Как упростить дробное. Записи с меткой "упростить алгебраическое выражение"

Выражения, преобразование выражений

Степенные выражения (выражения со степенями) и их преобразование

В этой статье мы поговорим о преобразовании выражений со степенями. Сначала мы остановимся на преобразованиях, которые выполняются с выражениями любых видов, в том числе и со степенными выражениями, таких как раскрытие скобок, приведение подобных слагаемых. А дальше разберем преобразования, присущие именно выражениям со степенями: работа с основанием и показателем степени, использование свойств степеней и т.д.

Навигация по странице.

Что такое степенные выражения?

Термин «степенные выражения» практически не встречается школьных учебниках математики, но он довольно часто фигурирует в сборниках задач, особенно предназначенных для подготовки к ЕГЭ и ОГЭ, например, . После анализа заданий, в которых требуется выполнить какие-либо действия со степенными выражениями, становится понятно, что под степенными выражениями понимают выражения, содержащие в своих записях степени. Поэтому, для себя можно принять такое определение:

Определение.

Степенные выражения – это выражения, содержащие степени.

Приведем примеры степенных выражений . Причем будем их представлять согласно тому, как происходит развитие взглядов на от степени с натуральным показателем до степени с действительным показателем.

Как известно, сначала происходит знакомство со степенью числа с натуральным показателем, на этом этапе появляются первые самые простые степенные выражения типа 3 2 , 7 5 +1 , (2+1) 5 , (−0,1) 4 , 3·a 2 −a+a 2 , x 3−1 , (a 2) 3 и т.п.

Чуть позже изучается степень числа с целым показателем, что приводит к появлению степенных выражений с целыми отрицательными степенями, наподобие следующих: 3 −2 , , a −2 +2·b −3 +c 2 .

В старших классах вновь возвращаются к степеням. Там вводится степень с рациональным показателем, что влечет появление соответствующих степенных выражений: , , и т.п. Наконец, рассматриваются степени с иррациональными показателями и содержащие их выражения: , .

Перечисленными степенными выражениями дело не ограничивается: дальше в показатель степени проникает переменная, и возникают, например, такие выражения 2 x 2 +1 или . А после знакомства с , начинают встречаться выражения со степенями и логарифмами, к примеру, x 2·lgx −5·x lgx .

Итак, мы разобрались с вопросом, что представляют собой степенные выражения. Дальше будем учиться преобразовывать их.

Основные виды преобразований степенных выражений

Со степенными выражениями можно выполнять любые из основных тождественных преобразований выражений . Например, можно раскрывать скобки, заменять числовые выражения их значениями, приводить подобные слагаемые и т.д. Естественно, при этом стоит надо соблюдать принятый порядок выполнения действий . Приведем примеры.

Пример.

Вычислите значение степенного выражения 2 3 ·(4 2 −12) .

Решение.

Согласно порядку выполнения действий сначала выполняем действия в скобках. Там, во-первых, заменяем степень 4 2 ее значением 16 (при необходимости смотрите ), и во-вторых, вычисляем разность 16−12=4 . Имеем 2 3 ·(4 2 −12)=2 3 ·(16−12)=2 3 ·4 .

В полученном выражении заменяем степень 2 3 ее значением 8 , после чего вычисляем произведение 8·4=32 . Это и есть искомое значение.

Итак, 2 3 ·(4 2 −12)=2 3 ·(16−12)=2 3 ·4=8·4=32 .

Ответ:

2 3 ·(4 2 −12)=32 .

Пример.

Упростить выражения со степенями 3·a 4 ·b −7 −1+2·a 4 ·b −7 .

Решение.

Очевидно, что данное выражение содержит подобные слагаемые 3·a 4 ·b −7 и 2·a 4 ·b −7 , и мы можем привести их: .

Ответ:

3·a 4 ·b −7 −1+2·a 4 ·b −7 =5·a 4 ·b −7 −1 .

Пример.

Представьте выражение со степенями в виде произведения.

Решение.

Справиться с поставленной задачей позволяет представление числа 9 в виде степени 3 2 и последующее использование формулы сокращенного умножения разность квадратов:

Ответ:

Также существует ряд тождественных преобразований, присущих именно степенным выражениям. Дальше мы их и разберем.

Работа с основанием и показателем степени

Встречаются степени, в основании и/или показателе которых находятся не просто числа или переменные, а некоторые выражения. В качестве примера приведем записи (2+0,3·7) 5−3,7 и (a·(a+1)−a 2) 2·(x+1) .

При работе с подобными выражениями можно как выражение в основании степени, так и выражение в показателе заменить тождественно равным выражением на ОДЗ его переменных. Другими словами, мы можем по известным нам правилам отдельно преобразовывать основание степени, и отдельно – показатель. Понятно, что в результате этого преобразования получится выражение, тождественно равное исходному.

Такие преобразования позволяют упрощать выражения со степенями или достигать других нужных нам целей. Например, в упомянутом выше степенном выражении (2+0,3·7) 5−3,7 можно выполнить действия с числами в основании и показателе, что позволит перейти к степени 4,1 1,3 . А после раскрытия скобок и приведения подобных слагаемых в основании степени (a·(a+1)−a 2) 2·(x+1) мы получим степенное выражение более простого вида a 2·(x+1) .

Использование свойств степеней

Один из главных инструментов преобразования выражений со степенями – это равенства, отражающие . Напомним основные из них. Для любых положительных чисел a и b и произвольных действительных чисел r и s справедливы следующие свойства степеней:

  • a r ·a s =a r+s ;
  • a r:a s =a r−s ;
  • (a·b) r =a r ·b r ;
  • (a:b) r =a r:b r ;
  • (a r) s =a r·s .

