Коллапс тяжелых звезд: как появляются черные дыры и можно ли их увидеть.

Этот пост - конспект к пятому занятию по программе курса по астрофизике для средней школы. Он содержит описание вспышек сверхновых, процессов образования нейтронных звезд (пульсаров) и черных дыр звездных масс как одиночных, так и в звездных парах. И несколько слов о коричневых карликах.


Сначала повторю картинку, показывающую классификацию типов звезд и их эволюции в зависимости от их масс:

1. Вспышки новых и сверхновых.
Выгорание гелия в недрах звезд завершается образованием красных гигантов и их вспышками как новых с образованием белых карликов или образованием красных сверхгигантов и их вспышками как сверхновых с образованием нейтронных звезд или черных дыр, а также туманностей из сброшенных этими звездами своих оболочек. Зачастую массы сбрасываемых оболочек превышают массы "мумий" этих звезд - нейтронных звезд и черных дыр. Для понимания масштабов этого явления приведу видео вспышки сверхновой 2015F в удаленной от нас на 50 млн. св. лет галактике NGC 2442:

Другой пример - сверхновая 1054 года в нашей Галактике, в результате вспышки которой образовались Крабовидная туманность и нейтронная звезда на расстоянии от нас в 6,5 тыс. св. лет. При этом масса образовавшейся нейтронной звезды ~ 2 солнечных масс, а масса сброшенной оболочки ~ 5 солнечных масс. Современники оценивали яркость этой сверхновой как примерно в 4-5 раз большую, чем у Венеры. Если бы такая сверхновая вспыхнула в тысячу раз ближе (6,5 св. лет), то она бы сверкала на нашем небе в 4000 раз ярче Луны, но в сотню раз слабее Солнца.

2. Нейтронные звезды.
Звезды больших масс (классов О, В, А ) после выгорания водорода в гелий и в процессе выгорания гелия преимущественно в углерод, кислород и азот входят в достаточно короткую стадию красного сверхгиганта и по завершении гелиево-углеродного цикла тоже сбрасывают оболочку и вспыхивают как "Сверхновые" . Их недра тоже сжимаются под действием гравитации. Но давление вырожденного электронного газа уже не может, как у белых карликов, остановить это гравитационное самосжатие. Поэтому температура в недрах этих звезд повышается и в них начинают идти термоядерные реакции, в результате которых образуются следующие элементы таблицы Менделеева. Вплоть до железа .

Почему именно до железа? Потому, что образование ядер с большим атомным номером идет не с выделением энергии, а с поглощением ее. А взять ее от других ядер не так то просто. Конечно, элементы с большим атомным номером в недрах этих звезд образуются. Но в гораздо меньшем количестве, чем железо.

А вот дальше эволюция расщепляется. Не слишком массивные звезды (классов А и частично В ) превращаются в нейтронные звезды . В которых электроны буквально впечатываются в протоны и большая часть тела звезды превращается в огромное нейтронное ядро. Состоящее из соприкасающихся и даже вжатых друг в друга обычных нейтронов. Плотность вещества в котором порядка нескольких миллиардов тонн в кубическом сантиметре. А типичный диаметр нейтронной звезды - порядка 10-20 километров. Нейтронная звезда - второй устойчивый тип "мумии" умершей звезды. Их массы, как правило, лежат в интервале от примерно 1,3 до 2,1 масс Солнца (по данным наблюдений).

Одиночные нейтронные звезды в оптике увидеть практически невозможно из-за их чрезвычайно низкой светимости. Но часть из них обнаруживают себя как пульсары . Что это такое? Практически все звезды обращаются вокруг своей оси и обладают достаточно сильным магнитным полем. Например, наше Солнце делает оборот вокруг своей оси примерно за месяц.

Теперь представьте себе, что его диаметр уменьшится сто тысяч раз. Ясно, что благодаря закону сохранения момента импульса вращаться оно будет гораздо быстрее. И магнитное поле такой звезды будет вблизи ее поверхности на много порядков сильнее солнечного. Большинство нейтронных звезд имеют период оборота вокруг своей оси в десятые - сотые доли секунды. Из наблюдений известно, что самый быстро вращающийся пульсар делает чуть более 700 оборотов вокруг своей оси в секунду, а самый медленно вращающийся делает один оборот за более чем 23 секунды.

А теперь представьте себе, что у такой звезды магнитная ось, как и у Земли, не совпадает с осью вращения. Жесткое излучение от такой звезды будет концентрироваться в узких конусах вдоль магнитной оси. И если этот конус будет с периодом вращения звезды "задевать" Землю, то эту звезду мы будем видеть как пульсирующий источник излучения. Наподобие вращаемого нашей рукой фонарика.

