Как считается процент от числа. Считаем правильно: как находить процент от суммы и числа

Проценты - одно из понятий прикладной математики, которые часто встречаются в повседневной жизни. Так, часто можно прочитать или услышать, что, например, в выборах приняли участие 56,3% избирателей, рейтинг победителя конкурса равен 74%, промышленное производство увеличилось на 3,2%, банк начисляет 8% годовых, молоко содержит 1,5% жира, ткань содержит 100% хлопка и т.д. Ясно, что понимание такой информации необходимо в современном обществе.

Одним процентом от любой величины - денежной суммы, числа учащихся школы и т.д. - называется одна сотая ее часть. Обозначается процент знаком %, Таким образом,
1% - это 0,01, или \(\frac{1}{100} \) часть величины

Приведем примеры:
- 1% от минимальной заработной платы 2300 р. (сентябрь 2007 г.) - это 2300/100 = 23 рубля;
- 1% от населения России, равного примерно 145 млн. человек (2007 г.), - это 1,45 млн. человек;
- 3%-я концентрация раствора соли - это 3 г соли в 100 г раствора (напомним, что концентрация раствора - это часть, которую составляет масса растворенного вещества от массы всего раствора).

Понятно, что вся рассматриваемая величина составляет 100 сотых, или 100% от самой себя. Поэтому, например, надпись на этикетке "хлопок 100%" означает, что ткань состоит из чистого хлопка, а стопроцентная успеваемость означает, что в классе нет неуспевающих учеников.

Слово "процент" происходит от латинского pro centum, означающего "от сотни" или "на 100". Это словосочетание можно встретить и в современной речи. Например, говорят: "Из каждых 100 участников лотереи 7 участников получили призы". Если понимать это выражение буквально, то это утверждение, разумеется, неверно: ясно, что можно выбрать 100 человек, участвующих в лотерее и не получивших призы. В действительности точный смысл этого выражения состоит в том, что призы получили 7% участников лотереи, и именно такое понимание соответствует происхождению слова "процент": 7% - это 7 из 100, 7 человек из 100 человек.

Знак "%" получил распространение в конце XVII века. В 1685 году в Париже была издана книга "Руководство по коммерческой арифметике" Матье де ла Порта. В одном месте речь шла о процентах, которые тогда обозначали "cto" (сокращенно от cento). Однако наборщик принял это "с/о" за дробь и напечатал "%". Так из-за опечатки этот знак вошел в обиход.

Любое число процентов можно записать в виде десятичной дроби, выражающей часть величины.

Чтобы выразить проценты числом, нужно количество процентов разделить на 100. Например:

\(58\% = \frac{58}{100} = 0,58; \;\;\; 4,5\% = \frac{4,5}{100} = 0,045; \;\;\; 200\% = \frac{200}{100} = 2 \)

Для обратного перехода выполняется обратное действие. Таким образом, чтобы выразить число в процентах, надо его умножить на 100:

\(0,58 = (0,58 \cdot 100)\% = 58\% \) \(0,045 = (0,045 \cdot 100)\% = 4,5\% \)

В практической жизни полезно понимать связь между простейшими значениями процентов и соответствующими дробями: половина - 50%, четверть - 25%, три четверти - 75%, пятая часть - 20%, три пятых - 60% и т.д.

Полезно также понимать разные формы выражения одного и того же изменения величины, сформулированные без процентов и с помощью процентов. Например, в сообщениях "Минимальная заработная плата повышена с февраля на 50%" и "Минимальная заработная плата повышена с февраля в 1,5 раз" говорится об одном и том же. Точно так же увеличить в 2 раза - это значит увеличить на 100%, увеличить в 3 раза - это значит увеличить на 200%, уменьшить в 2 раза - это значит уменьшить на 50%.

Аналогично
- увеличить на 300% - это значит увеличить в 4 раза,
- уменьшить на 80% - это значит уменьшить в 5 раз.

Задачи на проценты

Поскольку проценты можно выразить дробями, то задачи на проценты являются, по существу, теми же задачами на дроби. В простейших задачах на проценты некоторая величина а принимается за 100% ("целое"), а ее часть b выражается числом p%.

В зависимости от того, что неизвестно - а, b или р, выделяются три типа задач на проценты. Эти задачи решаются так же, как и соответствующие задачи на дроби, но перед их решением число р% выражается дробью.

