Комплекс гольджи местонахождение в клетке. Комплекс гольджи


Открытие.

Структуру, известную как комплекс Гольджи, впервые обнаружил в клетках

Животных в 1898 г. Камилло Гольджи, итальянский врач и цитолог. Детальное исследование данной структуры сделано позже с помощью электронного микроскопа.

Аппарат Гольджи содержится в цитоплазме почти всех эукариотических клеток, особенно в секреторных клетках животных. У дрожжей комплекс Гольджи выражен несколько хуже, обычно в виде особого отдела эндоплазматического ретикулума. Комплекс Гольджи представляет собой стопку уплощенных мембранных мешочков, так называемых цистерн, и связанную с ними систему пузырьков, называемых пузырьками Гольджи. На одном конце стопки

Мешочков постоянно образуются новые цистерны путем слияния пузырьков, отпочковывающихся, от гладкого эндоплазматического ретикулума. На другом конце стопки, на внутренней стороне завершается созревание цистерн и они вновь распадаются на пузырьки. Таким образом, цистерны в стопке постепенно перемещаются от наружной стороны к внутренней.

Функцией аппарата Гольджи является транспорт и химиче

ская модификация поступающих в него веществ. Исходным субстратом для ферментов являются белки, поступающие в аппарат Гольджи из эндоплазматического ретикулума. После модификации и концентрирования, ферменты в пузырьках Гольджи переносятся к «месту назначения», например к месту образования новой почки. Наиболее активно этот перенос осуществляется с участием цитоплазматических микротрубочек.

Аппарат Гольджи является компонентом всех эукариотических клеток (практически единственное исключение - эритроциты млекопитающих). Он п

редставляет собой важнейшую мембранную органеллу, управляющую процессами внутриклеточного транспорта. Основными функциями аппарата Гольджи являются модификация, накопление, сортировка и направление различных веществ в соответствующие внутриклеточные компартменты, а также за пределы клетки. Он состоит из набора окруженных мембраной уплощенных цистерн, напоминающих стопку тарелок. Каждая стопка Гольджи (у растений называемая диктиосомой) обычно содержит от четырех до шести цистерн, имеющих, как правило, диаметр около 1мкм (рис. 8-36). Число стопок Гольджи в клетке в значительной степени зависит от ее типа: некоторые клетки содержат одну большую стопку, тогда как в других имеются сотни очень маленьких стопок.

Со стопками Гольджи всегда ассоциирована масса мелких (диаметром приблизительно 60 нм) ограниченных мембраной пузырьков. Полагают,

Что эти пузырьки (пузырьки Гольджи) переносят белки и липиды в аппарат Гольдки, транспортируют их из него и между остальными цистернами. Многие пузырьки являются окаймленными и покрыты клатрином или другим специфическим белком. Часто можно видеть, как такие окаймленные пузырьки отшнуровываются от цистерн Гольджи.

Аппарат Гольджи имеет две разные стороны: формирующуюся, или цис-сторону и зрелую, или транс-сторону Цис-сторона тесно связана с переходными элементами ЭР; транс-сторона расширяется, образуя трубчатый ретикулум, называемый транс-сетью Гольджи. Белки и липиды в составе небольших пузырьков попадают в стопку Гольджи с цис-стороны, а покидают ее, направляясь в различные компартменты, вместе с пузырьками, образующимися на транс-стороне. Переходя из одной стопки Гольдж

и в другую, эти молекулы претерпевают последовательные серии модификаций.

Структура.

Описание структуры аппарата Гольджи тесно связано с описанием его основных биохимических функций, поскольку подразделение этогоклеточного

компартмента на отделы производится преимущественно на основе локализации ферментов, расположенных в том или ином отделе.

