Кодирование генов. Что такое генетический код: общие сведения

Министерство образования и науки Российской Федерации Федеральное агентство по образованию

Государственное образовательное учреждение высшего профессионального образования "Алтайский государственный технический университет им. И.И. Ползунова"

Кафедра "Естествознания и системного анализа"

Реферат по теме "Генетический код"

1. Понятие генетического кода

3. Генетическая информация

Список литературы


1. Понятие генетического кода

Генетический код - свойственная живым организмам единая система записи наследственной информации в молекулах нуклеиновых кислот в виде последовательности нуклеотидов. Каждый нуклеотид обозначается заглавной буквой, с которой начинается название азотистого основания, входящего в его состав: - А (A) аденин; - Г (G) гуанин; - Ц (C) цитозин; - Т (T) тимин (в ДНК) или У (U) урацил (в мРНК).

Реализация генетического кода в клетке происходит в два этапа: транскрипцию и трансляцию.

Первый из них протекает в ядре; он заключается в синтезе молекул и-РНК на соответствующих участках ДНК. При этом последовательность нуклеотидов ДНК "переписывается" в нуклеотидную последовательность РНК. Второй этап протекает в цитоплазме, на рибосомах; при этом последовательность нуклеотидов и-РНК переводится в последовательность аминокислот в белке: этот этап протекает при участии транспортной РНК (т-РНК) и соответствующих ферментов.

2. Свойства генетического кода

1. Триплетность

Каждая аминокислота кодируется последовательностью из 3-х нуклеотидов.

Триплет или кодон - последовательность из трех нуклеотидов, кодирующая одну аминокислоту.


Код не может быть моноплетным, поскольку 4 (число разных нуклеотидов в ДНК) меньше 20. Код не может быть дуплетным, т.к. 16 (число сочетаний и перестановок из 4-х нуклеотидов по 2) меньше 20. Код может быть триплетным, т.к. 64 (число сочетаний и перестановок из 4-х по 3) больше 20.

2. Вырожденность.

Все аминокислоты, за исключением метионина и триптофана, кодируются более чем одним триплетом: 2 аминокислоты по 1 триплету = 2 9 аминокислот по 2 триплета = 18 1 аминокислота 3 триплета = 3 5 аминокислот по 4 триплета = 20 3 аминокислоты по 6 триплетов = 18 Всего 61 триплет кодирует 20 аминокислот.

3. Наличие межгенных знаков препинания.

Ген- это участок ДНК, кодирующий одну полипептидную цепь или одну молекулу tРНК, rРНК или sРНК.

Гены tРНК, rРНК, sРНК белки не кодируют.

В конце каждого гена, кодирующего полипептид, находится, по меньшей мере, один из 3-х терминирующих кодонов, или стоп-сигналов: UAA, UAG, UGA. Они терминируют трансляцию.

Условно к знакам препинания относится и кодон AUG - первый после лидерной последовательности. Он выполняет функцию заглавной буквы. В этой позиции он кодирует формилметионин (у прокариот).

4. Однозначность.

Каждый триплет кодирует лишь одну аминокислоту или является терминатором трансляции.

Исключение составляет кодон AUG. У прокариот в первой позиции (заглавная буква) он кодирует формилметионин, а в любой другой - метионин.

5. Компактность, или отсутствие внутригенных знаков препинания.

Внутри гена каждый нуклеотид входит в состав значащего кодона.

В 1961г. Сеймур Бензер и Френсис Крик экспериментально доказали триплетность кода и его компактость.

Суть эксперимента: "+" мутация - вставка одного нуклеотида. "-" мутация - выпадение одного нуклеотида. Одиночная "+" или "-" мутация в начале гена портит весь ген. Двойная "+" или "-" мутация тоже портит весь ген. Тройная "+" или "-" мутация в начале гена портит лишь его часть. Четверная "+" или "-" мутация опять портит весь ген.

Эксперимент доказывает, что код триплетен и внутри гена нет знаков препинания. Эксперимент был проведен на двух рядом расположенных фаговых генах и показал, кроме того, наличие знаков препинания между генами.

3. Генетическая информация

Генетическая информация - программа свойств организма, получаемая от предков и заложенная в наследственных структурах в виде генетического кода.

Предполагается, что становление генетической информации шло по схеме: геохимические процессы - минералообразование - эволюционный катализ ( автокатализ).

Возможно, что первые примитивные гены представляли собой микрокристаллические кристаллы глины, причем каждый новый слой глины выстраивается в соответствии с особенностями строения предыдущего, как бы получая от него информацию о строении.

Реализация генетической информации происходит в процессе синтеза белковых молекул с помощью трех РНК: информационной (иРНК), транспортной (тРНК) и рибосомальной (рРНК). Процесс передачи информации идет: - по каналу прямой связи: ДНК - РНК - белок; и - по каналу обратной связи: среда - белок - ДНК.

Живые организмы способны получать, сохранять и передавать информацию. Причем живым организмам присуще стремление полученную информацию о себе и окружающем мире использовать максимально эффективно. Наследственная информация, заложенная в генах и необходимая живому организму для существования, развития и размножения передается от каждого индивида его потомкам. Эта информация определяет направление развития организма, и в процессе взаимодействия его с окружающей средой реакция на ее индивида может искажаться, обеспечивая тем самым эволюцию развития потомков. В процессе эволюции живого организма возникает и запоминается новая информация, в том числе для него возрастает ценность информации.

В ходе реализации наследственной информации в определенных условиях внешней среды формируется фенотип организмов данного биологического вида.

Генетическая информация определяет морфологическое строение, рост, развитие, обмен веществ, психический склад, предрасположенность к заболеваниям и генетические пороки организма.