Такой пульсар (нейтронная звезда) образовался после вспышки сверхновой 1054 года, случившейся как раз во время визита кардинала Гумберта в Константинополь. По результатам которого произошел окончательный разрыв между католической и православной церквями. Сам этот пульсар совершает 30 оборотов в секунду. А сброшенная им оболочка массой ~ 5 масс Солнца выглядит как Крабовидная туманность :

3. Черные дыры (звездных масс).
Наконец, достаточно массивные звезды (классов О и частично В ) заканчивают свой жизненный путь третьим типом "мумии" - черной дырой . Такой объект возникает, когда масса остатка звезды настолько велика, что давление соприкасающихся нейтронов (давление вырожденного нейтронного газа) в недрах этого остатка не может противостоять его гравитационному самосжатию. Наблюдения показывают, что граница по массе между нейтронными звездами и черными дырами лежит в окрестности ~ 2,1 массы Солнца.

Напрямую одиночную черную дыру наблюдать невозможно. Ибо с ее поверхности (если она есть) никакая частица вырваться не может. Даже частица света - фотон.

4. Нейтронные звезды и черные дыры в двойных звездных системах.
Одиночные нейтронные звезды и черные дыры звездных масс практически не наблюдаемы. Но в случаях, если они являются одной из двух или более звезд в тесных звездных системах такие наблюдения становятся возможными. Поскольку своим тяготением могут "отсасывать" внешние оболочки остающихся пока нормальными звездами своих соседок.

При таком "отсасывании" вокруг нейтронной звезды или черной дыры образуется аккреционный диск , вещество которого частично "сползает" к нейтронной звезде или черной дыре и частично отбрасывается от нее в двух струях-джетах . Это процесс удается зафиксировать. Пример - двойная звездная системв SS433, одна компонента которой либо нейтронная звезда, либо черная дыра. А вторая - пока обычная звезда:

5. Коричневые карлики.
Звезды с массами заметно меньшей солнечной и вплоть до ~ 0,08 массы Солнца являются красными карликами класса М. Они будут работать на водородно-гелиевом цикле в течение времени большего, чем возраст Вселенной. В объектах с массами меньше этого предела по ряду причин стационарный долго работающий термояд не возможен. Такие звезды называют коричневыми карликами. Температура их поверхности настолько низка, что в оптике они почти не видны. Но светят в ИК-диапазоне. По совокупности этих причин их часто называют недозвездами .

Диапазон масс коричневых карликов - от 0,012 до 0,08 солнечных масс. Объекты с массой меньшей 0,012 массы Солнца (~ 12 масс Юпитера) могут быть только планетами. Газовыми гигантами. Излучающими за счет медленного гравитационного самосжатия заметно больше энергии, чем они получают от родительских звезд. Так, Юпитер по сумме всех диапазонов излучает примерно вдвое больше энергии, чем он получает от Солнца.

Что такое чёрная дыра ? Почему её называют чёрной? Что происходит в звёздах? Как связаны нейтронная звезда и чёрная дыра? Способен ли большой адронный коллайдер создать чёрные дыры, и чем это чревато для нас?

Что такое звезда ??? Если вдруг ещё не знаете, наше Солнце тоже звезда. Это объект больших размеров способен с помощью термоядерного синтеза излучать электромагнитные волны (это не самое точное из определений). Если непонятно, можно сказать так: звезда – это большой объект шарообразной формы, внутри которого с помощью ядерных реакций образуется очень-очень-очень большое количество энергии, часть которой идёт на излучение видимого света. Кроме обычного света излучается и тепло (инфракрасное излучение), и радиоволны, и ультрафиолет и др.

В любой звезде происходят ядерные реакции так же, как и в атомных станциях, только с двумя главными отличиями.

1. В звёздах происходят реакции ядерного синтеза, то есть соединения ядер, а в АЭС ядерного распада. В первом случае выделяется в 3 раза больше энергии, в тысячи раз меньше затрат, так как необходим лишь водород, а он сравнительно недорогой. Также в первом случае нет вредных отходов: выделяется лишь безвредный гелий. Теперь Вас конечно же интересует, почему на АЭС не пользуются такими реакциями? Потому что она НЕКОНТРОЛИРУЕМА и легко приводит к ядерному взрыву, да ещё для этой реакции нужна температура несколько миллионов градусов. Для человека ядерный синтез является самой важной и самой тяжёлой задачей (никто пока не придумал способ контролировать термоядерный синтез), учитывая, что наши источники энергии заканчиваются.