Чаще всего в аппарате Гольджи выделяют четыре основных отдела: цис- Гольджи, медиал-Гольджи, транс-Гольджи и транс-Гольджи сеть (TGN)

Кроме того к аппарату Гольджи иногда относят так называемыйпромежуточный компартмент, представляющий собой скопление мембранных пузырьков между эндоплазматическим ретикулумом и цис-Гольджи. Аппарат Гольджи является очень полиморфной органеллой; в клетках разных типов и даже на разных стадиях развития одной и той же клетки он может выглядеть по-разному. Основные его характеристики таковы:

  1. наличие стопки из нескольких (обычно 3-8) уплощенных цистерн, более или менее плотно прилегающих друг к другу. Такая стопка всегда бывает окружена некоторым (иногда очень значительным) количеством мембранных пузырьков. В животных клетках чаще можно встретить одну стопку, в то время как в растительных клетках их обычно бывает несколько; каждую из них в таком случае называют диктиосомой. Отдельные диктиосомы могут быть связаны между собой системой вакуолей, образуя трехмерную сеть;
  2. композиционная гетерогенность, выражающаяся в том, что постоянные (resident) ферменты неоднородно распределены по органелле;
  3. полярность, то есть наличие цис-стороны, обращенной к эндоплазматическому ретикулуму и ядру, и транс-стороны,обращенной к поверхности клетки (это особенно характерно для секретирующих клеток);
  4. ассоциация с микротрубочками и областью центриоли. Разрушение микротрубочек деполимеризующими агентами приводит к фрагментации аппарата Гольджи, однако его функции при этом существенно не затрагиваются. Аналогичная фрагментация наблюдается и в естественных условиях, во время митоза. После восстановления системы микротрубочек разбросанные по клетке элементы аппарата Гольджи собираются (по микротру-бочкам) в область центриоли,и реконструируется нормальный комплекс Гольджи.

Аппарат Гольджи (комплекс Гольджи) — мембранная структура эукариотической клетки, в основном предназначенная для выведения веществ, синтезированных в эндоплазматическом ретикулуме. Комплекс Гольджи был назван так в честь итальянского ученого Камилло Гольджи, впервые обнаружившего его в 1898 году.

Комплекс Гольдки представляет собой стопку дискообразных мембранных мешочков (цистерн), несколько расширенных ближе к краям и связанную с ними систему пузырьков Гольдки. В растительных клетках обнаруживается ряд отдельных стопок (диктиосомы), в животных клетках часто содержится одна большая или несколько соединенных трубками стопок.

В цистернах Аппарата Гольджи созревают белки предназначенные для секреции, трансмембранные белки плазматической мембраны, белки лизосом и т.д. Созревающие белки последовательно перемещаются по цистернам органеллы, в которых происходит их окончательное сворачивание, а также модификации — гликозилирование и фосфорилирование.

Аппарат Гольджи ассиметричен — цистерны располагающиеся ближе к ядру клетки (цис-Гольджи) содержат наименее зрелые белки, к этим цистернам непрерывно присоединяются мембранные пузырьки — везикулы, отпочковывающиеся от гранулярного эндоплазматического ретикулума (ЭР), на мембранах которого и происходит синтез белков рибосомами.

Разные цистерны Аппарата Гольджи содержат разные резидентные каталитические ферменты и, следовательно, с созревающими белками в них последовательно происходят разные процессы. Понятно, что такой ступенчатый процесс должен как-то контролироваться. Действительно, созревающие белки «маркируются» специальными полисахаридными остатками (преимущественно маннозными), по-видимому, играющими роль своебразного «знака качества».

Не до конца понятно, каким образом созревающие белки перемещаются по цистернам Аппарата Гольджи, в то время как резидентные белки остаются в большей или меньшей степени ассоциированы с одной цистерной. Существуют две взаимонеисключающие гипотезы, объясняющие этот механизм. Согласно первой (1), транспорт белков осуществляется при помощи таких же механизмов везикулярного транспорта, как и путь транспорта из ЭР, причем резидентные белки не включаются в отпочковывающуюся везикулу. Согласно второй (2), происходит непрерывное передвижение (созревание) самих цистерн, их сборка из пузырьков с одного конца и разборка с другого конца органеллы, а резидентные белки перемещаются ретроградно (в обратном направлении) при помощи везикулярного транспорта.

В конце концов от противоположного конца органеллы (транс-Гольджи) отпочковываются пузырьки, содержащие полностью зрелые белки.