Многие ученые, справедливо подчеркивая роль информации в становлении и эволюции живого, отмечали это обстоятельство в качестве одного из главных критериев жизни. Так, В.И. Карагодин считает: "Живое есть такая форма существования информации и кодируемых ею структур, которая обеспечивает воспроизведение этой информации в подходящих условиях внешней среды". Связь информации с жизнью отмечает и А.А. Ляпунов: "Жизнь - это высокоупорядоченное состояние вещества, использующее для выработки сохраняющихся реакций информацию, кодируемую состояниями отдельных молекул". Известный наш астрофизик Н.С. Кардашев также подчеркивает информационную составляющую жизни: "Жизнь возникает благодаря возможности синтеза особого рода молекул, способных запоминать и использовать вначале самую простую информацию об окружающей среде и собственной структуре, которую они используют для самосохранения, для воспроизводства и, что для нас особенно важно, получения еще большего количества информации". На эту способность живых организмов сохранять и передавать информацию обращает внимание в своей книге "Физика бессмертия" эколог Ф. Типлер: "Я определяю жизнь как некую закодированную информацию, которая сохраняется естественным отбором". Более того, он считает, если это так, то система жизнь - информация является вечной, бесконечной и бессмертной.

Раскрытие генетического кода и установление закономерностей молекулярной биологии показали необходимость соединения современной генетики и дарвиновской теории эволюции. Так родилась новая биологическая парадигма - синтетическая теория эволюции (СТЭ), которую можно рассматривать уже как неклассическую биологию.

Основные идеи эволюции Дарвина с его триадой - наследственностью, изменчивостью, естественным отбором - в современном представлении эволюции живого мира дополняются представлениями не просто естественного отбора, а такого отбора, который детерминирован генетически. Началом разработки синтетической или общей эволюции можно считать работы С.С. Четверикова по популяционной генетике, в которых было показано, что отбору подвергаются не отдельные признаки и особи, а генотип всей популяции, но осуществляется он через фенотипические признаки отдельных особей. Это приводит к распространению полезных изменений во всей популяции. Таким образом, механизм эволюции реализуется как через случайные мутации на генетическом уровне, так и через наследование наиболее ценных признаков (ценности информации!), определяющих адаптацию мутационных признаков к окружающей среде, обеспечивая наиболее жизнеспособное потомство.

Сезонные изменения климата, различных природные или техногенные катастрофы с одной стороны, приводят к изменению частоты повторяемости генов в популяциях и, как следствие, к снижению наследственной изменчивости. Этот процесс иногда называют дрейфом генов. А с другой - к изменениям концентрации различных мутаций и уменьшению разнообразия генотипов, содержащихся в популяции, что может привести к изменениям направленности и интенсивности действия отбора.


4. Расшифровка генетического кода человека

В мае 2006 года учёные, работающие над расшифровкой генома человека, опубликовали полную генетическую карту хромосомы 1, которая была последней из не полностью секвенсированной хромосомой человека.

Предварительная генетическая карта человека была опубликована в 2003 году, что ознаменовало формальное завершение проекта Human Genome. В его рамках были секвенсированы фрагменты генома, содержащие 99% генов человека. Точность идентификации генов составила 99,99%. Однако на момент завершения проекта полностью секвенсированы были лишь четыре из 24 хромосом. Дело в том, что помимо генов хромосомы содержат фрагменты, не кодирующие никаких признаков и не участвующие в синтезе белков. Роль, которые эти фрагменты играют в жизни организма пока остается неизвестной, но все больше исследователей склоняются к мнению, что их изучение требует самого пристального внимания.

Под генетическим кодом принято понимать такую систему знаков, обозначающих последовательное расположение соединений нуклеотидов в ДНКа и РНКа, которая соответствует другой знаковой системе, отображающей последовательность аминокислотных соединений в молекуле белка.

Это важно!

Когда учёным удалось изучить свойства генетического кода, одним из главных была признана универсальность. Да, как ни странно это звучит, все объединяет один, универсальный, общий генетический код. Формировался он на протяжении большого временного промежутка, и процесс закончился около 3,5 миллиардов лет назад. Следовательно, в структуре кода можно проследить следы его эволюции, от момента зарождения до сегодняшнего дня.

Когда говорится о последовательности расположения элементов в генетическом коде, имеется в виду, что она далеко не хаотична, а имеет строго определённый порядок. И это тоже во многом определяет свойства генетического кода. Это равнозначно расположению букв и слогов в словах. Стоит нарушить привычный порядок, и большинство того, что мы будем читать на книжных или газетных страницах, превратится в нелепую абракадабру.

Основные свойства генетического кода

Обычно код несёт в себе какую-либо информацию, зашифрованную особым образом. Для того чтобы расшифровать кода, необходимо знать отличительные особенности.

Итак, основные свойства генетического кода - это:

  • триплетность;
  • вырожденность или избыточность;
  • однозначность;
  • непрерывность;
  • уже указанная выше универсальность.

Остановимся подробнее на каждом свойстве.

1. Триплетность

Это когда три соединения нуклеотидов образуют последовательную цепочку внутри молекулы (т.е. ДНК или же РНК). В результате создаётся соединение триплета или кодирует одну из аминокислот, место её нахождения в цепи пептидов.

Различают кодоны (они же кодовые слова!) по их последовательности соединения и по типу тех азотистых соединений (нуклеотидов), которые входят в их состав.

В генетике принято выделять 64 кодоновых типа. Они могут образовывать комбинации из четырёх типов нуклеотидов по 3 в каждом. Это равносильно возведению числа 4 в третью степень. Таким образом, возможно образование 64-х нуклеотидных комбинаций.

2. Избыточность генетического кода

Это свойство прослеживается тогда, когда для шифрования одной аминокислоты требуется несколько кодонов, обычно в пределах 2-6. И только и триптофана можно кодировать с помощью одного триплета.

3. Однозначность

Она входит в свойства генетического кода как показатель здоровой генной наследственности. Например, о хорошем состоянии крови, о нормальном гемоглобине может рассказать медикам стоящий на шестом месте в цепочке триплет ГАА. Именно он несёт информацию о гемоглобине, и им же кодируется А если человек болен анемией, один из нуклеотидов заменяется на другую букву кода - У, что и является сигналом заболевания.

4. Непрерывность

При записи этого свойства генетического кода следует помнить, что кодоны, как звенья цепочки, располагаются не на расстоянии, а в прямой близости, друг за другом в нуклеиновой кислотной цепи, и цепь эта не прерывается - в ней нет начала или конца.