Заметим, что при натуральных, целых, а также положительных показателях степени ограничения на числа a и b могут быть не столь строгими. Например, для натуральных чисел m и n равенство a m ·a n =a m+n верно не только для положительных a , но и для отрицательных, и для a=0 .

В школе основное внимание при преобразовании степенных выражений сосредоточено именно на умении выбрать подходящее свойство и правильно его применить. При этом основания степеней обычно положительные, что позволяет использовать свойства степеней без ограничений. Это же касается и преобразования выражений, содержащих в основаниях степеней переменные – область допустимых значений переменных обычно такова, что на ней основания принимают лишь положительные значения, что позволяет свободно использовать свойства степеней. Вообще, нужно постоянно задаваться вопросом, а можно ли в данном случае применять какое-либо свойство степеней, ведь неаккуратное использование свойств может приводить к сужению ОДЗ и другим неприятностям. Детально и на примерах эти моменты разобраны в статье преобразование выражений с использованием свойств степеней . Здесь же мы ограничимся рассмотрением нескольких простых примеров.

Пример.

Представьте выражение a 2,5 ·(a 2) −3:a −5,5 в виде степени с основанием a .

Решение.

Сначала второй множитель (a 2) −3 преобразуем по свойству возведения степени в степень: (a 2) −3 =a 2·(−3) =a −6 . Исходное степенное выражение при этом примет вид a 2,5 ·a −6:a −5,5 . Очевидно, остается воспользоваться свойствами умножения и деления степеней с одинаковым основанием, имеем
a 2,5 ·a −6:a −5,5 =
a 2,5−6:a −5,5 =a −3,5:a −5,5 =
a −3,5−(−5,5) =a 2 .

Ответ:

a 2,5 ·(a 2) −3:a −5,5 =a 2 .

Свойства степеней при преобразовании степенных выражений используются как слева направо, так и справа налево.

Пример.

Найти значение степенного выражения .

Решение.

Равенство (a·b) r =a r ·b r , примененное справа налево, позволяет от исходного выражения перейти к произведению вида и дальше . А при умножении степеней с одинаковыми основаниями показатели складываются: .

Можно было выполнять преобразование исходного выражения и иначе:

Ответ:

.

Пример.

Дано степенное выражение a 1,5 −a 0,5 −6 , введите новую переменную t=a 0,5 .

Решение.

Степень a 1,5 можно представить как a 0,5·3 и дальше на базе свойства степени в степени (a r) s =a r·s , примененного справа налево, преобразовать ее к виду (a 0,5) 3 . Таким образом, a 1,5 −a 0,5 −6=(a 0,5) 3 −a 0,5 −6 . Теперь легко ввести новую переменную t=a 0,5 , получаем t 3 −t−6 .

Ответ:

t 3 −t−6 .

Преобразование дробей, содержащих степени

Степенные выражения могут содержать дроби со степенями или представлять собой такие дроби. К таким дробям в полной мере применимы любые из основных преобразований дробей , которые присущи дробям любого вида. То есть, дроби, которые содержат степени, можно сокращать, приводить к новому знаменателю, работать отдельно с их числителем и отдельно со знаменателем и т.д. Для иллюстрации сказанных слов рассмотрим решения нескольких примеров.

Пример.

Упростить степенное выражение .

Решение.

Данное степенное выражение представляет собой дробь. Поработаем с ее числителем и знаменателем. В числителе раскроем скобки и упростим полученное после этого выражение, используя свойства степеней, а в знаменателе приведем подобные слагаемые:

И еще изменим знак знаменателя, поместив минус перед дробью: .

Ответ:

.

Приведение содержащих степени дробей к новому знаменателю проводится аналогично приведению к новому знаменателю рациональных дробей. При этом также находится дополнительный множитель и выполняется умножение на него числителя и знаменателя дроби. Выполняя это действие, стоит помнить, что приведение к новому знаменателю может приводить к сужению ОДЗ. Чтобы этого не происходило, нужно, чтобы дополнительный множитель не обращался в нуль ни при каких значениях переменных из ОДЗ переменных для исходного выражения.

Пример.

Приведите дроби к новому знаменателю: а) к знаменателю a , б) к знаменателю .

Решение.

а) В этом случае довольно просто сообразить, какой дополнительный множитель помогает достичь нужного результата. Это множитель a 0,3 , так как a 0,7 ·a 0,3 =a 0,7+0,3 =a . Заметим, что на области допустимых значений переменной a (это есть множество всех положительных действительных чисел) степень a 0,3 не обращается в нуль, поэтому, мы имеем право выполнить умножение числителя и знаменателя заданной дроби на этот дополнительный множитель:

б) Присмотревшись повнимательнее к знаменателю, можно обнаружить, что

и умножение этого выражения на даст сумму кубов и , то есть, . А это и есть новый знаменатель, к которому нам нужно привести исходную дробь.

Так мы нашли дополнительный множитель . На области допустимых значений переменных x и y выражение не обращается в нуль, поэтому, мы можем умножить на него числитель и знаменатель дроби:

Ответ:

а) , б) .

В сокращении дробей, содержащих степени, также нет ничего нового: числитель и знаменатель представляются в виде некоторого количества множителей, и сокращаются одинаковые множители числителя и знаменателя.

Пример.

Сократите дробь: а) , б) .

Решение.

а) Во-первых, числитель и знаменатель можно сократить на чисел 30 и 45 , который равен 15 . Также, очевидно, можно выполнить сокращение на x 0,5 +1 и на . Вот что мы имеем:

б) В этом случае одинаковых множителей в числителе и знаменателе сразу не видно. Чтобы получить их, придется выполнить предварительные преобразования. В данном случае они заключаются в разложении знаменателя на множители по формуле разности квадратов:

Ответ:

а)

б) .