В комплексе Гольджи происходит

1. О-гликозилирование, к белкам присоединяются сложные сахара через атом кислорода.

2. Фосфорилирование (присоединение к белкам остатка ортофосфорной кислоты).

3. Образование лизосом.

4. Образование клеточной стенки (у растений).

5. Участие в везикулярном транспорте (формирование трехбелкового потока):

6. созревание и транспорт белков плазматической мембраны;

7. созревание и транспорт секретов;

8. созревание и транспорт ферментов лизосом.

Аппарат Гольджи (комплекс Гольджи) – это специализированная часть эндоплазматического ретикулума, состоящая из собранных в стопки плоских мембранных мешочков. Он участвует в секреции клеткой белков (в нем происходит упаковка секретируемых белков в гранулы) и поэтому особенно развит в клетках, выполняющих секреторную функцию. К важным функциям аппарата Гольдки относится также присоединение углеводных групп к белкам и использование этих белков для построения клеточной мембраны и мембраны лизосом. У некоторых водорослей в аппарате Гольджи осуществляется синтез волокон целлюлозы.

Функции.

Функцией аппарата Гольджи является транспорт и химическая модификация поступающих в него веществ. Исходным субстратом для ферментов являются белки, поступающие в аппарат Гольджи из эндоплазматического ретикулума. После модификации и концентрирования, ферменты в пузырьках Гольджи переносятся к «месту назначения», например к месту образования новой почки. Наиболее активно этот перенос осуществляется с участием цитоплазматических микротрубочек.

Функции аппарата Гольджи очень многообразны. К ним можно отнести:

1) сортировку, накопление и выведение секреторных продуктов;

2) завершение посттрансляционной модификации белков (гликозилирование, сульфатирование и т.д.);

3) накопление молекул липидов и образование липопротеидов;

4) образование лизосом;

5) синтез полисахаридов для образования гликопротеидов, восков, камеди, слизей, веществ матрикса клеточных стенок растений

(гемицеллюлоза, пектины) и т.п.

6) формирование клеточной пластинки после деления ядра в растительных клетках;

7) участие в формировании акросомы;

8) формирование сократимых вакуолей простейших.

Этот список, без сомнения, неполон, и дальнейшие исследования не только позволят лучше понять уже известные функции аппарата Гольджи, но и приведут к открытию новых. Пока самыми изученными с биохимической точки зрения остаются функции, связаные с транспортом и модификацией новосинтезированных белков.

Строение и функции комплекса Гольджи связаны с завершением модификации веществ, поступающих из ЭПС, и их перераспределением в свои пункты назначения.

В животных клетках чаще всего имеется один крупный комплекс Гольджи, в растительных - несколько более мелких стопок, которые называют диктиосомами.

По своему строению аппарат Гольджи представляет собой стопку мембранных дисков (с полостями внутри). Каждый такой диск называют цистерной. Каждая цистерна расширяется к краям. Кроме дисков в состав аппарата входят и связанные с ними везикулярные пузырьки, а также (предположительно) окружающая мембранная сеть, связывающая вместе отдельные цистерны.

Сторона Гольджи, обращенная к ядру, называется цис-отделом. Сторона, обращенная к плазмалемме, – транс-отделом. Также выделяют срединных отдел. Ферментативный состав разных отделов различен, поэтому в каждом из них происходят свои химические реакции, т. е этапы модификации веществ. Вещество, проходя по цистернам как по конвейеру, постепенно приобретает необходимое химическое строение и функциональность.

Из эндоплазматической сети, синтезируемые там белки, жиры и углеводы, попадают в комплекс Гольджи с помощью визикул (пузырьков, окруженных мембраной). При этом белки имеют сигнальные химические метки (в виде олигосахаридов), которые «сообщают» комплексу Гольджи, что с ними делать.

На данном рисунке-схеме показано как белок, который был синтезирован в ЭПС, пройдя через аппарат Гольджи, становится компонентом клеточной мембраны. Белок здесь обозначен зеленой овалом. Прикрепленный к нему элемент розового цвета обозначает углевод, связанный с белком. По-сути транспортируется и модифицируется не белок, а гликопротеин (углевод+белок).