5. Универсальность

Никогда не следует забывать, что всё сущее на Земле объединено общим генетическим кодом. И потому у примата и человека, у насекомого и птицы, столетнего баобаба и едва проклюнувшейся из-под земли травинки одинаковыми триплетами кодируются схожие аминокислоты.

Именно в генах заложена основная информация о свойствах того или иного организма, своего рода программа, которую организм получает в наследство от живших ранее и которая существует как генетический код.

Проработав эти темы, Вы должны уметь:

  1. Охарактеризовать приведенные ниже понятия и объяснить соотношения между ними:
    • полимер, мономер;
    • углевод, моносахарид, дисахарид, полисахарид;
    • липид, жирная кислота, глицерин;
    • аминокислота, пептидная связь, белок;
    • катализатор, фермент, активный центр;
    • нуклеиновая кислота, нуклеотид.
  2. Перечислить 5-6 причин, которые делают воду столь важным компонентом живых систем.
  3. Назвать четыре главных класса органических соединений содержащихся в живых организмах; охарактеризовать роль каждого из них.
  4. Объяснить, почему контролируемые ферментами реакции зависят от температур, рН и присутствием коферментов.
  5. Рассказать о роли АТФ в энергетическом хозяйстве клетки.
  6. Назвать исходные вещества, основные этапы и конечные продукты реакций, вызываемых светом и реакции фиксации углерода.
  7. Дать краткое описание общей схемы клеточного дыхания, из которого было бы ясно, какое место занимают реакции гликолиза, цикла Г.Кребса (цикла лимонной кислоты) и цепь переноса электронов.
  8. Сравнить дыхание и брожение.
  9. Описать строение молекулы ДНК и объяснить почему число остатков аденина равно числу остатков тимина, а число остатков гуанина равно числу остатков цитозина.
  10. Составить краткую схему синтеза РНК на ДНК (транскрипция) у прокариот.
  11. Описать свойства генетического кода и объяснить, почему он должен быть триплетным.
  12. Исходя из данной цепи ДНК и таблицы кодонов определить комплементарную последовательность матричной РНК, указать кодоны транспортной РНК и аминокислотную последовательность, которая образуется в результате трансляции.
  13. Перечислить этапы белкового синтеза на уровне рибосом.

Алгоритм решения задач.

Тип 1. Самокопирование ДНК.

Одна из цепочек ДНК имеет такую последовательность нуклеотидов:
АГТАЦЦГАТАЦТЦГАТТТАЦГ...
Какую последовательность нуклеотидов имеет вторая цепочка той же молекулы?

Чтобы написать последовательность нуклеотидов второй цепочки молекулы ДНК, когда известна последовательность первой цепочки, достаточно заменить тимин на аденин, аденин на тимин, гуанин- на цитозин и цитозин на гуанин. Произведя такую замену, получаем последовательность:
ТАЦТГГЦТАТГАГЦТАААТГ...

Тип 2. Кодирование белков.

Цепочка аминокислот белка рибонуклеазы имеет следующее начало: лизин-глутамин-треонин-аланин-аланин-аланин-лизин...
С какой последовательности нуклеотидов начинается ген, соответствующий этому белку?

Для этого следует воспользоваться таблицей генетического кода. Для каждой аминокислоты находим ее кодовое обозначение в виде соответствующей тройки нуклеотидов и выписываем его. Располагая эти тройки друг за другом в таком же порядке, в каком идут соответствующие им аминокислоты, получаем формулу строения участка информационной РНК. Как правило таких троек несколько, выбор делается по Вашему решению (но, берется только одна из троек). Решений соответственно может быть несколько.
АААЦАААЦУГЦГГЦУГЦГААГ

С какой последовательности аминокислот начинается белок, если он закодирован такой последовательностью нуклеотидов:
АЦГЦЦЦАТГГЦЦГГТ...

По принципу комплементарности находим строение участка информационной РНК, образующейся на данном отрезке молекулы ДНК:
УГЦГГГУАЦЦГГЦЦА...

Затем обращаемся к таблице генетического кода и для каждой тройки нуклеотидов, начиная с первой, находим и выписываем соответствующую ей аминокислоту:
Цистеин-глицин-тирозин-аргинин-пролин-...

Иванова Т.В., Калинова Г.С., Мягкова А.Н. "Общая биология". Москва, "Просвещение", 2000

  • Тема 4. "Химический состав клетки." §2-§7 стр. 7-21
  • Тема 5. "Фотосинтез." §16-17 стр. 44-48
  • Тема 6. "Клеточное дыхание." §12-13 стр. 34-38
  • Тема 7. "Генетическая информация." §14-15 стр. 39-44

В обмене веществ организма ведущая роль принадлежит белкам и нуклеиновым кислотам.
Белковые вещества составляют основу всех жизненно важных структур клетки, обладают необычайно высокой реакционной способностью, наделены каталитическими функциями.
Нуклеиновые кислоты входят в состав важнейшего органа клетки - ядра, а также цитоплазмы, рибосом, митохондрий и т. д. Нуклеиновые кислоты играют важную, первостепенную роль в наследственности, изменчивости организма, в синтезе белка.

План синтеза белка хранится в ядре клетки, а непосредственно синтез происходит вне ядра, поэтому необходима служба доставки закодированного плана из ядра к месту синтеза. Такую службу доставки исполняют молекулы РНК.

Процесс начинается в ядре клетки: раскручивается и открывается часть «лестницы» ДНК. Благодаря этому буквы РНК образуют связи с открытыми буквами ДНК одной из нитей ДНК. Фермент переносит буквы РНК, чтобы соединить их в нить. Так буквы ДНК «переписываются» в буквы РНК. Новообразованная цепочка РНК отделяется, и «лестница» ДНК снова закручивается. Процесс считки информации с ДНК и синтеза по ее матрице РНК называется транскрипцией , а синтезированная РНК называется информационной или и-РНК .