Приведение дробей к новому знаменателю и сокращение дробей в основном используется для выполнения действий с дробями. Действия выполняются по известным правилам. При сложении (вычитании) дробей, они приводятся к общему знаменателю, после чего складываются (вычитаются) числители, а знаменатель остается прежним. В результате получается дробь, числитель которой есть произведение числителей, а знаменатель – произведение знаменателей. Деление на дробь есть умножение на дробь, обратную ей.

Пример.

Выполните действия .

Решение.

Сначала выполняем вычитание дробей, находящихся в скобках. Для этого приводим их к общему знаменателю, который есть , после чего вычитаем числители:

Теперь умножаем дроби:

Очевидно, возможно сокращение на степень x 1/2 , после которого имеем .

Еще можно упростить степенное выражение в знаменателе, воспользовавшись формулой разность квадратов: .

Ответ:

Пример.

Упростите степенное выражение .

Решение.

Очевидно, данную дробь можно сократить на (x 2,7 +1) 2 , это дает дробь . Понятно, что надо еще что-то сделать со степенями икса. Для этого преобразуем полученную дробь в произведение . Это дает нам возможность воспользоваться свойством деления степеней с одинаковыми основаниями: . И в заключение процесса переходим от последнего произведения к дроби .

Ответ:

.

И еще добавим, что можно и во многих случаях желательно множители с отрицательными показателями степени переносить из числителя в знаменатель или из знаменателя в числитель, изменяя знак показателя. Такие преобразования часто упрощают дальнейшие действия. Например, степенное выражение можно заменить на .

Преобразование выражений с корнями и степенями

Часто в выражениях, в которыми требуется провести некоторые преобразования, вместе со степенями с дробными показателями присутствуют и корни. Чтобы преобразовать подобное выражение к нужному виду, в большинстве случаев достаточно перейти только к корням или только к степеням. Но поскольку работать со степенями удобнее, обычно переходят от корней к степеням. Однако, осуществлять такой переход целесообразно тогда, когда ОДЗ переменных для исходного выражения позволяет заменить корни степенями без необходимости обращаться к модулю или разбивать ОДЗ на несколько промежутков (это мы подробно разобрали в статье переход от корней к степеням и обратно После знакомства со степенью с рациональным показателем вводится степень с иррациональным показателем, что позволяет говорить и о степени с произвольным действительным показателем. На этом этапе в школе начинает изучаться показательная функция , которая аналитически задается степенью, в основании которой находится число, а в показателе – переменная. Так мы сталкиваемся со степенными выражениями, содержащими числа в основании степени, а в показателе - выражения с переменными, и естественно возникает необходимость выполнения преобразований таких выражений.

Следует сказать, что преобразование выражений указанного вида обычно приходится выполнять при решении показательных уравнений и показательных неравенств , и эти преобразования довольно просты. В подавляющем числе случаев они базируются на свойствах степени и нацелены по большей части на то, чтобы в дальнейшем ввести новую переменную. Продемонстрировать их нам позволит уравнение 5 2·x+1 −3·5 x ·7 x −14·7 2·x−1 =0 .

Во-первых, степени, в показателях которых находится сумма некоторой переменной (или выражения с переменными) и числа, заменяются произведениями. Это относится к первому и последнему слагаемым выражения из левой части:
5 2·x ·5 1 −3·5 x ·7 x −14·7 2·x ·7 −1 =0 ,
5·5 2·x −3·5 x ·7 x −2·7 2·x =0 .

Дальше выполняется деление обеих частей равенства на выражение 7 2·x , которое на ОДЗ переменной x для исходного уравнения принимает только положительные значения (это стандартный прием решения уравнений такого вида, речь сейчас не о нем, так что сосредоточьте внимание на последующих преобразованиях выражений со степенями):

Теперь сокращаются дроби со степенями, что дает .

Наконец, отношение степеней с одинаковыми показателями заменяется степенями отношений, что приводит к уравнению , которое равносильно . Проделанные преобразования позволяют ввести новую переменную , что сводит решение исходного показательного уравнения к решению квадратного уравнения

  • И. В. Бойков, Л. Д. Романова Сборник задач для подготовки к ЕГЭ. Ч. 1. Пенза 2003.
  • Упрощение алгебраических выражений является одним из ключевых моментов изучения алгебры и чрезвычайно полезным навыком для всех математиков. Упрощение позволяет привести сложное или длинное выражение к простому выражению, с которым легко работать. Базовые навыки упрощения хорошо даются даже тем, кто не в восторге от математики. Соблюдая несколько простых правил, можно упростить многие из наиболее распространенных типов алгебраических выражений без каких-либо специальных математических знаний.

    Шаги

    Важные определения

    1. Подобные члены . Это члены с переменной одного порядка, члены с одинаковыми переменными или свободные члены (члены, не содержащие переменную). Другими словами, подобные члены включают одну переменную в одной и той же степени, включают несколько одинаковых переменных или не включают переменную вовсе. Порядок членов в выражении не имеет значения.

      • Например, 3x 2 и 4x 2 - это подобные члены, так как они содержат переменную «х» второго порядка (во второй степени). Однако х и x 2 не являются подобными членами, так как содержат переменную «х» разных порядков (первого и второго). Точно так же -3yx и 5хz не являются подобными членами, так как содержат разные переменные.
    2. Разложение на множители . Это нахождение таких чисел, произведение которых приводит к исходному числу. Любое исходное число может иметь несколько множителей. Например, число 12 может быть разложено на следующий ряд множителей: 1 × 12, 2 × 6 и 3 × 4, поэтому можно сказать, что числа 1, 2, 3, 4, 6 и 12 являются множителями числа 12. Множители совпадают с делителями, то есть числами, на которые делится исходное число.