1. Нахождение процента от числа.
Чтобы найти \(\frac{p}{100} \) от a, надо a умножить на \(\frac{p}{100} \):

\(b = a \cdot \frac{p}{100} \)

Итак, чтобы найти р% от числа, надо это число умножить на дробь \(\frac{p}{100} \). Например, 20% от 45 кг равны 45 0,2 = 9 кг, а 118% от х равны 1,18x

2. Нахождение числа по его проценту.
Чтобы найти число по его части b, выраженной дробью \(\frac{p}{100} , \; (p \neq 0) \), надо b разделить на \(\frac{p}{100} \):
\(a = b: \frac{p}{100} \)

Таким образом, чтобы найти число по его части, составляющей р% этого числа, надо эту часть разделить на \(\frac{p}{100} \). Например, если 8% длины отрезка составляют 2,4 см, то длина всего отрезка равна 2,4:0,08 = 240:8 = 30 см.

3. Нахождение процентного отношения двух чисел.
Чтобы найти, сколько процентов число b составляет от а \((a \neq 0) \), надо сначала узнать, какую часть b составляет от а, а затем эту часть выразить в процентах:

\(p = \frac{b}{a} \cdot 100\% \) Значит, чтобы узнать, сколько процентов первое число составляет от второго, надо первое число разделить на второе и результат умножить на 100.
Например, 9 г соли в растворе массой 180 г составляют \(\frac{9 \cdot 100}{180} = 5\% \) раствора.

Частное двух чисел, выраженное в процентах, называется процентным отношением этих чисел. Поэтому последнее правило называют правилом нахождения процентного отношения двух чисел.

Нетрудно заметить, что формулы

\(b = a \cdot \frac{p}{100}, \;\; a = b: \frac{p}{100}, \;\; p = \frac{b}{a} \cdot 100\% \;\; (a,b,p \neq 0) \) взаимосвязаны, а именно, две последние формулы получаются из первой, если выразить из нее значения a и p. Поэтому первую формулу считают основной и называют формулой процентов. Формула процентов объединяет все три типа задач на дроби, и, при желании, можно ею пользоваться, чтобы найти любую из неизвестных величин a, b и p.

Составные задачи на проценты решаются аналогично задачам на дроби.

Простой процентный рост

Когда человек не вносит своевременную плату за квартиру, на него налагается штраф, который называется "пеня" (от латинского роеnа - наказание). Так, если пеня составляет 0,1% от суммы квартплаты за каждый день просрочки, то, например, за 19 дней просрочки сумма составит 1,9% от суммы квартплаты. Поэтому вместе, скажем, с 1000 р. квартплаты человек должен будет внести пеню 1000 0,019 = 19 р., а всего 1019 р.

Ясно, что в разных городах и у разных людей квартплата, размер пени и время просрочки разные. Поэтому имеет смысл составить общую формулу квартплаты для неаккуратных плательщиков, применимую при любых обстоятельствах.

Пусть S - ежемесячная квартплата, пеня составляет р% квартплаты за каждый день просрочки, а n - число просроченных дней. Сумму, которую должен заплатить человек после n дней просрочки, обозначим S n .
Тогда за n дней просрочки пеня составит рn% от S, или \(\frac{pn}{100}S \), а всего придется заплатить \(S + \frac{pn}{100}S = \left(1+ \frac{pn}{100} \right) S \)
Таким образом:
\(S_n = \left(1+ \frac{pn}{100} \right) S \)

Эта формула описывает многие конкретные ситуации и имеет специальное название: формула простого процентного роста.

Аналогичная формула получится, если некоторая величина уменьшается за данный период времени на определенное число процентов. Как и выше, нетрудно убедиться, что в этом случае
\(S_n = \left(1- \frac{pn}{100} \right) S \)

Эта формула также называется формулой простого процентного роста, хотя заданная величина в действительности убывает. Рост в этом случае "отрицательный".

Сложный процентный рост

В банках России для некоторых видов вкладов (так называемых срочных вкладов, которые нельзя взять раньше, чем через определенный договором срок, например, через год) принята следующая система выплаты доходов: за первый год нахождения внесенной суммы на счете доход составляет, например, 10% от нее. В конце года вкладчик может забрать из банка вложенные деньги и заработанный доход - "проценты", как его обычно называют.