После дальнейших изменений этот вид закодированной и-РНК готов. и-РНК выходит из ядра и направляется к месту синтеза белка, где буквы и-РНК расшифровываются. Каждый набор из трех букв и-РНК образует «букву», обозначающее одну конкретную аминокислоту.

Другой вид РНК отыскивает эту аминокислоту, захватывает ее с помощью фермента и доставляет к месту синтеза белка. Эта РНК называется транспортной, или т-РНК. По мере прочтения и перевода сообщения и-РНК цепочка аминокислот растет. Эта цепочка закручивается и укладывается в уникальную форму, создавая один вид белка. Примечателен даже процесс укладки белка: на то, чтобы с помощью компьютера просчитать все варианты укладки белка среднего размера, состоящего из 100 аминокислот, потребовалось бы 1027 (!) лет. А для образования в организме цепочки из 20 аминокислот требуется не более одной секунды, и этот процесс происходит непрерывно во всех клетках тела.

Гены, генетический код и его свойства.

На Земле живет около 7 млрд людей. Если не считать 25-30 млн пар однояйцовых близнецов, то генетически все люди разные : каждый уникален, обладает неповторимыми наследственными особенностями, свойствами характера, способностями, темпераментом.

Такие различия объясняются различиями в генотипах -наборах генов организма; у каждого он уникален. Генетические признаки конкретного организма воплощаются в белках - следовательно, и строение белка одного человека отличается, хотя и совсем немного, от белка другого человека.

Это не означает , что у людей не встречается совершенно одинаковых белков. Белки, выполняющие одни и те же функции, могут быть одинаковыми или совсем незначительно отличаться одной-двумя аминокислотами друг от друга. Но не существует на Земле людей (за исключением однояйцовых близнецов), у которых все белки были бы одинаковы .

Информация о первичной структуре белка закодирована в виде последовательности нуклеотидов в участке молекулы ДНК, гене – единице наследственной информации организма. Каждая молекула ДНК содержит множество генов. Совокупность всех генов организма составляет его генотип . Таким образом,

Ген – единица наследственной информации организма, которой соответствует отдельный участок ДНК

Кодирование наследственной информации происходит с помощью генетического кода , который универсален для всех организмов и отличается лишь чередованием нуклеотидов, образующих гены, и кодирующих белки конкретных организмов.

Генетический код состоит из троек (триплетов) нуклеотидов ДНК, комбинирующихся в разной последовательности (ААТ, ГЦА, АЦГ, ТГЦ и т.д.), каждый из которых кодирует определенную аминокислоту (которая будет встроена в полипептидную цепь).

Собственно кодом считается последовательность нуклеотидов в молекуле и-РНК , т.к. она снимает информацию с ДНК (процесс транскрипции ) и переводит ее в последовательность аминокислот в молекулах синтезируемых белков (процесс трансляции ).
В состав и-РНК входят нуклеотиды А-Ц-Г-У, триплеты которых называются кодонами : триплет на ДНК ЦГТ на и-РНК станет триплетом ГЦА, а триплет ДНК ААГ станет триплетом УУЦ. Именно кодонами и-РНК отражается генетический код в записи.

Таким образом, генетический код - единая система записи наследственной информации в молекулах нуклеиновых кислот в виде последовательности нуклеотидов . Генетический код основан на использовании алфавита, состоящего всего из четырех букв-нуклеотидов, отличающихся азотистыми основаниями: А, Т, Г, Ц.

Основные свойства генетического кода:

1. Генетический код триплетен . Триплет (кодон) - последовательность трех нуклеотидов, кодирующая одну аминокислоту. Поскольку в состав белков входит 20 аминокислот, то очевидно, что каждая из них не может кодироваться одним нуклеотидом (поскольку в ДНК всего четыре типа нуклеотидов, то в этом случае 16 аминокислот остаются незакодированными ). Двух нуклеотидов для кодирования аминокислот также не хватает, поскольку в этом случае могут быть закодированы только 16 аминокислот. Значит, наименьшее число нуклеотидов, кодирующих одну аминокислоту, должно быть не менее трех. В этом случае число возможных триплетов нуклеотидов составляет 43 = 64.

2. Избыточность (вырожденность ) кода является следствием его триплетности и означает то, что одна аминокислота может кодироваться несколькими триплетами (поскольку аминокислот 20, а триплетов - 64), за исключением метионина и триптофана, которые кодируются только одним триплетом. Кроме того, некоторые триплеты выполняют специфические функции: в молекуле и-РНК триплеты УАА, УАГ, УГА - являются терминирующими кодонами, т. е. стоп -сигналами, прекращающими синтез полипептидной цепи. Триплет, соответствующий метионину (АУГ), стоящий в начале цепи ДНК, не кодирует аминокислоту, а выполняет функцию инициирования (возбуждения) считывания.

3. Однозначность кода - одновременно с избыточностью коду присуще свойство однозначности : каждому кодону соответствует только одна определенная аминокислота.

4. Коллинеарность кода, т.е. последовательность нуклеотидов в гене точно соответствует последовательности аминокислот в белке.

5. Генетический код неперекрываем и компактен , т. е. не содержит «знаков препинания». Это значит, что процесс считывания не допускает возможности перекрывания колонов (триплетов), и, начавшись на определенном кодоне, считывание идет непрерывно триплет за триплетом вплоть до стоп -сигналов (терминирующих кодонов ).

6. Генетический код универсален , т. е. ядерные гены всех организмов одинаковым образом кодируют информацию о белках вне зависимости от уровня организации и систематического положения этих организмов.

Существуют таблицы генетического кода для расшифровки кодонов и- РНК и построения цепочек белковых молекул.

Реакции матричного синтеза.

В живых системах встречается реакции, неизвестные в неживой природе - реакции матричного синтеза.

Термином "матрица" в технике обозначают форму, употребляемую для отливки монет, медалей, типографского шрифта: затвердевший металл в точности воспроизводит все детали формы, служившей для отливки. Матричный синтез напоминает отливку на матрице: новые молекулы синтезируются в точном соответствии с планом, заложенным в структуре уже существующих молекул.