Наращивание цитоплазматической мембраны - лишь одна из функций комплекса Гольджи. Также за пределы клетки путем экзоцитоза выделяются компоненты межклеточной жидкости, матрикс клеточных стенок (у растений), различные секреты (у секреторных клеток) и др.

Другая функция – это образование лизосом – клеточных органелл, содержащих в основном ферменты для расщепления поступающих в клетку сложных веществ.

Также в Гольджи образуются транспортные везикулы, доставляющие вещества к другим клеточным органеллам.

Комплекс, или аппарат, Гольджи назван так в честь открывшего его ученого. Это клеточная органелла имеет вид комплекса полостей, ограниченных одинарными мембранами. В растительных клетках и у простейших представлен несколькими отдельными более мелкими стопками (диктиосомами).

Комплекс Гольджи по внешнему виду, видимому в электронный микроскоп, напоминает стопку наложенных друг на друга дискообразных мешочков, около которых находится множество пузырьков. Внутри каждого «мешка» находится узкий канал, расширяющийся на концах в так называемые цистерны (иногда цистерной называют весь мешочек). От них отпочковываются пузырьки. Вокруг центральной стопки формируется система взаимосвязанных трубочек.

С наружней, имеющей несколько выпуклую форму, стороны стопки образуются новые цистерны путем слияния пузырьков отпочковывающихся от гладкой эндоплазматической сети. На внутренней стороне цистерны завершают свое созревание и распадаются снова на пузырьки. Таким образом, цистерны (мешочки стопки) Гольджи перемещаются от наружней стороны к внутренней.

Часть комплекса, располагающаяся ближе к ядру, называется «цис».

Та, что ближе к мембране, – «транс».

Функции комплекса Гольджи

Функции аппарат Гольджи разнообразны, в общей сложности сводятся к модификации, перераспределению синтезированных в клетке веществ, а также их выведению за пределы клетки, образованию лизосом и построению цитоплазматической мембраны.

Активность комплекса Гольджи высока в секреторных клетках. Белки, поступающие из ЭПС, концентрируются в аппарате Гольджи, затем переносятся к мембране в пузырьках Гольджи. Ферменты секретируются из клетки путем обратного пиноцитоза.

К приходящим в Гольджи белкам присоединены олигосахаридные цепочки. В аппарате они модифицируются и служат маркерами, с помощью которых белки сортируются и направляются по своему пути.

У растений при формировании клеточной стенки Гольджи секретирует углеводы, служащие матриксом для нее (целлюлоза здесь не синтезируется). Отпочковавшиеся пузырьки Гольджи перемещаются с помощью микротрубочек. Их мембраны сливаются с цитоплазматической мембраной, а содержимое включается в клеточную стенку.

Комплекс Гольджи бокаловидных клеток (находятся в толще эпителия слизистой оболочки кишечника и дыхательных путей) секретирует гликопротеин муцин, который в растворах образует слизь. Подобные вещества синтезируются клетками кончика корня, листьев и др.

В клетках тонкого кишечника аппарат Гольджи выполняет функцию транспорта липидов. В клетки попадают жирные кислоты и глицерол. В гладкой ЭПС происходит синтез своих липидов. Большинство из них покрываются белками и посредством Гольджи транспортируются к клеточной мембране. Пройдя через нее, липиды оказываются в лимфе.

Важной функцией является формирование лизосом.

Комплекс Гольджи – это мембранная структура, присущая любой эукариотической клетке.

Аппарата Гольджи представлен сплющенными цистернами (или мешками), собранными в стопку. Каждая цистерна немного изогнута и имеет выпуклую и вогнутую поверхности.