      • Например, если вы хотите разложить на множители число 20, запишите это так: 4 × 5.
      • Обратите внимание, что при разложении на множители переменная учитывается. Например, 20x = 4(5x) .
      • Простые числа не могут быть разложены на множители, потому что они делятся только на себя и на 1.
    3. Запомните и соблюдайте порядок выполнения операций во избежание ошибок.

      • Скобки
      • Степень
      • Умножение
      • Деление
      • Сложение
      • Вычитание

      Приведение подобных членов

      1. Запишите выражение. Простейшие алгебраические выражения (которые не содержат дробей, корней и так далее) можно решить (упростить) всего за несколько шагов.

        • Например, упростите выражение 1 + 2x - 3 + 4x .
      2. Определите подобные члены (члены с переменной одного порядка, члены с одинаковыми переменными или свободные члены).

        • Найдите подобные члены в этом выражении. Члены 2x и 4x содержат переменную одного порядка (первого). Кроме того, 1 и -3 - это свободные члены (не содержат переменную). Таким образом, в этом выражении члены 2х и 4x являются подобными, и члены 1 и -3 тоже являются подобными.
      3. Приведите подобные члены. Это значит сложить или вычесть их и упростить выражение.

        • 2x + 4x =
        • 1 - 3 = -2
      4. Перепишите выражение с учетом приведенных членов. Вы получите простое выражение с меньшим количеством членов. Новое выражение равно исходному.

        • В нашем примере: 1 + 2x - 3 + 4x = 6х - 2 , то есть исходное выражение упрощено и с ним легче работать.
      5. Соблюдайте порядок выполнения операций при приведении подобных членов. В нашем примере было легко привести подобные члены. Однако в случае сложных выражений, в которых члены заключены в скобки и присутствуют дроби и корни, привести подобные члены не так просто. В этих случаях соблюдайте порядок выполнения операций.

        • Например, рассмотрим выражение 5(3x - 1) + х((2x)/(2)) + 8 - 3x. Здесь было бы ошибкой сразу определить 3x и 2x как подобные члены и привести их, потому что сначала необходимо раскрыть скобки. Поэтому выполните операции согласно их порядку.
          • 5(3x-1) + x((2x)/(2)) + 8 - 3x
          • 15x - 5 + x(x) + 8 - 3x
          • 15x - 5 + x 2 + 8 - 3x. Теперь , когда в выражении присутствуют только операции сложения и вычитания, вы можете привести подобные члены.
          • x 2 + (15x - 3x) + (8 - 5)
          • x 2 + 12x + 3

      Вынесение множителя за скобки

      1. Найдите наибольший общий делитель (НОД) всех коэффициентов выражения. НОД - это наибольшее число, на которое делятся все коэффициенты выражения.

        • Например, рассмотрим уравнение 9x 2 + 27x - 3. В этом случае НОД=3, так как любой коэффициент данного выражения делится на 3.
      2. Разделите каждый член выражения на НОД. Полученные члены будут содержать меньшие коэффициенты, чем в исходном выражении.

        • В нашем примере разделите каждый член выражения на 3.
          • 9x 2 /3 = 3x 2
          • 27x/3 = 9x
          • -3/3 = -1
          • Получилось выражение 3x 2 + 9x - 1 . Оно не равно исходному выражению.
      3. Запишите исходное выражение как равное произведению НОД на полученное выражение. То есть заключите полученное выражение в скобки, а за скобки вынесите НОД.

        • В нашем примере: 9x 2 + 27x - 3 = 3(3x 2 + 9x - 1)
      4. Упрощение дробных выражений с помощью вынесения множителя за скобки. Зачем просто выносить множитель за скобки, как это было сделано ранее? Затем, чтобы научиться упрощать сложные выражения, например дробные выражения. В этом случае вынесение множителя за скобки может помочь избавиться от дроби (от знаменателя).

        • Например, рассмотрим дробное выражение (9x 2 + 27x - 3)/3. Воспользуйтесь вынесением множителя за скобки, чтобы упростить это выражение.
          • Вынесите множитель 3 за скобки (как вы делали это ранее): (3(3x 2 + 9x - 1))/3
          • Обратите внимание, что теперь и в числителе, и в знаменателе присутствует число 3. Его можно сократить, и вы получите выражение: (3x 2 + 9x – 1)/1
          • Так как любая дробь, у которой в знаменателе находится число 1, равна просто числителю, то исходное дробное выражение упрощается до: 3x 2 + 9x - 1 .

      Дополнительные методы упрощения

    4. Рассмотрим простой пример: √(90). Число 90 можно разложить на следующие множители: 9 и 10, а из 9 извлечь квадратный корень (3) и вынести 3 из-под корня.
      • √(90)
      • √(9×10)
      • √(9)×√(10)
      • 3×√(10)
      • 3√(10)
    5. Упрощение выражений со степенями. В некоторых выражениях присутствуют операции умножения или деления членов со степенью. В случае умножения членов с одним основанием их степени складываются; в случае деления членов с одним основанием их степени вычитаются.

      • Например, рассмотрим выражение 6x 3 × 8x 4 + (x 17 /x 15). В случае умножения сложите степени, а в случае деления – вычтите их.
        • 6x 3 × 8x 4 + (x 17 /x 15)
        • (6 × 8)x 3 + 4 + (x 17 - 15)
        • 48x 7 + x 2
      • Далее приведено объяснение правила умножения и деления членов со степенью.
        • Умножение членов со степенями равносильно умножению членов на самих себя. Например, так как x 3 = x × x × x и x 5 = x × x × x × x × x, то x 3 × x 5 = (x × x × x) × (x × x × x × x × x), или x 8 .
        • Аналогично, деление членов со степенями равносильно делению членов на самих себя. x 5 /x 3 = (x × x × x × x × x)/(x × x × x). Так как подобные члены, находящиеся и в числителе, и в знаменателе, могут быть сокращены, то в числителе остается произведение двух «х», или x 2 .
    • Всегда помните о знаках (плюс или минус), стоящих перед членами выражения, так как многие испытывают затруднения с выбором правильного знака.
    • Попросите о помощи, если это необходимо!
    • Упрощать алгебраические выражения нелегко, но если вы набьете руку, вы сможете использовать этот навык всю жизнь.

