вещество киноварь, и не имеет значения, из какого месторождения она получена. Таким образом Пруст подчеркивал постоянство состава вещества, независимо от места и способа его добычи.

Не бывает правил без исключений

Из закона постоянства состава следует, что при образовании сложного соединения химические элементы соединяются друг с другом в определённых весовых соотношениях. Вскоре в химической науке появились сведения о существовании веществ, имеющих переменный состав, который зависел от способа получения. Русский ученый М. Курнаков предложил назвать эти соединения бертоллидами, например оксид титана, нитрид циркония.

У этих веществ на 1 весовую часть одного элемента приходится различное количество другого элемента. Так, в бинарном соединении висмута с галлием на одну весовую часть галлия приходится от 1,24 до 1,82 части висмута. Позже химики установили, что, кроме соединения металлов друг с другом, вещества, не подчиняющиеся закону постоянства состава, есть в таком как оксиды. Бертоллиды характерны также для сульфидов, карбидов, нитридов и гидридов.

Роль изотопов

Получив в свое распоряжение закон постоянства вещества, химия как точная наука смогла увязать весовую характеристику соединения с изотопным содержанием элементов, образующих его. Вспомним, что изотопами считают атомы одного химического элемента с одинаковыми протонными, но различными нуклонными числами. Учитывая наличие изотопов, понятно, что весовой состав соединения может быть переменным при условии постоянства элементов, входящих в это вещество. Если элемент увеличивает содержание какого-либо изотопа, то и весовой состав вещества тоже изменяется. Например, обычная вода содержит 11 % водорода, а тяжелая, образованная его изотопом (дейтерием), - 20 %.

Характеристика бертоллидов

Как мы уже выяснили ранее, законы сохранения в химии подтверждают основные положения атомно-молекулярной теории и являются абсолютно верными для веществ постоянного состава - дальтонидов. А бертоллиды имеют границы, в которых возможно изменение весовых частей элементов. Например, в оксиде четырёхвалентного титана на одну весовую часть металла приходится от 0,65 до 0,67 части кислорода. Вещества непостоянного состава не их кристаллические решетки состоят из атомов. Поэтому химические формулы соединений лишь отражают границы их состава. У различных веществ они разные. Температура также может влиять на интервалы изменения весового состава элементов. Если два химических элемента образуют между собой несколько веществ - бертоллидов, то для них также неприменим и закон кратных отношений.

Из всех вышеприведенных примеров сделаем вывод: теоретически в химии присутствуют две группы веществ: с постоянным и переменным составом. Наличие в природе этих соединений служит прекрасным подтверждением атомно-молекулярного учения. А вот сам закон постоянства состава уже не является доминирующим в химической науке. Зато он наглядно иллюстрирует историю её развития.



Последние материалы раздела:

Развитие критического мышления: технологии и методики
Развитие критического мышления: технологии и методики

Критическое мышление – это система суждений, способствующая анализу информации, ее собственной интерпретации, а также обоснованности...

Онлайн обучение профессии Программист 1С
Онлайн обучение профессии Программист 1С

В современном мире цифровых технологий профессия программиста остается одной из самых востребованных и перспективных. Особенно высок спрос на...

Пробный ЕГЭ по русскому языку
Пробный ЕГЭ по русскому языку

Здравствуйте! Уточните, пожалуйста, как верно оформлять подобные предложения с оборотом «Как пишет...» (двоеточие/запятая, кавычки/без,...