2. В звёздах в реакциях участвует больше вещества, чем в АЭС, и, естественно, там больше получается на выходе энергии.

Теперь про эволюцию звёзд. Каждая звезда рождается, растёт, стареет и умирает (гаснет). Звёзды по стилю эволюционирования делятся в зависимости от своей массы на три категории.

Первая категория звёзды с массой менее 1,4*Массу Солнца. В таких звёздах всё «топливо» медленно превращается в металл, потому что из-за синтеза (объединения) ядер появляются всё более «многоядерные» (тяжёлые) элементы, а это и есть металлы. Правда, последняя стадия эволюции таких звёзд не была зафиксирована (зафиксировать металлические шары сложно), это лишь теория.

Вторая категория звёзды по массе, превышающие массу звёзд первой категории, но меньших трёх масс Солнца. Такие звёзды в результате эволюции теряют баланс внутренних сил притяжения и отталкивания. Как следствие, внешняя их оболочка выбрасывается в космос, а внутренняя (из закона сохранения импульса) начинает «бешено» сжиматься. Образуется нейтронная звезда. Она почти полностью состоит из нейтронов, то есть из частиц, не имеющих электрического заряда. Самое примечательное в нейтронной звезде это её плотность, ведь чтобы стать нейтронной, звезде нужно сжаться до шара диаметром всего около 300 км, а это очень мало. Так вот плотность её очень велика - порядка десятков триллионов кг в одном кубическом метре, что в миллиарды раз больше, чем плотность самых плотных веществ на Земле. Откуда же взялась такая плотность? Дело в том, что все вещества на Земле состоят из атомов, они в свою очередь состоят из ядер. Каждый атом можно представить как большой пустой шар (абсолютно пустой), в центре которого находится маленькое ядро. В ядре заключена вся масса атома (кроме ядра в атоме есть лишь электроны, но их масса очень мала). Ядро в диаметре в 1000 раз меньше атома. А значит в объёме ядро меньше атома в 1000*1000*1000 = 1 миллиард раз. А отсюда плотность ядра в миллиарды раз больше плотности атома. Что происходит в нейтронной звезде? Атомы перестают существовать как форма вещества, они заменяются на ядра. Вот поэтому плотность таких звёзд в миллиарды раз больше плотности земных веществ.

Все мы знаем, что тяжёлые предметы (планеты, звёзды) сильно притягивают к себе всё окружающее. Нейтронные звёзды так и обнаруживают. Они сильно искривляют орбиты других видимых звёзд, находящихся рядом.

Третья категория звёзд звёзды с массой большей, чем тройная масса Солнца. Такие звёзды, став нейтронными, сжимаются далее и превращаются в чёрные дыры. Их плотность в десятки тысяч раз больше плотности нейтронных звёзд. Имея такую огромную плотность, чёрная дыра обретает способность очень сильной гравитации (способность притягивать окружающие тела). С такой гравитацией звезда не позволяет покинуть свои пределы даже электромагнитным волнам, а значит и свету. То есть чёрная дыра не испускает свет. Отсутствие какого-либо света это тьма, вот поэтому чёрную дыру и называют чёрной. Она всегда чёрная, её невозможно увидеть ни в какой телескоп. Все знают, что из-за своей гравитации, чёрные дыры способны засасывать в себя все окружающие тела в большом объёме. Именно поэтому люди и остерегаются запуска Большого Адронного Коллайдера, в работе которого, по мнению учёных, не исключено появление чёрных микродыр. Однако эти микродыры сильно отличаются от обычных: неустойчивы, потому что время их жизни очень мало, и не доказаны практически. Более того, учёные уверяют, что эти микродыры имеют совсем другую природу в отличие от обычных чёрных дыр и не способны поглощать материю.

сайт, при полном или частичном копировании материала ссылка на первоисточник обязательна.

Белые карлики, нейтронные звезды и черные дыры представляют собой различные формы конечного этапа звездной эволюции. Молодые звезды черпают свою энергию в термоядерных реакциях, протекающих в звездных недрах; в ходе этих реакций происходит превращение водорода в гелий. После того как определенная доля водорода израсходована, образовавшееся гелиевое ядро начинает сжиматься. Дальнейшая эволюция звезды зависит от ее массы, а точнее от того, как она соотносится с некой критической величиной, называемой пределом Чандрасекара. Если масса звезды меньше этой величины, то давление вырожденного электронного газа останавливает сжатие (коллапс) гелиевого ядра, прежде чем его температура достигнет столь высокого значения, когда начинаются термоядерные реакции, в ходе которых гелий превращается в углерод. Тем временем внешние слои эволюционирующей звезды сравнительно быстро сбрасываются. (Предполагается, что именно таким путем образуются планетарные туманности.) Белый карлик и представляет собой гелиевое ядро, окруженное более или менее протяженной водородной оболочкой.