    Раздел 5 ВЫРАЖЕНИЯ И УРАВНЕНИЯ

    В разделе узнаете:

    ü о выражения и их упрощения;

    ü какие свойства равенств;

    ü как решать уравнения на основе свойств равенств;

    ü какие виды задач решаются с помощью уравнений; что такое перпендикулярные прямые и как их строить;

    ü какие прямые называются параллельными и как их строить;

    ü что такое координатная плоскость;

    ü как определить координаты точки на плоскости;

    ü что такое график зависимости между величинами и как его построить;

    ü как применить изученный материал на практике

    § 30. ВЫРАЖЕНИЯ И ИХ УПРОЩЕНИЕ

    Вы уже знаете, что такое буквенные выражения и умеете их упрощать с помощью законов сложения и умножения. Например, 2а ∙ (-4 b ) = -8 ab . В полученном выражении число -8 называют коэффициентом выражения.

    Имеет ли выражение cd коэффициент? Так. Он равен 1, поскольку cd - 1 ∙ cd .

    Вспомним, что преобразование выражения со скобками в выражение без скобок, называют раскрытием, скобок. Например: 5(2х + 4) = 10х+ 20.

    Обратная действие в этом примере - это вынесение общего множителя за скобки.

    Слагаемые, содержащие одинаковые буквенные множители, называют подобными слагаемыми. С помощью вынесения общего множителя за скобки возводят подобные слагаемые:

    5х + y + 4 - 2х + 6 y - 9 =

    = (5х - 2х) + (y + 6 y )+ (4 - 9) = = (5-2)* + (1 + 6)* y -5 =

    B х+ 7у - 5.

    Правила раскрытия скобок

    1. Если перед скобками стоит знак«+», то при раскрытии скобок знаки слагаемых в скобках сохраняют;

    2. Если перед скобками стоит знак «-», то при раскрытии скобок знаки слагаемых в скобках меняются на противоположные.

    Задача 1 . Упростите выражение:

    1) 4х+(-7х + 5);

    2) 15 y -(-8 + 7 y ).

    Решения. 1. Перед скобками стоит знак «+», поэтому при раскрытии скобок знаки всех слагаемых сохраняются:

    4х +(-7х + 5) = 4х - 7х + 5=-3х + 5.

    2. Перед скобками стоит знак«-», поэтому во время раскрытия скобок: знаки всех слагаемых меняются на противоположные:

    15 - (- 8 + 7у) = 15у + 8 - 7у = 8у +8.

    Для раскрытия скобок используют распределительную свойство умножения: а( b + c ) = ab + ас. Если а > 0, то знаки слагаемых b и с не изменяют. Если а < 0, то знаки слагаемых b и с меняют на противоположные.

    Задача 2. Упростите выражение:

    1) 2(6 y -8) + 7 y ;

    2)-5(2-5х) + 12.

    Решения. 1. Множитель 2 перед скобками е положительным, поэтому при раскрытии скобок знаки всех слагаемых сохраняем: 2(6 y - 8) + 7 y = 12 y - 16 + 7 y =19 y -16.

    2. Множитель -5 перед скобками е отрицательным, поэтому при раскрытии скобок знаки всех слагаемых меняем на противоположные:

    5(2 - 5х) + 12 = -10 + 25х +12 = 2 + 25х.

    Узнайте больше

    1. Слово «сумма» происходит от латинского summa , что означает «итог», «общее количество».

    2. Слово «плюс» происходит от латинского plus , что означает «больше», а слово «минус» - от латинского minus , что значит «меньше». Знаки «+» и«-» используют для обозначения действий сложения и вычитания. Эти знаки ввел чешский ученый Й. Видман в 1489 г. в книге «Быстрый и приятный счет для всех торговцев» (рис. 138).

    Рис. 138

    ВСПОМНИТЕ ГЛАВНОЕ

    1. Какие слагаемые называют подобными? Как возводят подобные слагаемые?

    2. Как раскрывают скобки, перед которыми стоит знак «+»?

    3. Как раскрывают скобки, перед которыми стоит знак «-»?

    4. Как раскрывают скобки, перед которыми стоит положительный множитель?

    5. Как раскрывают скобки, перед которыми стоит отрицательный множитель?

    1374". Назовите коэффициент выражения:

    1)12 а; 3)-5,6 ху;

    2)4 6; 4)-с.

    1375". Назовите слагаемые, которые отличаются только коэффициентом:

    1) 10а + 76-26 + а; 3) 5 n + 5 m -4 n + 4;

    2) bc -4 d - bc + 4 d ; 4)5х + 4у-х + у.

    Как называются такие слагаемые?

    1376". Есть ли подобными слагаемые в выражении:

    1)11а+10а; 3)6 n + 15 n ; 5) 25р - 10р + 15р;

    2) 14с-12; 4)12 m + m ; 6)8 k +10 k - n ?

    1377". Надо ли менять знаки слагаемых в скобках, раскрывая скобки в выражении:

    1)4 + (а+ 3 b ); 2)-c +(5-d ); 3) 16-(5 m -8 n )?