Матричный принцип лежит в основе важнейших синтетических реакций клетки, та-ких, как синтез нуклеиновых кислот и белков. В этих реакциях обеспечивается точная, строго специфичная последовательность мономерных звеньев в синтезируемых полимерах.

Здесь происходит направленное стягивание мономеров в определенное место клетки - на молекулы, служащие матрицей, где реакция протекает. Если бы такие реакции происходили в результате случайного столкновения молекул, они протекали бы бесконечно медленно. Синтез сложных молекул на основе матричного принципа осуществляется быстро и точно. Роль матрицы в матричных реакциях играют макромолекулы нуклеиновых кислот ДНК или РНК .

Мономерные молекулы , из которых синтезируется полимер, - нуклеотиды или аминокислоты - в соответствии с принципом комплементарности располагаются и фиксируются на матрице в строго определенном, заданном порядке.

Затем происходит "сшивание" мономерных звеньев в полимерную цепь , и готовый полимер сбрасывается с матрицы.

После этого матрица готова к сборке новой полимерной молекулы. Понятно, что как на данной форме может производиться отливка только какой-то одной монеты, одной буквы, так и на данной матричной молекуле может идти "сборка" только какого-то одного полимера.

Матричный тип реакций - специфическая особенность химизма живых систем. Они являются основой фундаментального свойства всего живого - его способности к воспроизведению себе подобного.

Реакции матричного синтеза

1. Репликация ДНК - реплика́ция (от лат. replicatio - возобновление) - процесс синтеза дочерней молекулы дезоксирибонуклеиновой кислоты на матрице родительской молекулы ДНК. В ходе последующего деления материнской клетки каждая дочерняя клетка получает по одной копии молекулы ДНК, которая является идентичной ДНК исходной материнской клетки. Этот процесс обеспечивает точную передачу генетической информации из поколения в поколение. Репликацию ДНК осуществляет сложный ферментный комплекс, состоящий из 15-20 различных белков, называемый реплисомой . Материалом для синтеза служат свободные нуклеотиды, имеющиеся в цитоплазме клеток. Биологический смысл репликации заключается в точной передаче наследственной информации от материнской молекулы к дочерним, что в норме и происходит при делении соматических клеток.

Молекула ДНК состоит из двух комплементарных цепей. Эти цепи удерживаются слабыми водородными связями, способными разрываться под действием ферментов. Молекула ДНК способна к самоудвоению (репликации), причем на каждой старой половине молекулы синтезируется новая ее половина.
Кроме того, на молекуле ДНК может синтезироваться молекула и-РНК, которая затем переносит полученную от ДНК информацию к месту синтеза белка.

Передача информации и синтез белка идут по матричному принципу, сравнимому с работой печатного станка в типографии. Информация от ДНК многократно копируется. Если при копировании произойдут ошибки, то они повторятся во всех последующих копиях.

Правда, некоторые ошибки при копировании информации молекулой ДНК могут исправляться - процесс устранения ошибок называется репарацией . Первой из реакций в процессе передачи информации является репликация молекулы ДНК и синтез новых цепей ДНК.

2. Транскрипция (от лат. transcriptio - переписывание) - процесс синтеза РНК с использованием ДНК в качестве матрицы, происходящий во всех живых клетках. Другими словами, это перенос генетической информации с ДНК на РНК.

Транскрипция катализируется ферментом ДНК-зависимой РНК-полимеразой. РНК-полимераза движется по молекуле ДНК в направлении 3" → 5". Транскрипция состоит из стадий инициации, элонгации и терминации . Единицей транскрипции является оперон, фрагмент молекулы ДНК, состоящий из промотора, транскрибируемой части и терминатора . и-РНК состоит из одной цепи и синтезируется на ДНК в соответствии с правилом комплементарности при участии фермента, который активирует начало и конец синтеза молекулы и-РНК.

Готовая молекула и-РНК выходит в цитоплазму на рибосомы, где происходит синтез полипептидных цепей.

3. Трансляция (от лат. translatio - перенос, перемещение) - процесс синтеза белка из аминокислот на матрице информационной (матричной) РНК (иРНК, мРНК), осуществляемый рибосомой. Иными словами, это процесс перевода информации, со-держащейся в последовательности нуклеотидов и-РНК, в последовательность амино-кислот в полипептиде.

4. Обратная транскрипция - это процесс образования двуцепочечной ДНК на основании информации из одноцепочечной РНК. Данный процесс называется обратной транскрипцией, так как передача генетической информации при этом происходит в «обратном», относительно транскрипции, направлении. Идея обратной транскрипции вначале была очень непопулярна, так как противоречила центральной догме молекулярной биологии, которая предполагала, что ДНК транскрибируется в РНК и далее транслируется в белки.

Однако в 1970 году Темин и Балтимор независимо друг от друга открыли фермент, названный обратной транскриптазой (ревертазой) , и возможность обратной транскрипции была окончательно подтверждена. В 1975 году Темину и Балтимору была присуждена Нобелевская премия в области физиологии и медицины. Некоторые вирусы (такие как вирус иммунодефицита человека, вызывающий ВИЧ-инфекцию), имеют возможность транскрибировать РНК в ДНК. ВИЧ имеет РНК-геном, который встраивается в ДНК. В результате, ДНК вируса может быть объединена с геномом клетки-хозяина. Главный фермент, ответственный за синтез ДНК из РНК, называется ревертазой . Одной из функций ревертазы является создание комплементарной ДНК (кДНК) из вирусного генома. Ассоциированный фермент рибонуклеаза расщепляет РНК, а ревертаза синтезирует кДНК из двойной спирали ДНК. кДНК интегрируется в геном клетки-хозяина с помощью интегразы. Результатом является синтез вирусных протеинов клеткой-хозяином , которые образуют новые вирусы. В случае с ВИЧ так же программируется апоптоз (смерть клетки) Т-лимфоцитов. В иных случаях клетка может остаться распространителем вирусов.

Последовательность матричных реакций при биосинтезе белков можно представить в виде схемы.