Если же вкладчик этого не сделал, то проценты присоединяются к начальному вкладу (капитализируются), и поэтому в конце следующего года 10% начисляются банком уже на новую, увеличенную сумму. Иначе говоря, при такой системе начисляются "проценты на проценты", или, как их обычно называют, сложные проценты.

Подсчитаем, сколько денег получит вкладчик через 3 года, если он положил на срочный счет в банк 1000 р. и ни разу в течение трех лет не будет брать деньги со счета.

10% от 1000 р. составляют 0,1 1000 = 100 р., следовательно, через год на его счете будет
1000 + 100 = 1100 (р.)

10% от новой суммы 1100 р. составляют 0,1 1100 = 110 р., следовательно, через 2 года на его счете будет
1100 + 110 = 1210 (р.)

10% от новой суммы 1210 р. составляют 0,1 1210 = 121 р., следовательно, через 3 года на его счете будет
1210 + 121 = 1331 (р.)

Нетрудно представить себе, сколько при таком непосредственном, "лобовом" подсчете понадобилось бы времени для нахождения суммы вклада через 20 лет. Между тем подсчет можно вести значительно проще.

А именно, через год начальная сумма увеличится на 10%, то есть составит 110% от начальной, или, другими словами, увеличится в 1,1 раза. В следующем году новая, уже увеличенная сумма тоже увеличится на те же 10%. Следовательно, через 2 года начальная сумма увеличится в 1,1 1,1 = 1,1 2 раз.

Еще через один год и эта сумма увеличится в 1,1 раза, так что начальная сумма увеличится в 1,1 1,1 2 = 1,1 3 раз. При таком способе рассуждений получаем решение нашей задачи значительно более простое: 1,1 3 1000 = 1,331 1000 - 1331 (р.)

Решим теперь эту задачу в общем виде. Пусть банк начисляет доход в размере р% годовых, внесенная сумма равна S р., а сумма, которая будет на счете через n лет, равна S n р.

Величина p% от S составляет \(\frac{p}{100}S \) р., и через год на счете окажется сумма
\(S_1 = S+ \frac{p}{100}S = \left(1+ \frac{p}{100} \right)S \)
то есть начальная сумма увеличится в \(1+ \frac{p}{100} \) раз.

За следующий год сумма S 1 увеличится во столько же раз, и поэтому через два года на счете будет сумма
\(S_2 = \left(1+ \frac{p}{100} \right)S_1 = \left(1+ \frac{p}{100} \right) \left(1+ \frac{p}{100} \right)S = \left(1+ \frac{p}{100} \right)^2 S \)

Аналогично \(S_3 = \left(1+ \frac{p}{100} \right)^3 S \) и т.д. Другими словами, справедливо равенство
\(S_n = \left(1+ \frac{p}{100} \right)^n S \)

Эту формулу называют формулой сложного процентного роста , или просто формулой сложных процентов.

Одним из базовых понятий математики является процент. Для того чтобы понять, что такое процент, достаточно разделить заданную целую величину на сто. Одна сотая часть будет одним процентом (обозначается 1%). Как в точных и экономических науках, так и в других сферах жизни проценты используются для обозначения долей по отношению к целому. При этом само целое обозначается как 100%. В некоторых случаях используется при сравнении двух величин: например, иногда стоимость товаров не сравнивается в денежных единицах, а оценивается, на сколько % цена одного товара больше или меньше цены другого. Термин также получил широкое распространение в банковском деле и в большинстве случаев используется в качестве синонима словосочетания «процентная ставка».

Правило нахождения процентов от числа

Вычисление процентных долей от целого – одна из основных математических операций, к тому же часто используемая в повседневной жизни. Правило нахождения процентов от числа гласит о том, что для решения такой задачи его необходимо умножить на указанное в условиях количество %, после чего полученный результат разделить на 100. Также можно разделить число на 100, и полученный результат умножить на заданное количество %. Важно помнить ещё один тезис: если заданный условиями процент превышает 100%, то полученное числовое значение всегда больше исходного (заданного) – и наоборот.