Средний диаметр цистерн составляет около 1 мкм. В центре цистерны ее мембраны сближены, а на периферии часто формируют расширения, или ампулы, от которых отшнуровываются пузырьки. Пакеты плоских цистерн количеством в среднем около 5-10 формируют диктиосому. Кроме цистерн, в комплексе Гольджи присутствуют транспортные и секреторные пузырьки. В диктиосоме в соответствии с направлением кривизны изогнутых поверхностей цистерн различают две поверхности. Выпуклая поверхность называется незрелой, или цис-поверхностью. Она обращена к ядру или к канальцам гранулярной эндоплазматической сети и связана с последней пузырьками, отшнуровывающимися от гранулярной сети и приносящими молекулы белка в диктиосому на дозревание и оформление в мембрану. Противоположная трансповерхность диктиосомы вогнута. Она обращена к плазмолемме и именуется зрелой потому, что от ее мембран отшнуровываются секреторные пузырьки, содержащие готовые к выведению из клетки продукты секреции.

Комплекс Гольджи участвует:

  • в накоплении продуктов, синтезированных в эндоплазматической сети,
  • в их химической перестройке и созревании.

В цистернах комплекса Гольджи происходит синтез полисахаридов, их комплексирование с белковыми молекулами.

Одна из главных функций комплекса Гольджи - формирование готовых секреторных продуктов, которые выводятся за пределы клетки путем экзоцитоза. Важнейшими для клетки функциями комплекса Гольджи также являются обновление клеточных мембран, в том числе и участков плазмолеммы, а также замещение дефектов плазмолеммы в процессе секреторной деятельности клетки.

Комплекс Гольджи считается источником образования первичных лизосом, хотя их ферменты синтезируются и в гранулярной сети. Лизосомы представляют собой внутриклеточно формирующиеся секреторные вакуоли, заполненные гидролитическими ферментами, необходимыми для процессов фаго- и аутофагоцитоза. На светооптическом уровне лизосомы можно индентифицировать и судить о степени их развития в клетке по активности гистохимической реакции на кислую фосфатазу - ключевой лизосомальный энзим. При электронной микроскопии лизосомы определяются как пузырьки, ограниченные от гиалоплазмы мембраной. Условно выделяют 4 основных вида лизосом:

  • первичные,
  • вторичные лизосомы,
  • аутофагосомы,
  • остаточные тельца.

Первичные лизосомы - это мелкие мембранные пузырьки (средний диаметр их составляет около 100 нм), заполненные гомогенным мелкодисперсным содержимым, представляющим собой набор гидролитических ферментов. В лизосомах идентифицированы около 40 ферментов (протеазы, нуклеазы, гликозидазы, фосфорилазы, сульфатазы), оптимальный режим действия которых рассчитан на кислую среду (рН 5). Лизосомальные мембраны содержат специальные белки-носители для транспорта из лизосомы в гиалоплазму продуктов гидролитического расщепления - аминокислот, Сахаров и нуклеотидов. Мембрана лизосом устойчива по отношению к гидролитическим ферментам.

Вторичные лизосомы образуются при слиянии первичных лизосом с эндоцитозными либо с пиноцитозными вакуолями. Иными словами, вторичные лизосомы - это внутриклеточные пищеварительные вакуоли, ферменты которых поставляются первичными лизосомами, а материал для переваривания - эндоцитозной (пиноцитозной) вакуолью. Строение вторичных лизосом весьма разнообразно и изменяется в процессе гидролитического расщепления содержимого. Ферменты лизосом расщепляют попавшие в клетку биологические вещества, в результате чего образуются мономеры, которые транспортируются через мембрану лизосомы в гиалоплазму, где утилизируются или включаются в разнообразные синтетические и метаболические реакции.

Если взаимодействию с первичными лизосомами и гидролитическому расщеплению их ферментами подвергаются собственные структуры клетки (стареющие органеллы, включения и пр.), формируется аутофагосома. Аутофагоцитоз является естественным процессом в жизнедеятельности клетки и играет большую роль в обновлении ее структур при внутриклеточной регенерации.

Остаточные тельца это одна из финальных стадий существования фаго- и аутолизосом и обнаруживаются при незавершенном фаго- или аутофагоцитозе и впоследствии выделяются из клетки путем экзоцитоза. Они имеют уплотненное содержимое, часто наблюдается вторичная структуризация непереваренных соединений (например, липиды образуют сложные слоистые образования).