Таким образом, биосинтез белка – это один из видов пластического обмена, в ходе которого наследственная информация, закодированная в генах ДНК, реализуется в определенную последовательность аминокислот в белковых молекулах.

Молекулы белков по существу представляют собой полипептидные цепочки , составленные из отдельных аминокислот. Но аминокислоты недостаточно активны, чтобы соединиться между собой самостоятельно. Поэтому, прежде чем соединиться друг с другом и образовать молекулу белка, аминокислоты должны активироваться . Эта активация происходит под действием особых ферментов.

В результате активирования аминокислота становится более лабильной и под действием того же фермента связывается с т-РНК . Каждой аминокислоте соответствует строго специфическая т-РНК , которая находит «свою» аминокислоту и переносит ее в рибосому.

Следовательно, в рибосому поступают различные активированные аминокислоты, соединенные со своими т-РНК . Рибосома представляет собой как бы конвейер для сборки цепочки белка из поступающих в него различных аминокислот.

Одновременно с т-РНК, на которой «сидит» своя аминокислота, в рибосому поступает «сигнал » от ДНК, которая содержится в ядре. В соответствии с этим сигналом в рибосоме синтезируется тот или иной белок.

Направляющее влияние ДНК на синтез белка осуществляется не непосредственно, а с помощью особого посредника – матричной или информационной РНК (м-РНК или и-РНК ), которая синтезируется в ядр е под влиянием ДНК, поэтому ее состав отражает состав ДНК. Молекула РНК представляет собой как бы слепок с формы ДНК. Синтезированная и-РНК поступает в рибосому и как бы передает этой структуре план - в каком порядке должны соединяться друг с другом поступившие в рибосому активированные аминокислоты, чтобы синтезировался определенный белок. Иначе, генетическая информация, закодированная в ДНК, передается на и- РНК и далее на белок .

Молекула и-РНК поступает в рибосому и прошивает ее. Тот ее отрезок, который находится в данный момент в рибосоме, определенный кодоном (триплет) , взаимо-действует совершенно специфично с подходящим к нему по строению триплетом (антикодоном) в транспортной РНК, которая принесла в рибосому аминокислоту.

Транспортная РНК со своей аминокислотой подходит к определенному кодону и-РНК и соединяется с ним; к следующему, соседнему участку и- РНК присоединяется другая т-РНК с другой аминокислотой и так до тех пор, пока не будет считана вся цепочка и-РНК, пока не нанижутся все аминокислоты в соответствующем порядке, образуя молекулу белка. А т-РНК, которая доставила аминокислоту к определенному участку полипептидной цепи, освобождается от своей аминокислоты и выходит из рибосомы.

Затем снова в цитоплазме к ней может присоединиться нужная аминокислота, и она снова перенесет ее в рибосому. В процессе синтеза белка участвует одновременно не одна, а несколько рибосом - полирибосомы.

Основные этапы передачи генетической информации:

1. Синтез на ДНК как на матрице и-РНК (транскрипция)
2. Синтез в рибосомах полипептидной цепи по программе, содержащейся в и-РНК (трансляция) .

Этапы универсальны для всех живых существ, но временные и пространственные взаимоотношения этих процессов различаются у про- и эукариотов.

У прокариот транскрипция и трансляция могут осуществляться одновременно, поскольку ДНК находится в цитоплазме. У эукариот транскрипция и трансляция строго разделены в пространстве и времени: синтез различных РНК происходит в ядре, после чего молекулы РНК должны покинуть пределы ядра, пройдя через ядерную мембрану. Затем в цитоплазме РНК транспортируются к месту синтеза белка.

ГЕНЕТИЧЕСКИЙ КОД (греч, genetikos относящийся к происхождению; син.: код, биологический код, аминокислотный код, белковый код, код нуклеиновых к-т ) - система записи наследственной информации в молекулах нуклеиновых кислот животных, растений, бактерий и вирусов чередованием последовательности нуклеотидов.

Генетическая информация (рис.) из клетки в клетку, из поколения в поколение, за исключением РНК-содержащих вирусов, передается путем редупликации молекул ДНК (см. Репликация). Реализация наследственной информации ДНК в процессе жизнедеятельности клетки осуществляется через 3 типа РНК: информационную (иРНК или мРНК), рибосомную (рРНК) и транспортную (тРНК), которые с помощью фермента РНК-полимеразы синтезируются на ДНК как на матрице. При этом последовательность нуклеотидов в молекуле ДНК однозначно определяет последовательность нуклеотидов во всех трех типах РНК (см. Транскрипция). Информацию гена (см.), кодирующего белковую молекулу, несет только иРНК. Конечным продуктом реализации наследственной информации является синтез белковых молекул, специфичность которых определяется последовательностью входящих в них аминокислот (см. Трансляция).

Поскольку в составе ДНК или РНК представлено только по 4 разных азотистых основания [в ДНК - аденин (А), тимин (Т), гуанин (Г), цитозин (Ц); в РНК - аденин (А), урацил (У), цитозин (Ц), гуанин (Г)], последовательность которых определяет последовательность 20 аминокислот в составе белка, возникает проблема Г. к., т. е. проблема перевода 4-буквенного алфавита нуклеиновых к-т в 20-буквенный алфавит полипептидов.

Впервые идея матричного синтеза белковых молекул с правильным предсказанием свойств гипотетической матрицы была сформулирована Н. К. Кольцовым в 1928 г. В 1944 г. Эйвери (О. Avery) с соавт, установил, что за передачу наследственных признаков при трансформации у пневмококков ответственны молекулы ДНК. В 1948 г. Чаргафф (E. Chargaff) показал, что во всех молекулах ДНК имеет место количественное равенство соответствующих нуклеотидов (А-T, Г-Ц). В 1953 г. Ф. Крик, Дж. Уотсон и Уилкинс (М. H. F. Wilkins), исходя из этого правила и данных рентгеноструктурного анализа (см.), пришли к выводу, что молекул а ДНК представляет собой двойную спираль, состоящую из двух полинуклеотидных нитей, соединенных между собой водородными связями. Причем против А одной цепи во второй может находиться только Т, против Г - только Ц. Эта комплементарность приводит к тому, что последовательность нуклеотидов одной цепи однозначно определяет последовательность другой. Второй существенный вывод, вытекающий из этой модели,- молекула ДНК способна к самовоспроизведению.