Правило нахождения числа по его проценту

Существует обратное правило нахождения числа по его проценту. Для того чтобы получить результат по такой математической операции (второму из трёх базовых типов задач на процентные вычисления) необходимо указанное в условиях число разделить на заданную процентную величину, после чего полученный результат умножить на 100. При этом первым действием вычисляется количество единиц исходной величины в 1%, а вторым – в целом (то есть в 100%). Если количество % превышает 100, то полученный результат всегда будет меньше числового значения, заданного условиями задачи – и наоборот.

Правило нахождения процентного выражения числа от другого

Третьим базовым типом математических задач на процентные вычисления являются такие задания, в которых необходимо использовать правило нахождения процентного выражения числа от другого (или соотношения двух величин). Оно гласит о том, что для решения необходимо второе число разделить на первое, после чего полученный результат умножить на сто. Подобное соотношение показывает, сколько % одно числовое значение составляет от другого (то есть, фактически речь идёт об отношении между двумя числовыми значениями, выраженном в %).

Математика не просто наука, которая живет в школьных стенах. Она ежедневно используется в бытовых вещах для различных расчетов. Особенно часто приходится находить проценты от числа – это необходимо при покупке товаров на вес, при оплате налогов, при походе в ресторан. Крайне важно уметь быстро и правильно делать такие расчеты.

Математики представляют величину целым, т.е. в ней полные 100%, а какая-то доля заданной величины – это ее сотая часть. Таким образом, процент — это сотая часть от какого-то полного значения . Например, 1 килограмм – это 100%, а полкилограмма – это 50%.

Важно знать ! Доли на бумаге всегда записываются со знаком «%».

Доли всегда можно представить в виде десятичных дробей: 1% = 1/100 части = 0,01, что очень удобно при расчете вручную. Чтобы определить 1% от любой величины, ее всегда принимаю как за 100%, тогда 1% будет неизвестным, которое в 100 раз меньше.

Определить процент от числа удобно с помощью пропорций. Пусть необходимо будет взять и найти 1 процент от цифры 349, где:

Тут следует быть внимательными, поскольку можно запутаться, что есть что. Чтобы этого избежать, следует всегда писать доли (%) с одной стороны. Лучше всего составлять пропорцию в столбик — определить процент от числа тогда будет удобнее. Найдем х с помощью правила креста:

Если знать связь долей с десятичными дробями, то считать будет еще проще, поскольку достаточно отделить запятой два знака с конца цифры, чтобы выделить его 1%. Например, 1% от цифры 248 будет равен 2,48, а, чтобы рассчитать от него же 7%, достаточно будет умножить найденный 1% на 7 = 2,48*7 = 17,36.

Основные формулы

Существует несколько основных формул для решений уравнений с долями.

Как найти число по его доле? Если известна величина X, которая составляет несколько долей от Y, а найти необходимо значение неизвестного Y, то выражение решается с помощью формулы:

Как найти выражение одной величины от другой в %? Если известны величины Y X, а необходимо найти часть, которую составляет от числа X, то это можно представить в виде выражения:

Эти три формулы наиболее часто встречаются при решении различных уравнений с долями, поэтому важно запомнить их и научится быстро применять.

Использование калькуляторов

Современные технологии позволяют не высчитывать проценты от чисел самостоятельно, воспользовавшись техникой. Можно использовать обычный электронный калькулятор с процентами. Чтобы убедиться, что устройство подходит, необходимо найти на нем кнопку с изображением %, такие обычно находятся среди действий умножения-деления. После этого можно приступать к расчетам.

Полезно знать ! Предком калькулятора стала суммирующая машинка, которую создал великий математик Блез Паскаль.

Устройство было похоже на ящик с шестеренками внутри.

Как находить проценты от числа? Например, величину, которая составляет 17% от цифры 123. Используя калькулятор, можно рассчитать:

  1. Набрать 123, так чтобы оно отобразилось на табло.
  2. Выбрать действие умножить (значок Х).
  3. Затем ввести 17 и нажать на соответствующую кнопку (%).
  4. На табло высветится ответ — 20,91.

Данный алгоритм используется для нахождения ответов на любые выражения с расчетами долей и сотых. Но еще один удобный метод – это использование онлайн-калькулятора. Для решения задачи достаточно перейти на сайт такого калькулятора, введя его адрес в строку браузера или прописав запрос в поисковой системе.