    1378°. Упростите выражение и подчеркните коэффициент:

    1379°. Упростите выражение и подчеркните коэффициент:

    1380°. Сведите подобные слагаемые:

    1) 4а - По + 6а - 2а; 4) 10 - 4 d - 12 + 4 d ;

    2) 4 b - 5 b + 4 + 5 b ; 5) 5а - 12 b - 7а + 5 b ;

    3)-7 ang="EN-US">c+ 5-3 c + 2; 6) 14 n - 12 m -4 n -3 m .

    1381°. Сведите подобные слагаемые:

    1) 6а - 5а + 8а -7а; 3) 5с + 4-2с-3с;

    2)9 b +12-8-46; 4)-7 n + 8 m - 13 n - 3 m .

    1382°. Вынесите общий множитель за скобки:

    1)1,2 а +1,2 b ; 3) -3 n - 1,8 m ; 5)-5 p + 2,5 k -0,5 t ;

    2) 0,5 с + 5 d ; 4) 1,2 n - 1,8 m ; 6)-8р - 10 k - 6 t .

    1383°. Вынесите общий множитель за скобки:

    1) 6а-12 b ; 3)-1,8 n -3,6 m ;

    2) -0,2 с + 1 4 d ; А) 3р - 0,9 k + 2,7 t .

    1384°. Раскройте скобки и сведите подобные слагаемые;

    1) 5 + (4а -4); 4) -(5 c - d ) + (4 d + 5с);

    2) 17х-(4х-5); 5) (n - m )- (-2 m - 3 n );

    3) (76 - 4) - (46 + 2); 6) 7(-5х + у) - (-2у + 4х) + (х - 3у).

    1385°. Раскройте скобки и сведите подобные слагаемые:

    1) 10а + (4 - 4а); 3) (с - 5 d ) - (- d + 5с);

    2) -(46- 10) + (4- 56); 4)-(5 n + m ) + (-4 n + 8 m )-(2 m -5 n ).

    1386°. Раскройте скобки и найдите значение выражения:

    1)15+(-12+ 4,5); 3) (14,2-5)-(12,2-5);

    2) 23-(5,3-4,7); 4) (-2,8 + 13)-(-5,6 + 2,8) + (2,8-13).

    1387°. Раскройте скобки и найдите значение выражения:

    1) (14- 15,8)- (5,8 + 4);

    2)-(18+22,2)+ (-12+ 22,2)-(5- 12).

    1388°. Раскройте скобки:

    1)0,5 ∙ (а + 4); 4) (n - m ) ∙ (-2,4 p );

    2)-с ∙ (2,7-1,2 d ); 5)3 ∙ (-1,5 р + к - 0,2 t );

    3) 1,6 ∙ (2 n + m ); 6) (4,2 p - 3,5 k -6 t ) ∙ (-2а).

    1389°. Раскройте скобки:

    1) 2,2 ∙ (х-4); 3)(4 c - d )∙(-0,5 y );

    2) -2 ∙ (1,2 n - m ); 4)6- (-р + 0,3 k - 1,2 t ).

    1390. Упростите выражение:

    1391. Упростите выражение:

    1392. Сведите подобные слагаемые:

    1393. Сведите подобные слагаемые:

    1394. Упростите выражение:

    1)2,8 - (0,5 а + 4) - 2,5 ∙ (2а - 6);

    2) -12 ∙ (8 - 2, by ) + 4,5 ∙ (-6 y - 3,2);

    4) (-12,8 m + 24,8 n ) ∙ (-0,5)-(3,5 m -4,05 m ) ∙ 2.

    1395. Упростите выражение:

    1396. Найдите значение выражения;

    1) 4-(0,2 а-3)-(5,8 а-16), если а = -5;

    2) 2-(7-56)+ 156-3∙(26+ 5), если = -0,8;

    m = 0,25, n = 5,7.

    1397. Найдите значение выражения:

    1) -4∙ (я-2) + 2∙(6x - 1), если х =-0,25;

    1398*. Найдите ошибку в решении:

    1)5- (а-2,4)-7 ∙ (-а+ 1,2) = 5а - 12-7а + 8,4 = -2а-3,6;

    2) -4 ∙ (2,3 а - 6) + 4,2 ∙ (-6 - 3,5 а) = -9,2 а + 46 + 4,26 - 14,7 а = -5,5 а + 8,26.

    1399*. Раскройте скобки и упростите выражение:

    1) 2аb - 3(6(4а - 1) - 6(6 - 10а)) + 76;

    1400*. Расставьте скобки так, чтобы получить правильное равенство:

    1)а-6-а + 6 = 2а; 2) a -2 b -2 a + b = 3 a -3 b .

    1401*. Докажите, что для любых чисел а и b , если а > b , то выполняется равенство:

    1) (а + b ) + (а- b ) = 2а; 2) (а + b ) - (a - b ) = 2 b .

    Будет ли правильным данное равенство, если: а) а < b ; б) а = 6?

    1402*. Докажите, что для любого натурального числа а среднее арифметическое предыдущего и следующего за ним чисел равна числу а.

    ПРИМЕНИТЕ НА ПРАКТИКЕ

    1403. Для приготовления фруктового десерта для трех человек нужно: 2 яблока, 1 апельсин, 2 банана и 1 киви. Как составить буквенный выражение для определения количества фруктов, необходимых для приготовления десерта я для гостей? Помогите Марин эти подсчитать, сколько фруктов нужно купить, если к ней в гости придут: 1) 5 друзей; 2) 8 друзей.

    1404. Составьте буквенный выражение для определения времени, необходимого для выполнения домашнего задания по математике, если:

    1) на решения задач потрачено а мин; 2) упрощение выражений в 2 раза больше, чем на решение задач. Сколько времени выполнял домашнее задание Василько, если на решение задач он потратил 15 мин?