В 1954 г. Гамов (G. Gamow) сформулировал проблему Г. к. в ее современном виде. В 1957 г. Ф. Крик высказал Гипотезу адаптера, предположив, что аминокислоты взаимодействуют с нуклеиновой к-той не непосредственно, а через посредников (теперь известных под названием тРНК). В ближайшие после этого годы все принципиальные звенья общей схемы передачи генетической информации, вначале гипотетичные, были подтверждены экспериментально. В 1957 г. были открыты иРНК [А. С. Спирин, А. Н. Белозерский с соавт.; Фолькин и Астрахан (E. Volkin, L. Astrachan)] и тРНК [Хоугленд (М. В. Hoagland)]; в 1960 г. синтезирована ДНК вне клетки с использованием в качестве матрицы существующих макромолекул ДНК (А. Корнберг) и открыт ДНК-зависимый синтез РНК [Вейсс (S. В. Weiss) с соавт.]. В 1961 г. была создана бесклеточная система, в к-рой в присутствии естественной РНК или синтетических полирибонуклеотидов осуществлялся синтез белковоподобных веществ [М. Ниренберг и Маттеи (J. H. Matthaei)]. Проблема познания Г. к. состояла из исследования общих свойств кода и собственно его расшифровки, т. е. выяснения, какие комбинации нуклеотидов (кодоны) кодируют определенные аминокислоты.

Общие свойства кода были выяснены независимо от его расшифровки и в основном до нее путем анализа молекулярных закономерностей образования мутаций (Ф. Крик и соавт., 1961; Н. В. Лучник, 1963). Они сводятся к следующему:

1. Код универсален, т. е. идентичен, по крайней мере в основном, для всех живых существ.

2. Код триплетен, т. е. каждая аминокислота кодируется тройкой нуклеотидов.

3. Код неперекрывающийся, т. е. данный нуклеотид не может входить в состав более чем одного кодона.

4. Код вырожден, т. е. одна аминокислота может кодироваться несколькими триплетами.

5. Информация о первичной структуре белка считывается с иРНК последовательно, начиная с фиксированной точки.

6. Большинство возможных триплетов имеет «смысл», т. е. кодирует аминокислоты.

7. Из трех «букв» кодона преимущественное значение имеют лишь две (облигатные), третья же (факультативная) несет значительно меньшую информацию.

Прямая расшифровка кода состояла бы в сравнении последовательности нуклеотидов в структурном гене (или синтезированной на нем иРНК) с последовательностью аминокислот в соответствующем белке. Однако такой путь пока технически невозможен. Были применены два других пути: синтез белка в бесклеточной системе с использованием в качестве матрицы искусственных полирибонуклеотидов известного состава и анализ молекулярных закономерностей образования мутаций (см.). Первый принес положительные результаты раньше и исторически сыграл в расшифровке Г. к. большую роль.

В 1961 г. М. Ниренберг и Маттеи применили в качестве матрицы гомо-полимер - синтетическую полиуридиловую к-ту (т. е. искусственную РНК состава УУУУ...) и получили полифенилаланин. Из этого следовало, что кодон фенилаланина состоит из нескольких У, т. е. в случае триплетного кода расшифровывается как УУУ. Позже наряду с гомополимерами были использованы полирибонуклеотиды, состоявшие из разных нуклеотидов. При этом был известен только состав полимеров, расположение же нуклеотидов в них было статистическим, поэтому и анализ результатов был статистическим и давал косвенные выводы. Довольно быстро удалось найти хотя бы по одному триплету для всех 20 аминокислот. Выяснилось, что присутствие органических растворителей, изменение pH или температуры, некоторые катионы и особенно антибиотики делают код неоднозначным: те же кодоны начинают стимулировать включение других аминокислот, в некоторых случаях один кодон начинал кодировать до четырех разных аминокислот. Стрептомицин влиял на считывание информации как в бесклеточных системах, так и in vivo, причем был эффективен только на стрептомицинчувствительных штаммах бактерий. У стрептомицинзависимых штаммов он «исправлял» считывание с кодонов, изменившихся в результате мутации. Подобные результаты давали основание сомневаться в правильности расшифровки Г. к. с помощью бесклеточной системы; требовалось подтверждение, и в первую очередь данными in vivo.

Основные данные о Г. к. in vivo получены при анализе аминокислотного состава белков у организмов, обработанных мутагенами (см.) с известным механизмом действия, напр, азотистой к-той, к-рая вызывает в молекуле ДНК замену Ц на У и А на Г. Полезную информацию дают также анализ мутаций, вызванных неспецифическими мутагенами, сравнение различий в первичной структуре родственных белков у разных видов, корреляция между составом ДНК и белков и т. п.

Расшифровка Г. к. на основании данных in vivo и in vitro дала совпадающие результаты. Позже были разработаны три других метода расшифровки кода в бесклеточных системах: связывание аминоацил-тРНК (т. е. тРНК с присоединенной активированной аминокислотой) тринуклеотидами известного состава (М. Ниренберг и соавт., 1965), связывание аминоацил-тРНК полинуклеотидами, начинающимися с определенного триплета (Маттеи с соавт., 1966), и использование в качестве иРНК полимеров, в которых известен не только состав, но и порядок нуклеотидов (X. Корана и соавт., 1965). Все три метода дополняют друг друга, а результаты находятся в соответствии с данными, полученными в опытах in vivo.