Онлайн-калькулятор представляет собой страницу сайта, где есть окошки, куда необходимо вводить значения. Обычно перед окошком пишется, какое действие выполняет калькулятор (находит % от количества, количество по % и т. д.), поэтому надо правильно выбрать. Достаточно ввести значения в соответствующие окна и кликнуть на кнопку «Решить» («Найти», «Рассчитать» и т.д.), калькулятор выдаст ответ.

Полезное видео

Подведем итоги

В этом коротком видеоуроке мы научимся решать задачи на проценты с помощью специальной формулы, которая так и называется: формула простого процента. Давайте оформим эту формулу в виде теоремы.

Теорема о простом проценте. Предположим, что есть некая исходная величина x , которая затем меняется на k %, и получается новая величина y . Тогда все три числа связаны формулой:

Плюс или минус перед коэффициентом k ставится в зависимости от условия задачи. Если по условию величина x возрастает, то перед k стоит плюс. Если же величина уменьшается, то перед коэффициентом k стоит минус.

Несмотря на кажущуюся мудреность этой формулы, многие задачи с ее помощью решаются очень быстро и красиво. Давайте попробуем.

Задача. Цена на товар была повышена на 10% и составила 2970 рублей. Сколько рублей стоил товар до повышения цены?

Чтобы решить эту задачу с помощью формулы простых процентов, нам необходимы три числа: исходное значение x , проценты k и итоговое значение y . Из всех трех чисел нам известны проценты k = 10 и итоговое значение y = 2970. Обратите внимание: 2970 — это именно итоговая цена, т.е. y . Потому что по условию задачи исходная цена на товар неизвестна (ее как раз требуется найти). Но затем она была повышена, и только тогда составила 2970 рублей.

Итак, нам нужно найти x , т.е. исходное значение. Что ж, подставляем наши числа в формулу и получаем:

Складываем числа в числителе и получаем:

Сокращаем по одному нулю в числителе и знаменателе, а затем умножаем обе части уравнения на 10. Получим:

11x = 29 700

Чтобы найти x из этого простейшего линейного уравнения, нужно разделить обе стороны на 11:

x = 29 700: 11 = 2700

Как видите, это довольно большие числа, поэтому в уме такие вычисления не провести. В случае, если такая задача встретится вам на ЕГЭ, придется делить уголком. При этом все разделилось без остатка, и мы получили значение x :

x = 2700

Именно столько стоил товар до повышения цены. И именно это число нам требовалось найти по условию задачи. Поэтому все: задача решена. Причем решена не «напролом», а с помощью формулы простого процента — быстро, красиво и наглядно.

Разумеется, эту задачу можно было решать по-другому. Например, через пропорции. Или экзотическим методом коэффициентов. Но будет гораздо лучше и надежнее, если у вас на вооружении будет несколько приемов для решения любой задачи на проценты. Так что обязательно попрактикуйтесь в использовании данной формулы.

Калькулятор процентов предназначен для расчёта основных математических задач связанных с процентами. В частности позволяет:

  1. Вычислить процент от числа.
  2. Определить, сколько процентов составляет одно число от другого.
  3. Прибавить или вычесть процент от числа.
  4. Найти число, зная его определённый процент.
  5. Посчитать, на сколько процентов одно число больше другого.

Результат может быть округлён до необходимого знака после запятой.