    1405. Обед в школьной ‘столовой состоит из салата, борща, голубцов и компота. Стоимость салата составляет 20 %, борща - 30 %, голубцов - 45 %, компота - 5 % общей стоимости всего обеда. Составьте выражение для нахождения стоимости обеда в школьной столовой. Сколько стоит обед, если цена салата - 2 грн?

    ЗАДАЧИ НА ПОВТОРЕНИЕ

    1406. Решите уравнение:

    1407. На мороженое Таня потратила всех имеющихся денег, а на конфеты - остальных. Сколько денег осталось у Тани,

    если конфеты стоят 12 грн?

    С помощью любого языка можно выразить одну и ту же информацию разными словами и оборотами. Не является исключением и математический язык. Но одно и то же выражение можно эквивалентным образом записать по-разному. И в некоторых ситуациях одна из записей является более простой. Об упрощении выражений мы и поговорим на этом уроке.

    Люди общаются на разных языках. Для нас важным сравнением является пара «русский язык - математический язык». Одну и ту же информацию можно сообщить на разных языках. Но, кроме этого, её можно и на одном языке произнести по-разному.

    Например: «Петя дружит с Васей», «Вася дружит с Петей», «Петя с Васей друзья». Сказано по-разному, но одно и то же. По любой из этих фраз мы бы поняли, о чём идёт речь.

    Давайте посмотрим на такую фразу: «Мальчик Петя и мальчик Вася дружат». Мы поняли, о чем идет речь. Тем не менее, нам не нравится, как звучит эта фраза. Не можем ли мы её упростить, сказать то же, но проще? «Мальчик и мальчик» - можно же один раз сказать: «Мальчики Петя и Вася дружат».

    «Мальчики»… Разве по именам не понятно, что они не девочки. Убираем «мальчики»: «Петя и Вася дружат». А слово «дружат» можно заменить на «друзья»: «Петя и Вася - друзья». В итоге первую, длинную некрасивую фразу заменили эквивалентным высказыванием, которое проще сказать и проще понять. Мы эту фразу упростили. Упростить- значит сказать проще, но не потерять, не исказить смысл.

    В математическом языке происходит примерно то же самое. Одно и то же можно сказать, записать по-разному. Что значит упростить выражение? Это значит, что для исходного выражения существует множество эквивалентных выражений, то есть тех, что означают одно и то же. И из всего этого множества мы должны выбрать самое простое, на наш взгляд, или самое подходящее для наших дальнейших целей.

    Например, рассмотрим числовое выражение . Ему эквивалентное будет .

    Также будет эквивалентно первым двум: .

    Получается, что мы упростили наши выражения и нашли самое краткое эквивалентное выражение.

    Для числовых выражений всегда нужно выполнять все действия и получать эквивалентное выражение в виде одного числа.

    Рассмотрим пример буквенного выражения . Очевидно, что более простое будет .

    При упрощении буквенных выражений необходимо выполнить все действия, которые возможны.

    Всегда ли нужно упрощать выражение? Нет, иногда нам удобнее будет эквивалентная, но более длинная запись.

    Пример : от числа нужно отнять число .

    Вычислить можно, но если бы первое число было представлено своей эквивалентной записью: , то вычисления были бы мгновенными: .

    То есть упрощенное выражение не всегда нам выгодно для дальнейших вычислений.

    Тем не менее очень часто мы сталкиваемся с заданием, которое так и звучит «упростить выражение».

    Упростить выражение: .

    Решение

    1) Выполним действия в первых и во вторых скобках: .

    2) Вычислим произведения: .

    Очевидно, последнее выражение имеет более простой вид, чем начальное. Мы его упростили.

    Для того чтобы упростить выражение, его необходимо заменить на эквивалентное (равное).

    Для определения эквивалентного выражения необходимо:

    1) выполнить все возможные действия,

    2) пользоваться свойствами сложение, вычитания, умножения и деления для упрощения вычислений.

    Свойства сложения и вычитания:

    1. Переместительное свойство сложения: от перестановки слагаемых сумма не меняется.

    2. Сочетательное свойство сложения: чтобы к сумме двух чисел прибавить третье число, можно к первому числу прибавить сумму второго и третьего числа.

    3. Свойство вычитания суммы из числа: чтобы вычесть сумму из числа, можно вычитать каждое слагаемое по отдельности.

    Свойства умножения и деления

    1. Переместительное свойство умножения: от перестановки множителей произведение не меняется.

    2. Сочетательное свойство: чтобы умножить число на произведение двух чисел, можно сначала умножить его на первый множитель, а потом полученное произведение умножить на второй множитель.

    3. Распределительное свойство умножения: чтобы число умножить на сумму, нужно его умножить на каждое слагаемое по отдельности.

    Посмотрим, как мы на самом деле делаем вычисления в уме.

    Вычислите:

    Решение

    1) Представим как

    2) Представим первый множитель как сумму разрядных слагаемых и выполним умножение:

    3) можно представить как и выполнить умножение:

    4) Заменим первый множитель эквивалентной суммой:

    Распределительный закон можно использовать и в обратную сторону: .

    Выполните действия:

    1) 2)

    Решение

    1) Для удобства можно воспользоваться распределительным законом, только использовать его в обратную сторону - вынести общий множитель за скобки.

    2) Вынесем за скобки общий множитель

    Необходимо купить линолеум в кухню и прихожую. Площадь кухни - , прихожей - . Есть три вида линолеумов: по , и рублей за . Сколько будет стоить каждый из трёх видов линолеума? (Рис. 1)

    Рис. 1. Иллюстрация к условию задачи

    Решение

    Способ 1. Можно по отдельности найти, сколько денег потребуется на покупку линолеума в кухню, а потом в прихожую и полученные произведения сложить.

