Как называются графики тригонометрических функций. Отрывок, характеризующий Тригонометрические функции

    Тригонометрические функции представляют собой элементарные функции, аргументом которых является угол . С помощью тригонометрических функций описываются соотношения между сторонами и острыми углами в прямоугольном треугольнике . Области применения тригонометрических функций чрезвычайно разнообразны. Так, например, любые периодические процессы можно представить в виде суммы тригонометрических функций (). Данные функции часто появляются при решении и функциональных уравнений.

    К тригонометрическим функциям относятся следующие 6 функций: синус , косинус , тангенс , котангенс , секанс и косеканс . Для каждой из указанных функций существует обратная тригонометрическая функция .

    Геометрическое определение тригонометрических функций удобно ввести с помощью единичного круга . На приведенном ниже рисунке изображен круг радиусом \(r = 1\). На окружности обозначена точка \(M\left({x,y} \right)\). Угол между радиус-вектором \(OM\) и положительным направлением оси \(Ox\) равен \(\alpha\).

    Синусом угла \(\alpha\) называется отношение ординаты \(y\) точки \(M\left({x,y} \right)\) к радиусу \(r\):
    \(\sin \alpha = y/r\).
    Поскольку \(r = 1\), то синус равен ординате точки \(M\left({x,y} \right)\).

    Косинусом угла \(\alpha\) называется отношение абсциссы \(x\) точки \(M\left({x,y} \right)\) к радиусу \(r\):
    \(\cos \alpha = x/r\)

    Тангенсом угла \(\alpha\) называется отношение ординаты \(y\) точки \(M\left({x,y} \right)\) к ee абсциссе \(x\):
    \(\tan \alpha = y/x,\;\;x \ne 0\)

    Котангенсом угла \(\alpha\) называется отношение абсциссы \(x\) точки \(M\left({x,y} \right)\) к ее ординате \(y\):
    \(\cot \alpha = x/y,\;\;y \ne 0\)

    Секанс угла \(\alpha\) − это отношение радиуса \(r\) к абсциссе \(x\) точки \(M\left({x,y} \right)\):
    \(\sec \alpha = r/x = 1/x,\;\;x \ne 0\)

    Косеканс угла \(\alpha\) − это отношение радиуса \(r\) к ординате \(y\) точки \(M\left({x,y} \right)\):
    \(\csc \alpha = r/y = 1/y,\;\;y \ne 0\)

    В единичном круге проекции \(x\), \(y\) точки \(M\left({x,y} \right)\) и радиус \(r\) образуют прямоугольный треугольник, в котором \(x,y\) являются катетами, а \(r\) − гипотенузой. Поэтому, приведенные выше определения тригонометрических функций в приложении к прямоугольному треугольнику формулируются таким образом:
    Синусом угла \(\alpha\) называется отношение противолежащего катета к гипотенузе.
    Косинусом угла \(\alpha\) называется отношение прилежащего катета к гипотенузе.
    Тангенсом угла \(\alpha\) называется противолежащего катета к прилежащему.
    Котангенсом угла \(\alpha\) называется прилежащего катета к противолежащему.
    Секанс угла \(\alpha\) представляет собой отношение гипотенузы к прилежащему катету.
    Косеканс угла \(\alpha\) представляет собой отношение гипотенузы к противолежащему катету.

    График функции синус
    \(y = \sin x\), область определения: \(x \in \mathbb{R}\), область значений: \(-1 \le \sin x \le 1\)

    График функции косинус
    \(y = \cos x\), область определения: \(x \in \mathbb{R}\), область значений: \(-1 \le \cos x \le 1\)

1. Тригонометрические функции представляют собой элементарные функции, аргументом которых является угол . С помощью тригонометрических функций описываются соотношения между сторонами и острыми углами в прямоугольном треугольнике. Области применения тригонометрических функций чрезвычайно разнообразны. Так, например, любые периодические процессы можно представить в виде суммы тригонометрических функций (ряда Фурье). Данные функции часто появляются при решении дифференциальных и функциональных уравнений.

2. К тригонометрическим функциям относятся следующие 6 функций: синус , косинус , тангенс ,котангенс , секанс и косеканс . Для каждой из указанных функций существует обратная тригонометрическая функция.

3. Геометрическое определение тригонометрических функций удобно ввести с помощью единичного круга . На приведенном ниже рисунке изображен круг радиусом r=1. На окружности обозначена точка M(x,y). Угол между радиус-вектором OM и положительным направлением оси Ox равен α.

4. Синусом угла α называется отношение ординаты y точки M(x,y) к радиусу r:
sinα=y/r.
Поскольку r=1, то синус равен ординате точки M(x,y).

5. Косинусом угла α называется отношение абсциссы x точки M(x,y) к радиусу r:
cosα=x/r

6. Тангенсом угла α называется отношение ординаты y точки M(x,y) к ee абсциссе x:
tanα=y/x,x≠0

7. Котангенсом угла α называется отношение абсциссы x точки M(x,y) к ее ординате y:
cotα=x/y,y≠0

8. Секанс угла α − это отношение радиуса r к абсциссе x точки M(x,y):
secα=r/x=1/x,x≠0

9. Косеканс угла α − это отношение радиуса r к ординате y точки M(x,y):
cscα=r/y=1/y,y≠0

10. В единичном круге проекции x, y точки M(x,y) и радиус r образуют прямоугольный треугольник, в котором x,y являются катетами, а r − гипотенузой. Поэтому, приведенные выше определения тригонометрических функций в приложении к прямоугольному треугольнику формулируются таким образом:
Синусом угла α называется отношение противолежащего катета к гипотенузе.
Косинусом угла α называется отношение прилежащего катета к гипотенузе.
Тангенсом угла α называется противолежащего катета к прилежащему.
Котангенсом угла α называется прилежащего катета к противолежащему.
Секанс угла α представляет собой отношение гипотенузы к прилежащему катету.
Косеканс угла α представляет собой отношение гипотенузы к противолежащему катету.

11. График функции синус
y=sinx, область определения: x∈R, область значений: −1≤sinx≤1

12. График функции косинус
y=cosx, область определения: x∈R, область значений: −1≤cosx≤1

13. График функции тангенс
y=tanx, область определения: x∈R,x≠(2k+1)π/2, область значений: −∞

14. График функции котангенс
y=cotx, область определения: x∈R,x≠kπ, область значений: −∞

15. График функции секанс
y=secx, область определения: x∈R,x≠(2k+1)π/2, область значений:secx∈(−∞,−1]∪∪}

Последние материалы раздела:

Изменение вида звездного неба в течение суток
Изменение вида звездного неба в течение суток

Тема урока «Изменение вида звездного неба в течение года». Цель урока: Изучить видимое годичное движение Солнца. Звёздное небо – великая книга...

Развитие критического мышления: технологии и методики
Развитие критического мышления: технологии и методики

Критическое мышление – это система суждений, способствующая анализу информации, ее собственной интерпретации, а также обоснованности...

Онлайн обучение профессии Программист 1С
Онлайн обучение профессии Программист 1С

В современном мире цифровых технологий профессия программиста остается одной из самых востребованных и перспективных. Особенно высок спрос на...