У более массивных звезд гелиевое ядро продолжает сжиматься вплоть до «загорания» гелия. Энергия, выделяемая в процессе превращения гелия в углерод, предохраняет ядро от дальнейшего сжатия - но ненадолго. После того как гелий полностью израсходуется, сжатие ядра продолжается. Температура вновь возрастает, начинаются другие ядерные реакции, которые протекают до тех пор, пока не исчерпается энергия, запасенная в атомных ядрах. К этому моменту ядро звезды состоит уже из чистого железа, которое играет роль ядерной «золы». Теперь ничто не сможет воспрепятствовать дальнейшему коллапсу звезды - он продолжается до тех пор, пока плотность ее вещества не достигнет плотности атомных ядер. Резкое сжатие вещества в центральных областях звезды порождает взрыв огромной силы, в результате которого внешние слои звезды разлетаются с громадными скоростями. Именно эти взрывы астрономы связывают с явлением сверхновых.

Судьба коллапсирующего остатка звезды зависит от его массы. Если масса меньше, чем примерно 2,5М 0 (масса Солнца), то давление, обусловленное «нулевым» движением нейтронов и протонов, достаточно велико, чтобы воспрепятствовать дальнейшему гравитационному сжатию звезды. Объекты, у которых плотность вещества равна (или даже превосходит) плотности атомных ядер, называются нейтронными звездами. Их свойства впервые были изучены в 30-х годах Р. Оппенгеймером и Г. Волковым.

Согласно теории Ньютона, радиус коллапсирующей звезды уменьшается до нуля за конечное время, гравитационный потенциал при этом неограниченно возрастает. Теория Эйнштейна рисует другой сценарий. Скорость фотона уменьшается по мере его приближения к центру черной дыры, становясь равной нулю. Это означает, что с точки зрения внешнего наблюдателя фотон, падающий в черную дыру, никогда не достигнет ее центра. Поскольку частицы вещества не могут двигаться быстрее фотона, радиус черной дыры достигнет предельного значения за бесконечное время. Более того, фотоны, испускаемые с поверхности черной дыры, на протяжении коллапса испытывают все возрастающее красное смещение. С точки зрения внешнего наблюдателя, объект, из которого формируется черная дыра, вначале сжимается со все возрастающей скоростью; затем его радиус начинает уменьшаться все медленнее.

Не имея внутренних источников энергии, нейтронные звезды и черные дыры быстро остывают. А поскольку площадь их поверхности весьма мала - всего несколько десятков квадратных километров, - следует ожидать, что яркость этих объектов крайне невелика. Действительно, теплового излучения поверхности нейтронных звезд или черных дыр пока не удавалось наблюдать. Однако некоторые нейтронные звезды являются мощными источниками нетеплового излучения. Речь идет о так называемых пульсарах, обнаруженных в 1967 г. Джоселин Белл - аспиранткой Кембриджского университета. Белл изучала радиосигналы, зарегистрированные с помощью аппаратуры, разработанной Энтони Хьюишем для исследования излучения осциллирующих радиоисточников. Среди множества записей хаотически мерцающих источников она заметила такую, где всплески повторялись с четкой периодичностью, хотя и менялись по интенсивности. Более детальные наблюдения подтвердили точно периодический характер следования импульсов, а при изучении других записей было обнаружено еще два источника с такими же свойствами. Наблюдения и теоретический анализ показывают, что пульсары - это быстровращающиеся нейтронные звезды с необычайно сильным магнитным полем. Пульсирующий характер излучения обусловлен пучком лучей, выходящих из «горячих пятен» на (или вблизи) поверхности вращающейся нейтронной звезды. Детальный механизм этого излучения все еще остается загадкой для ученых.