    С помощью любого языка можно выразить одну и ту же информацию разными словами и оборотами. Не является исключением и математический язык. Но одно и то же выражение можно эквивалентным образом записать по-разному. И в некоторых ситуациях одна из записей является более простой. Об упрощении выражений мы и поговорим на этом уроке.

    Люди общаются на разных языках. Для нас важным сравнением является пара «русский язык - математический язык». Одну и ту же информацию можно сообщить на разных языках. Но, кроме этого, её можно и на одном языке произнести по-разному.

    Например: «Петя дружит с Васей», «Вася дружит с Петей», «Петя с Васей друзья». Сказано по-разному, но одно и то же. По любой из этих фраз мы бы поняли, о чём идёт речь.

    Давайте посмотрим на такую фразу: «Мальчик Петя и мальчик Вася дружат». Мы поняли, о чем идет речь. Тем не менее, нам не нравится, как звучит эта фраза. Не можем ли мы её упростить, сказать то же, но проще? «Мальчик и мальчик» - можно же один раз сказать: «Мальчики Петя и Вася дружат».

    «Мальчики»… Разве по именам не понятно, что они не девочки. Убираем «мальчики»: «Петя и Вася дружат». А слово «дружат» можно заменить на «друзья»: «Петя и Вася - друзья». В итоге первую, длинную некрасивую фразу заменили эквивалентным высказыванием, которое проще сказать и проще понять. Мы эту фразу упростили. Упростить- значит сказать проще, но не потерять, не исказить смысл.

    В математическом языке происходит примерно то же самое. Одно и то же можно сказать, записать по-разному. Что значит упростить выражение? Это значит, что для исходного выражения существует множество эквивалентных выражений, то есть тех, что означают одно и то же. И из всего этого множества мы должны выбрать самое простое, на наш взгляд, или самое подходящее для наших дальнейших целей.

    Например, рассмотрим числовое выражение . Ему эквивалентное будет .

    Также будет эквивалентно первым двум: .

    Получается, что мы упростили наши выражения и нашли самое краткое эквивалентное выражение.

    Для числовых выражений всегда нужно выполнять все действия и получать эквивалентное выражение в виде одного числа.

    Рассмотрим пример буквенного выражения . Очевидно, что более простое будет .

    При упрощении буквенных выражений необходимо выполнить все действия, которые возможны.

    Всегда ли нужно упрощать выражение? Нет, иногда нам удобнее будет эквивалентная, но более длинная запись.

    Пример : от числа нужно отнять число .

    Вычислить можно, но если бы первое число было представлено своей эквивалентной записью: , то вычисления были бы мгновенными: .

    То есть упрощенное выражение не всегда нам выгодно для дальнейших вычислений.

    Тем не менее очень часто мы сталкиваемся с заданием, которое так и звучит «упростить выражение».

    Упростить выражение: .

    Решение

    1) Выполним действия в первых и во вторых скобках: .

    2) Вычислим произведения: .

    Очевидно, последнее выражение имеет более простой вид, чем начальное. Мы его упростили.

    Для того чтобы упростить выражение, его необходимо заменить на эквивалентное (равное).

    Для определения эквивалентного выражения необходимо:

    1) выполнить все возможные действия,

    2) пользоваться свойствами сложение, вычитания, умножения и деления для упрощения вычислений.

    Свойства сложения и вычитания:

    1. Переместительное свойство сложения: от перестановки слагаемых сумма не меняется.

    2. Сочетательное свойство сложения: чтобы к сумме двух чисел прибавить третье число, можно к первому числу прибавить сумму второго и третьего числа.

    3. Свойство вычитания суммы из числа: чтобы вычесть сумму из числа, можно вычитать каждое слагаемое по отдельности.

    Свойства умножения и деления

    1. Переместительное свойство умножения: от перестановки множителей произведение не меняется.

    2. Сочетательное свойство: чтобы умножить число на произведение двух чисел, можно сначала умножить его на первый множитель, а потом полученное произведение умножить на второй множитель.

    3. Распределительное свойство умножения: чтобы число умножить на сумму, нужно его умножить на каждое слагаемое по отдельности.

    Посмотрим, как мы на самом деле делаем вычисления в уме.

    Вычислите:

    Решение

    1) Представим как

    2) Представим первый множитель как сумму разрядных слагаемых и выполним умножение:

    3) можно представить как и выполнить умножение:

    4) Заменим первый множитель эквивалентной суммой:

    Распределительный закон можно использовать и в обратную сторону: .

    Выполните действия:

    1) 2)

    Решение

    1) Для удобства можно воспользоваться распределительным законом, только использовать его в обратную сторону - вынести общий множитель за скобки.

    2) Вынесем за скобки общий множитель

    Необходимо купить линолеум в кухню и прихожую. Площадь кухни - , прихожей - . Есть три вида линолеумов: по , и рублей за . Сколько будет стоить каждый из трёх видов линолеума? (Рис. 1)

    Рис. 1. Иллюстрация к условию задачи

    Решение

    Способ 1. Можно по отдельности найти, сколько денег потребуется на покупку линолеума в кухню, а потом в прихожую и полученные произведения сложить.



    Последние материалы раздела:

    Изменение вида звездного неба в течение суток
    Изменение вида звездного неба в течение суток

    Тема урока «Изменение вида звездного неба в течение года». Цель урока: Изучить видимое годичное движение Солнца. Звёздное небо – великая книга...

    Развитие критического мышления: технологии и методики
    Развитие критического мышления: технологии и методики

    Критическое мышление – это система суждений, способствующая анализу информации, ее собственной интерпретации, а также обоснованности...

    Онлайн обучение профессии Программист 1С
    Онлайн обучение профессии Программист 1С

    В современном мире цифровых технологий профессия программиста остается одной из самых востребованных и перспективных. Особенно высок спрос на...