В 70-х гг. 20 в. появились методы особенно надежной проверки результатов расшифровки Г. к. Известно, что мутации, возникающие под действием профлавина, состоят в выпадении или вставке отдельных нуклеотидов, что приводит к сдвигу рамки считывания. У фага Т4 был вызван профлавином ряд мутаций, при которых изменился состав лизоцима. Этот состав был проанализирован и сопоставлен с теми кодонами, которые должны были получиться при сдвиге рамки считывания. Получилось полное соответствие. Дополнительно этот метод позволил установить, какие именно триплеты вырожденного кода кодируют каждую из аминокислот. В 1970 г. Адамсу (J. М. Adams) с сотрудниками удалось провести частичную расшифровку Г. к. прямым методом: у фага R17 определили последовательность оснований во фрагменте длиной в 57 нуклеотидов и сравнили с аминокислотной последовательностью белка его оболочки. Результаты полностью совпали с полученными менее прямыми методами. Т. о., код расшифрован полностью и верно.

Результаты расшифровки сведены в таблицу. В ней указан состав кодонов и РНК. Состав антикодонов тРНК комплементарен кодонам иРНК, т. е. вместо У в них находится А, вместо А - У, вместо Ц - Г и вместо Г - Ц, и соответствует кодонам структурного гена (той нити ДНК, с к-рой считывается информация) с той лишь разницей, что место тимина занимает урацил. Из 64 триплетов, которые могут быть образованы сочетанием 4 нуклеотидов, 61 имеет «смысл», т. е. кодирует аминокислоты, а 3 являются «нонсенсами» (лишенными смысла). Между составом триплетов и их смыслом имеется довольно четкая зависимость, к-рая была обнаружена еще при анализе общих свойств кода. В ряде случаев триплеты, кодирующие определенную аминокислоту (напр., пролин, аланин), характеризуются тем, что два первых нуклеотида (облигатные) у них одинаковы, а третий (факультативный) может быть любым. В других случаях (при кодировании, напр., аспарагина, глутамина) один и тот же смысл имеют два сходных триплета, у которых совпадают два первых нуклеотида, а на месте третьего стоит любой пурин или любой пиримидин.

Нонсенс-кодоны, 2 из которых имеют специальные названия, соответствующие обозначению фаговых мутантов (УАА-охра, УАГ-амбер, УГА-опал), хотя и не кодируют каких-либо аминокислот, но имеют большое значение при считывании информации, кодируя конец полипептидной цепи.

Считывание информации происходит в направлении от 5 1 -> 3 1 - к концу нуклеотидной цепи (см. Дезоксирибонуклеиновые кислоты). При этом синтез белка идет от аминокислоты со свободной аминогруппой к аминокислоте со свободной карбоксильной группой. Начало синтеза кодируется триплетами АУГ и ГУГ, которые в этом случае включают специфичную стартовую аминоацил-тРНК, а именно N-формилметио-нил-тРНК. Эти же триплеты при локализации внутри цепи кодируют соответственно метионин и валин. Неоднозначность снимается тем, что началу считывания предшествует нонсенс. Есть данные, говорящие в пользу того, что граница между участками иРНК, кодирующими разные белки, состоит более чем из двух триплетов и что в этих местах меняется вторичная структура РНК; этот вопрос находится в стадии исследования. Если нонсенс-кодон возникает внутри структурного гена, то соответствующий белок строится только до места расположения этого кодона.

Открытие и расшифровка генетического кода - выдающееся достижение молекулярной биологии - оказало влияние на все биол, науки, положив в ряде случаев начало развитию специальных крупных разделов (см. Молекулярная генетика). Эффект открытия Г. к. и связанных с ним исследований сравнивают с тем эффектом, который оказала на биол, науки теория Дарвина.

Универсальность Г. к. является прямым доказательством универсальности основных молекулярных механизмов жизни у всех представителей органического мира. Между тем большие различия в функциях генетического аппарата и его строении при переходе от прокариотов к эукариотам и от одноклеточных к многоклеточным, вероятно, связаны и с молекулярными различиями, исследование которых - одна из задач будущего. Поскольку исследования Г. к.- дело лишь последних лет, значение полученных результатов для практической медицины носит лишь Косвенный характер, позволяя пока понять природу заболеваний, механизм действия возбудителей болезней и лекарственных веществ. Однако открытие таких явлений, как трансформация (см.), трансдукция (см.), супрессия (см.), указывает на принципиальную возможность исправления патологически измененной наследственной информации или ее коррекции - так наз. генная инженерия (см.).

Таблица. ГЕНЕТИЧЕСКИЙ КОД

Первый нуклеотид кодона

Второй нуклеотид кодона

Третий, нуклеотид кодона

Фенилаланин

J Нонсенс

Триптофан

Гистидин

Глутаминовая кислота

Изолейцин

Аспарагиновая

Метионин

Аспарагин

Глутамин

* Кодирует конец цепи.

** Кодирует также начало цепи.

Библиография: Ичас М. Биологический код, пер. с англ., М., 1971; Лучник Н.Б. Биофизика цитогенетических поражений и генетический код, Л., 1968; Молекулярная генетика, пер. с англ., под ред. А. Н. Белозерского, ч. 1, М., 1964; Нуклеиновые кислоты, пер. с англ., под ред. А. Н. Белозерского, М., 1965; Уотсон Дж. Д. Молекулярная биология гена, пер. с англ., М., 1967; Физиологическая генетика, под ред. М. Е. Лобашева С. Г., Инге-Вечтомо-ва, Л., 1976, библиогр.; Desoxyribonuc-leins&ure, Schlttssel des Lebens, hrsg. v„ E. Geissler, B., 1972; The genetic code, Gold Spr. Harb. Symp. quant. Biol., v. 31, 1966; W o e s e C. R. The genetic code, N. Y. a. o., 1967.



Последние материалы раздела:

Изменение вида звездного неба в течение суток
Изменение вида звездного неба в течение суток

Тема урока «Изменение вида звездного неба в течение года». Цель урока: Изучить видимое годичное движение Солнца. Звёздное небо – великая книга...

Развитие критического мышления: технологии и методики
Развитие критического мышления: технологии и методики

Критическое мышление – это система суждений, способствующая анализу информации, ее собственной интерпретации, а также обоснованности...

Онлайн обучение профессии Программист 1С
Онлайн обучение профессии Программист 1С

В современном мире цифровых технологий профессия программиста остается одной из самых востребованных и перспективных. Особенно высок спрос на...