Было обнаружено несколько нейтронных звезд, входящих в состав тесных двойных систем. Именно эти (и никакие другие) нейтронные звезды являются мощными источниками рентгеновского излучения. Представим себе тесную двойную, один компонент которой - гигант или сверхгигант, а другой - компактная звезда. Под действием гравитационного поля компактной звезды газ может вытекать из разреженной атмосферы гиганта: такие газовые потоки в тесных двойных системах, давно обнаруженные методами спектрального анализа, получили соответствующее теоретическое толкование. Если компактной звездой в двойной системе является нейтронная звезда или черная дыра, то молекулы газа, утекающего с другого компонента системы, могут ускоряться до очень высоких энергий. Вследствие столкновений между молекулами кинетическая энергия газа, падающего на компактную звезду, в конечном итоге переходит в тепло и в излучение. Как показывают оценки, выделяемая при этом энергия вполне объясняет наблюдаемую интенсивность рентгеновского излучения двойных систем такого типа.

В общей теории относительности Эйнштейна черные дыры занимают такое же место, как ультрарелятивистские частицы в его специальной теории относительности. Но если мир ультрарелятивистских частиц - физика высоких энергий - полон удивительных явлений, которые играют важную роль в экспериментальной физике и наблюдательной астрономии, то явления, связанные с черными дырами, пока вызывают лишь удивление. Со временем физика черных дыр даст результаты, важные для космологии, но сейчас эта отрасль науки в основном представляет собой «игровую площадку» для теоретиков. Не следует ли из этого, что теория гравитации Эйнштейна дает нам меньше сведений о Вселенной, чем теория Ньютона, хотя в теоретическом отношении значительно превосходит ее? Вовсе нет! В отличие от теории Ньютона теория Эйнштейна образует фундамент самосогласованной модели реальной Вселенной как целого, что эта теория имеет множество поразительных и доступных проверке предсказаний и, наконец, она обеспечивает причинную связь между свободно падающими, невращающимися системами отсчета и распределением, а также движением массы в космическом пространстве.

В космосе происходит много удивительных вещей, в результате которых появляются новые звезды, исчезают старые и формируются черные дыры. Одним из великолепных и загадочных явлений выступает гравитационный коллапс, который заканчивает эволюцию звезд.

Звездная эволюция - это цикл изменений, проходимый звездой за период ее существования (миллионы или миллиард лет). Когда водород в ней заканчивается и превращается в гелий, формируется гелиевое ядро, а сам начинает превращаться в красного гиганта - звезду поздних спектральных классов, которая обладает высокой светимостью. Их масса может в 70 раз превышать массу Солнца. Очень яркие сверхгиганты называются гипергигантами. Помимо высокой яркости они отличаются коротким периодом существования.

Сущность коллапса

Это явление считается конечной точкой эволюции звезд, вес которых составляет более трех солнечных масс (вес Солнца). Эта величина используется в астрономии и физике с целью определения веса других космических тел. Коллапс случается в том случае, когда гравитационные силы заставляют огромные космические тела с большой массой очень быстро сжиматься.

В звездах весом более трех масс Солнца есть достаточно материала для продолжительных термоядерных реакций. Когда субстанция заканчивается, прекращается и термоядерная реакция, а звезды перестают быть механически устойчивыми. Это приводит к тому, что они со сверхзвуковой скоростью начинают сжиматься к центру.

Нейтронные звезды

Когда звезды сжимаются, это приводит к возникновению внутреннего давления. Если оно растет с достаточной силой для того, чтобы остановить гравитационное сжатие, то появляется нейтронная звезда.

Такое космическое тело обладает простой структурой. Звезда состоит из сердцевины, которую покрывает кора, а она, в свою очередь, формируется из электронов и ядер атомов. Ее толщина равна примерно 1 км и является относительно тонкой, если сравнивать с другими телами, встречающимися в космосе.

Вес нейтронных звезд равен весу Солнца. Отличие между ними заключается в том, что радиус у них небольшой - не более 20 км. Внутри них взаимодействуют друг с другом атомные ядра, формируя, таким образом, ядерную материю. Именно давление со ее стороны не дает нейтронной звезде сжиматься дальше. Этот тип звезд отличается очень высокой скоростью вращения. Они способны совершать сотни оборотов в течение одной секунды. Процесс рождения начинается из вспышки сверхновой, которая возникает во время гравитационного коллапса звезды.

Сверхновые

Вспышка сверхновой представляет собой явление резкого изменения яркости звезды. Далее звезда начинает медленно и постепенно угасать. Так заканчивается последняя стадия гравитационного коллапса. Весь катаклизм сопровождается выделением большого количества энергии.

Следует заметить, что жители Земли могут увидеть этот феномен лишь постфактум. Свет достигает нашей планеты спустя долгий период после того, как произошла вспышка. Это стало причиной возникновения сложностей при определении природы сверхновых.