Социальные кнопки для Joomla

Функции комплекса Гольджи

1. Синтез полисахаридов и гликопротеинов (гликокаликс, слизь).

2. Процессинг молекул:

а) терминальное гликозилирование

б) фосфорилирование

в) сульфатирование

г) протеолитическое расщепление (части белковых молекул)

3. Конденсация секреторного продукта.

4. Упаковка секреторного продукта

5. Сортировка белков в зоне сети транс- Гольджи (за счет специфических рецепторных мембранных белков, которые распознают сигнальные участки на макромолекулах и направляют их в соответствующие пузырьки). Транспорт из комплекса Гольджи идет в виде 3-х потоков:

1. Гидролазные пузырьки (или первичные лизосомы)

2. В плазмолемму (в составе окаймленных пузырьков)

3. В секреторные гранулы

Эндосомы — мембранные пузырьки с закисляющимся содержимым и обеспечивающие перенос молекул в клетку. Тип переноса веществ системой эндосом различный:

1. С перевариванием макромолекул (полным)

С частичным их расщеплением

3. Без изменения по ходу транспорта

Процесс транспорта и последующего расшепления веществ в клетке с помощью эндосом состоит из следующих последовательных компонентов:

1. Ранняя (периферическая) эндосома

2. Поздняя (перинуклеарная) эндосома прелизосомальный этап переваривания

3. Лизосома

Ранняя эндосома – лишенный клатрина пузырек на периферии клетки. рН среды 6,0, здесь происходит ограниченный и регулируемый процесс расщепления (лиганд отделяется от рецептора) — возвращение рецепторов в мембрану клетки. Ранняя эндосома еще известна как Curl.

Поздняя (перинуклеарная) эндосома: а) более кислое содержимое рН 5,5

б) диаметр больший до 800 нм

в) более глубокий уровень переваривания

Это переваривание лиганд (периферическая эндосома + перинуклеарная эндосома) — мультивезикулярное тельце.

Лизосомы

1. Фаголизосома – она формируется при слиянии поздней эндосомы или лизосомы с фагосомой. Процесс разрушения этого материала называется гетерофагией.

2.Аутофаголизосома – она формируется при слиянии поздней эндосомы или лизосомы с аутофагосомой.

3. Мультивезикулярное тельце – крупная вакуоль (800 нм) , состоящая из мелких 40-80 нм пузырьков, окруженных умеренно плотным матриксом. Оно образуется в результате слияния ранней и поздней эндосом.

4. Остаточные тельца — это непереваренный материал. Самым известным компонентом этого типа являются липофусциновые гранулы – пузырьки диам. 0,3 – 3 мкм, содержащие пигмент липофусцин.

Цитоскелет – это система микротрубочек, микрофиламентов (промежуточных, микротрабекул). Все они формируют трехмерную сеть, взаимодействуя с сетями из других компонентов.

1. Микротрубочки – полые цилиндры диам. 24-25 нм, стенка толщиной 5 нм, диам. просвета – 14-15 нм. Стенка состоит из спирально уложенных нитей (они называются протофиламенты) толщиной 5 нм. Эти нити образованы димерами и тубулина. Это лабильная система, у которой один конец (обозначаемый “__”) закреплен, а другой (“ + “) свободен и участвует в процессе деполимеризации.

Микротрубочки ассоциированы с рядом белков, имеющих общее название МАР – они связывают микротрубочки с другими элементами цитоскелета и органеллами. Кинезин –(шаг его перемещения по поверхности микротрубочки составляет 8 нм).

Органелла

рис. Микротрубочка

Микрофиламенты – это две переплетенные нити F-актина, составленные из g- актина. Диаметр их составляет 6 нм. Микрофиламенты полярны, присоединение g -актина происходит на (“+”) конце. Они образуют скопления

по периферии клетки и связаны с плазмолеммой посредством промежуточных белков (-актин, винкулин, талин).

Функция: 1. Изменение цитозоля (переход золя в гель и обратно).