Сколько составляет % от числа Сбросить

Сколько % составляет число от числа Сбросить

От какой величины число составляет % Сбросить

На сколько % число больше/меньше числа Сбросить

Прибавить % к числу Сбросить

Вычесть % из числа Сбросить

Округлять результат до 1 2 3 4 5 6 7 8 9 знака после запятой

Формулы расчёта процентов

  1. Какое число соответствует 24% от числа 286?
    Определяем 1% от числа 286: 286 / 100 = 2.86.
    Рассчитываем 24%: 24 · 2.86 = 68.64.
    Ответ: 68.64%.
    Формула вычисления x% от числа y: x · y / 100.
  2. Сколько процентов составляет число 36 от 450?
    Определяем коэффициент зависимости: 36 / 450 = 0.08.
    Переводим результат в проценты: 0.08 · 100 = 8%.
    Ответ: 8%.
    Формула для определения, какой процент составляет число x от y: x · 100 / y.
  3. От какой величины число 8 составляет 32%?
    Определяем 1% значения: 8 / 32 = 0.25.
    Вычисляем 100% величины: 0.25 · 100 = 25.
    Ответ: 25.
    Формула для определения числа, если x составляет его y %: x · 100 / y.
  4. На сколько процентов число 128 больше 104?
    Определяем разницу значений: 128 - 104 = 24.
    Находим процент от числа: 24 / 104 = 0.23.
    Переводим результат в проценты: 0.23 · 100 = 23%.
    Ответ: 23%.
    Формула для определения насколько число x больше числа y: (x - y) · 100 / x.
  5. Сколько будет, если прибавить 12% к числу 20?
    Определяем 1% от числа 20: 20 / 100 = 0.2.
    Рассчитываем 12%: 0.2 · 12 = 2,4.
    Добавляем полученное значение: 20 + 2.4 = 22.4.
    Ответ: 22.4.
    Формула для прибавления x% к числу y: x · y / 100 + y.
  6. Сколько будет, если вычесть 44% из числа 78?
    Определяем 1% от числа 78: 78 / 100 = 0.78.
    Рассчитываем 44%: 0.78 · 44 = 34.32.
    Вычитаем полученное значение: 78 - 34.32 = 43.68.
    Ответ: 43.68.
    Формула для вычитания x% из числа y: y - x · y / 100.

Примеры школьных заданий

Из запланированной дистанции в 32 км Том пробежал только 76%. Сколько километров пробежал мальчик?
Решение: для вычислений подходит первый калькулятор. В первую ячейку вставляем 76, во вторую - 32.
Получаем: Том пробежал 24.32 км.

Фермер Купер собрал с поля 500 кг кукурузы. 160 кг из этой массы оказалось неспелой. Сколько процентов от общего числа составила неспелая кукуруза?
Решение: для расчёта подходит второй калькулятор. В первое окошко записываем число 160, во второе - 500.
Получаем: 32% кукурузы оказалось неспелой.

Майкл прочитал своей подруге на ночь 112 страниц, что составляет 32% всей книги. Сколько страниц в книге?
Решение: используем для расчёта третий калькулятор. Вставляем в первую ячейку значение 112, а во вторую - 32.
Получаем: в книге 350 страниц.

Длина маршрута, по которому ходил автобус №42, составляла 48 километров. После добавления трёх дополнительных остановок расстояние от начальной до конечной станции изменилось до 78 километров. На сколько процентов изменилась длина маршрута?
Решение: используем для вычисления четвёртый калькулятор. В первую ячейку вбиваем число 78, во вторую - 48.
Получаем: длина маршрута выросла на 62.5%.

Братство металла и макулатуры в мае сдало на лом 320 кг цветного металла, а в июне на 30% больше. Сколько металла сдали ребята из братства в июне?
Решение: для расчёта будем использовать пятый калькулятор. В первую ячейку вставляем число 30, а во второе число 320.
Получаем: в июне братство сдало 416 кг металла.

Энди прорыл во вторник 3 метра туннеля, а в среду в связи с отъездом друга в Ирландию - на 22% меньше. Сколько метров туннеля прорыл Энди в среду?
Решение: в данном случае подходит шестой калькулятор. В первую ячейку вставляем 22, во вторую - 3.
Получаем: в среду мальчик прорыл 2.34 метра туннеля.

Как считать проценты на обычном калькуляторе

Найти процент от числа возможно и на самом обычном калькуляторе. Для этого необходимо найти кнопку проценты - %. Давайте вычислим 24% от числа 398:

  1. Вводим число 398;
  2. Нажимаем кнопку умножения (X);
  3. Вводим число 24;
  4. Нажимаем кнопку процента (%).

Вычислительное устройство покажет ответ: 95.52.



Последние материалы раздела:

Изменение вида звездного неба в течение суток
Изменение вида звездного неба в течение суток

Тема урока «Изменение вида звездного неба в течение года». Цель урока: Изучить видимое годичное движение Солнца. Звёздное небо – великая книга...

Развитие критического мышления: технологии и методики
Развитие критического мышления: технологии и методики

Критическое мышление – это система суждений, способствующая анализу информации, ее собственной интерпретации, а также обоснованности...

Онлайн обучение профессии Программист 1С
Онлайн обучение профессии Программист 1С

В современном мире цифровых технологий профессия программиста остается одной из самых востребованных и перспективных. Особенно высок спрос на...