Остывание нейтронной звезды

После окончания гравитационного сжатия, в результате которого сформировалась нейтронная звезда, ее температура очень высока (намного выше, чем температура Солнца). Остывает звезда благодаря нейтринному охлаждению.

В течение пары минут их температура может опуститься в 100 раз. На протяжение последующих ста лет - еще в 10 раз. После того, как снижается, процесс ее охлаждения существенно замедляется.

Предел Оппенгеймера-Волкова

С одной стороны, этот показатель отображает максимально возможный вес нейтронной звезды, при котором гравитация компенсируется нейтронным газом. Это не дает возможность гравитационному коллапсу закончиться появлением черной дыры. С другой стороны, так называемый предел Оппенгеймера-Волкова является одновременно и нижним порогом веса черной дыры, которые были образованы в ходе звездной эволюции.

Из-за ряда неточностей сложно определить точное значение данного параметра. Однако предполагается, что оно находится в диапазоне от 2,5 до 3 масс Солнца. На данный момент, ученые утверждают, что самой тяжелой нейтронной звездой является J0348+0432. Ее вес составляет более двух масс Солнца. Вес самой легкой черный дыры составляет 5-10 солнечных масс. Астрофизики заявляют о том, что эти данные являются экспериментальными и касаются только на данный момент известных нейтронных звезд и черных дыр и предполагают возможность существования более массивных.

Черные дыры

Черная дыра - это один из самых удивительных феноменов, которые встречаются в космосе. Она представляет собой область пространства-времени, где гравитационное притяжение не позволяет никаким объектам выйти из нее. Покинуть ее не способны даже тела, которые могут двигаться со скоростью света (в том числе и кванты самого света). До 1967 года черные дыры назывались «застывшими звездами», «коллапсарами» и «сколлапсировавшими звездами».

У черной дыры есть противоположность. Она называется белой дырой. Как известно, из черной дыры невозможно выбраться. Что касается белых, то в них нельзя проникнуть.

Помимо гравитационного коллапса, причиной образования черной дыры может быть коллапс в центре галактики или протогалактического глаза. Также существует теория, что черные дыры появились в результате Большого Взрыва, как и наша планета. Ученые называют их первичными.

В нашей Галактике есть одна черная дыра, которая, по мнениям астрофизиков, образовалась из-за гравитационного коллапса сверхмассивных объектов. Ученые утверждают, что подобные дыры формируют ядра множества галактик.

Астрономы Соединенных Штатов Америки предполагают, что размер больших черных дыр может быть существенно недооценен. Их предположения основываются на том, что для достижения звездами той скорости, с какой они двигаются по галактике М87, находящейся в 50 миллионах световых лет от нашей планеты, масса черный дыры в центре галактики М87 должна быть не менее 6,5 миллиардов масс Солнца. На данный момент же принято считать, что вес самой большой черный дыры составляет 3 миллиарда солнечных масс, то есть более чем в два раза меньше.

Синтез черных дыр

Существует теория, что эти объекты могут появляться в результате ядерных реакций. Ученые дали им название квантовые черные дары. Их минимальный диаметр составляет 10 -18 м, а наименьшая масса - 10 -5 г.

Для синтеза микроскопических черных дыр был построен Большой адронный коллайдер. Предполагалось, что с его помощью удастся не только синтезировать черную дыру, но и смоделировать Большой Взрыв, что позволило бы воссоздать процесс образования множества космических объектов, в том числе и планеты Земля. Однако эксперимент провалился, поскольку энергии для создания черных дыр не хватило.