2. Эндоцитоз и экзоцитоз.

3. Подвижность немышечных клеток.

4. Стабилизация локальных выпячиваний плазматической мембраны.

Промежуточные нити имеют d 8-11 нм, состоят из белков, характерных для определенных клеточных типов. Они формируют внутриклеточный каркас, обеспечивающий упругость клетки и упорядоченное расположение компонентов цитоплазмы. Промежуточные филаменты образованы нитевидными белковыми молекулами, сплетенными друг с другом наподобие каната.

Функции : 1. Структурная

2. Участие в образовании рогового вещества

3. Поддержание формы, отростков нервных клеток

4. Прикрепление миофибрилл к плазмолемме.

Микротрабекулы – ажурная сеть тонких нитей, существующая в комплексе с микротрубочками и может участвовать в транспорте органелл и влиять на вязкость цитозоля.

ЛЕКЦИЯ

ТЕМА:” ЯДРО. СТРУКТУРА ИНТЕРФАЗНОГО ЯДРА. ОСНОВЫ БИОСИНТЕТИЧЕСКОЙ ДЕЯТЕЛЬНОСТИ КЛЕТКИ”

Ядро является основной частью клетки, кодирующей информацию о структуре и функции органа. Эта информация заложена в генетическом материале, ДНК, представляющей собой в комплексе с основными белками (гистонами) ДНП. За некоторым исключением (митохондрии) ДНК локализуется исключительно в ядре. ДНК способна реплицироваться сама, обеспечивая тем самым передачу генетического кода дочерним клеткам в условиях клеточного деления.

Ядро играет центральную роль в синтезе белка и полипептидов, являясь носителем генетической информации. Все ядра клеток организма содержат те же самые гены, одни клетки различны по своей структуре, функции и характеру продуцируемых клеткой веществ. Ядерный контроль осуществляется путем

репрессии или депрессии (экспрессии) активности различных генов. Трансляция о характере синтеза белка связана с образованием м-РНК. Многие РНК – это комплекс белка и РНК, т.е. РНП. Интерфазное ядро в большинстве клеток – это образование округлой или овальной формы в несколько мм в диаметре. В лейкоцитах и клетках соединительной ткани ядро дольчатое и обозначается термином полиморфное.

Интерфазное ядро имеет несколько различных структур: ядерную оболочку, хроматин, кариолимфу и ядрышко.

Ядерная оболочка

1. Наружная ядерная мембрана – на поверхности расположены рибосомы, где синтезируются белки, поступающие в перинуклеарные цистерны. Со стороны цитоплазмы она окружена рыхлой сетью промежуточных (виментиновых) филаментов.

2. Перинуклеарные цистерны – часть околоядерных цистерн связана с гранулярной эндоплазматической сетью (20-50 нм).

3. Внутренняя ядерная мембрана – отделена от содержимого ядра ядерной пластинкой.

4. Ядерная пластинка толщиной 80-300 нм, участвует в организации ядерной оболочки и перинуклеарного хроматина, содержит белки промежуточных филаментов – ламины А, В и С.

5. Ядерная пора – от 3-4 тысяч специализированных коммуникаций, осуществляют транспорт между ядром и цитоплазмой. Ядерная пора d 80 нм, имеет: а) канал поры – 9 нм

б) комплекс ядерной поры, последний содержит белок-рецептор, реагирующий на сигналы ядерного импорта (входной билет в ядро).Диаметр ядерной поры может увеличивать диаметр канала поры и обеспечивать перенос в ядро больших макромолекул (ДНК-РНК – полимераза).

Ядерная пора состоит из 2-х параллельных колец по одному с каждой поверхности кариолеммы. Кольцо диаметром 80 нм, образованы они 8 белковыми гранулами, от каждой гранулы к центру тянется нить (5 нм), которая формирует перегородку (диафрагму). В центре расположена центральная гранула. Совокупность этих структур называется комплекс ядерной поры. Здесь формируется канал диаметром 9 нм, такой канал называют водным, поскольку по нему движутся мелкие водорастворимые молекулы и ионы.