Гравитация является основным предметом многих из этих вопросов. Это - определяющая сила в космосе. Она удерживает планеты на их орбитах, связывает звезды и галактики, определяет судьбу нашей Вселенной.Созданное Исааком Ньютоном в 17-м веке теоретическое описание гравитации остается достаточно точным, чтобы вычислять траектории космических кораблей при полетах к Марсу, Юпитеру и еще дальше. Но после 1905 г., когда Альберт Эйнштейн показал в специальной теории относительности, что моментальная передача информации невозможна, физики поняли, что законы Ньютона перестанут быть адекватными, когда скорость вызванного гравитацией движения приблизится к скорости света. Однако, общая теория относительности Эйнштейна (опубликованная в 1916 г.), достаточно последовательно описывает даже те ситуации, когда гравитация чрезвычайно сильна.Общую теорию относительности рассматривают как один из двух столпов физики 20-го века; второй - это квантовая теория, революция в представлениях, предвосхитившая наше современное понимание атомов и их ядер. Интеллектуальный подвиг Эйнштейна был особенно впечатляющим, так как, в отличие от пионеров квантовой теории, у него не было стимула в виде экспериментальной проблемы.Только через 50 лет астрономы открыли объекты с достаточно сильным гравитационным полем, в котором могли проявиться наиболее характерные и яркие особенности теории Эйнштейна. В начале 60-х годов были обнаружены объекты с очень большой светимостью - квазары. Казалось, что для них необходим еще более эффективный источник энергии, чем ядерный синтез, благодаря которому светят звезды; гравитационный коллапс казался наиболее привлекательным объяснением. Американский теоретик Томас Голд выразил возбуждение, охватившее тогда теоретиков. В послеобеденном докладе на первой большой конференции о новом объекте релятивистской астрофизики, которая состоялась в Далласе в 1963 г., он сказал: "Релятивисты с их изощренными работами не только являются блестящим украшением культуры, но они могут быть полезны науке! Все довольны: релятивисты, которые чувствуют, что их труд признан, что они неожиданно стали экспертами в области, о существовании которой они и не подозревали; астрофизики, которые расширили свое поле деятельности... Все это очень приятно, будем надеяться, что это правильно."Наблюдения, использующие новые методы радио- и рентгеновской астрономии, поддержали оптимизм Голда. В 1950-х лучшие оптические телескопы мира были сосредоточены в Соединенных Штатах, в особенности в Калифорнии. Это перемещение из Европы произошло как из-за климатических, так и из-за финансовых причин. Однако радиоволны из космоса могут проходить сквозь облака, поэтому в Европе и Австралии новая наука - радиоастрономия - могла развиваться, не испытывая влияния погодных условий.Некоторые из самых сильных источников космического радиошума были идентифицированы. Одним была Крабовидная туманность - расширяющиеся остатки взрыва сверхновой, которую восточные астрономы наблюдали в 1054 г. Другие источники были удаленными внегалактическими объектами, в которых, как мы теперь понимаем, выработка энергии осуществлялась около гигантских черных дыр. Эти открытия были неожиданными. Физические процессы, ответственные за излучение радиоволн, которые сейчас достаточно хорошо поняты, не были предсказаны.Самым замечтельным неожиданным достижением радиоастрономии было открытие нейтронных звезд в 1967 г. Энтони Хьюишем и Джоселин Белл. Эти звезды - плотные остатки, остающиеся в центре после некоторых взрывов сверхновых. Они были открыты как пульсары: они вращаются (иногда с частотой несколько раз в секунду) и испускают мощный луч радиоволн, который проходит через нашу линию зрения один раз за оборот. Важность нейтронных звезд заключается в их экстремальных физических условиях: колоссальных плотностях, сильных магнитных и гравитационных полях.В 1969 г. очень быстрый (30 Гц) пульсар был обнаружен в центре Крабовидной туманности. Тщательные наблюдения показали, что частота импульсов постепенно уменьшается. Это было естественным, если энергия вращения звезды постепенно преобразуется в ветер из частиц, которые поддерживают свечение туманности в голубом свете. Интересно, что частота импульсов пульсара - 30 в секунду - так высока, что глаз видит его как постоянный источник. Если бы он был таким же ярким, но вращался медленнее - скажем, 10 раз в секунду - замечательные свойства этой маленькой звезды могли бы быть открыты еще 70 лет назад. Как изменилось бы развитие физики 20-го века, если бы сверхплотное вещество было открыто в 1920-х годах, до того как нейтроны были открыты на Земле? Хотя этого никто не знает, несомненно, что важность астрономии для фундаментальной физики была бы осознана гораздо раньше.Нейтронные звезды были обнаружены случайно. Никто не ожидал, что они будут излучать такие сильные и четкие радиоимпульсы. Если бы теоретиков в начале 1960-х годов спросили, как лучше всего обнаружить нейтронные звезды, большинство предложило бы искать рентгеновское излучение. Действительно, если нейтронные звезды излучают столько же энергии, как и обычные звезды, с гораздо меньшей площади, они должны быть достаточно горячими, чтобы испускать рентгеновские лучи. Таким образом, казалось, что астрономы, работающие в рентгеновском диапазоне, имели лучшие возможности открыть нейтронные звезды.Рентгеновские лучи от космических объектов, однако, поглощаются в земной атмосфере, и могут наблюдаться только из космоса. Рентгеновская астрономия, как и радиоастрономия, получила импульс к развитию в результате использования военных технологий и опыта. В этой области ученые из США заняли лидирующее положение, в особенности покойный Герберт Фридман и его коллеги из Военно-морской исследовательской лаборатории США. Их первые рентгеновские детекторы, установленные на ракетах, работали только по несколько минут, перед тем как упасть на землю. Большого прогресса рентгеновская астрономия добилась в 1970-х годах, когда НАСА запустило первый рентгеновский спутник, который собирал информацию в течение нескольких лет. Этот проект и многие последовавшие за ним показали, что рентгеновская астрономия открыла важное новое окно во Вселенную.Рентгеновские лучи излучаются необычно горячим газом и особенно мощными источниками. Поэтому на рентгеновской карте неба выделяются самые горячие и самые мощные объекты в космосе. Среди них - нейтронные звезды, в которых масса, по крайней мере не меньшая массы Солнца, сосредоточена в объеме с диаметром немногим больше 10 километров. Сила тяготения на них так сильна, что релятивистские поправки доходят до 30%.В настоящее время предполагается, что некоторые остатки звезд при коллапсе могут превзойти плотность нейтронных звезд и превратиться в черные дыры, которые искажают время и пространство еще больше, чем нейтронные звезды. Астронавт, который отважится попасть внутрь горизонта черной дыры, не сможет передать световые сигналы в окружающий мир - как будто само пространство засасывается внутрь быстрее, чем свет движется через него. Внешний наблюдатель никогда не узнает окончательную участь астронавта. Ему будет казаться, что любые часы, падая внутрь, будут идти все медленнее и медленнее. Так и астронавт будет как бы пригвозджен к горизонту, остановившись во времени.Российские теоретики Яков Зельдович и Игорь Новиков, исследовавшие, как искажается время около сколлапсировавших объектов, предложили в начале 1960-х термин "замерзшие звезды". Термин "черная дыра" был введен в употребление в 1968 г., когда Джон Уилер описал, как "свет и частицы, падающие снаружи... падают на черную дыру, только увеличивая ее массу и гравитационное притяжение".Черные дыры, которые являются финальным эволюционным состоянием звезд, имеют радиусы от 10 до 50 километров. Но сейчас существуют убедительные свидетельства того, что черные дыры с массами в миллионы или даже миллиарды масс Солнца, существуют в центрах большинства галактик. Некоторые из них проявляют себя как квазары - сгустки энергии, которые светят ярче всех звезд галактик, в которых они находятся, или как мощные источники космического радиоизлучения. Другие, включая черную дыру в центре нашей Галактики, не проявляют такой активности, но влияют на орбиты звезд, подходящих близко к ним.Черные дыры, если смотреть на них извне, являются стандартизированными объектами: не существует признаков, по которым можно было бы определить, как образовалась определенная черная дыра или какие объекты поглощены ей. В 1963 г. новозеландец Рой Керр обнаружил решение уравнений Эйнштейна, которые описывали сколлапсировавший вращающийся объект. "Решение Керра" приобрело очень важное значение, когда теоретики поняли, что оно описывает пространство-время около любой черной дыры. Коллапсирующий объект быстро приходит в стандартизированное состояние, характеризуемое всего двумя числами, измеряющими его массу и спин. Роджер Пенроуз, специалист в математической физике, который, возможно, сделал больше всех для возрождения теории относительности в 1960-х, заметил: "Есть какая-то ирония в том, что для самого странного и наименее знакомого астрофизического объекта - черной дыры - наша теоретическая картина наиболее полна".Обнаружение черных дыр проложило путь к проверке самых замечательных следствий теории Эйнштейна. Излучение таких объектов обусловлено в основном горячим газом, падающим по спирали в "гравитационную яму". Оно показывает сильный эффект Доплера, а также имеет дополнительное красное смещение из-за сильного гравитационного поля. Спектроскопическое исследование этого излучения, в особенности рентгеновского, позволит прозондировать поток очень близко к черной дыре и определить, согласуется ли форма пространства с предсказаниями теории.



Последние материалы раздела:

Изменение вида звездного неба в течение суток
Изменение вида звездного неба в течение суток

Тема урока «Изменение вида звездного неба в течение года». Цель урока: Изучить видимое годичное движение Солнца. Звёздное небо – великая книга...

Развитие критического мышления: технологии и методики
Развитие критического мышления: технологии и методики

Критическое мышление – это система суждений, способствующая анализу информации, ее собственной интерпретации, а также обоснованности...

Онлайн обучение профессии Программист 1С
Онлайн обучение профессии Программист 1С

В современном мире цифровых технологий профессия программиста остается одной из самых востребованных и перспективных. Особенно высок спрос на...