Функции ядерной поры: 1. Избирательный транспорт;

2. Активный перенос в ядро белков с последовательностью, характерной для белков ядерной локализации;

3. Перенос в цитоплазму субьединиц рибосом с изменением конформации порового комплекса.

Внутренняя ядерная мембрана — гладкая и связана с помощью интегральных белков с ядерной пластинкой, которая представляет собой слой, толщиной 80-300 нм. Эта пластинка или ламина – состоит из переплетенных промежуточных филаментов (10 нм), формирующих кариоскелет. Функции ее:

1. Сохранение структурной организации поровых комплексов;

2. Поддержание формы ядра;

3. Упорядоченная укладка хроматина.

Она формируется в результате спонтанной ассоциации 3-х главных полипептидов. Это структурный каркас ядерной оболочки с участками специфического связывания хроматина.

Аппарат Гольджи

Глава 1. Аппарат Гольджи: структура и функции

Аппарат Гольджи

1.1. Гольджи аппарат: структура

Описание структуры аппарата Гольджи тесно связано с описанием егоосновных биохимических функций, поскольку подразделение этогоклеточного компартмента на отделы производится преимущественно на основе локализации ферментов…

Аппарат Гольджи

1.2. Гольджи аппарат: функции

Функцией аппарата Гольджи является транспорт и химическая модификация поступающих в него веществ. Исходным субстратом для ферментов являются белки, поступающие в аппарат Гольджи из эндоплазматического ретикулума…

Аппарат Гольджи

Глава 2. Анализ деятельности аппарата Гольджи в клетке

Аппарат Гольджи

2.1. Анализ деятельности аппарата Гольджи в клетке

Лизосомы — это маленькие, окруженные одинарной мембраной пузырьки. Они отпочковываются от аппарата Гольджи и, возможно, от эндоплазматического ретикулума. Лизосомы содержат разнообразные ферменты, которые расщепляют крупные молекулы…

Аппарат Гольджи

2.3. Аппарат Гольджи: сортировка белков и передача сигнала

Комплекс Гольджи функционирует на пересечении секреторных путей, осуществляя прием вновь синтезированных белков и липидов из ЭР, их ковалентную модификацию, а затем — сортировку продуктов реакций согласно их назначениям (Рис. 1 gg)…

Аппарат Гольджи

2.3. Аппарат Гольджи: молекулярный механизм функционирования

Гептамерный цитозольный белковый комплекс, называемый COPI (мембранный комплекс Гольджи, коатомер) , в соединении с GTP-связывающим белком ARF 1 образует оболочку таким образом, что, будучи ассоциированным в мембраны Гольджи…

Мочеполовой аппарат

1.Мочеполовой аппарат

Мочеполовой аппарат, состоит из мочевых органов,которые обеспечивают образование и выведение из организма мочи и половых органов,осуществляющие функцию размножения. Функционально они никак не связаны между собой…

Особенности строения птиц

Аппарат пищеварения

Строение пищеварительной системы птиц во многом напоминает пищеварительный аппарат млекопитающих. Она включает ротоглотку, пищеводно-желудочный отдел, тонкий и толстый кишечник. Характер переработки твердого корма…

Особенности строения птиц

Аппарат дыхания

Органы дыхания у птиц имеют ряд особенностей: малая величина и несложность строения носовой полости; наличие в бифуркации трахеи приспособления для издания звука — певчей гортани; незначительная величина и положение легких…

Особенности строения птиц

Аппарат мочевыделения

Мочевыделительная система состоит только из почек и мочеточников, открывающихся в уродеум клоаки.

Лоханка, мочевой пузырь, мочеиспускательный канал у птиц отсутствуют…

Особенности строения птиц

Аппарат размножения

Система органов размножения обеспечивает продолжения вида. У сельскохозяйственных птиц она кроме того, определяет яйценоскость. Эта система состоит из половых желез (семенников или яичников), в которых образуются половые клетки…

Роль зрительного анализатора в жизни животных

1.4 Глазодвигательный аппарат

Глаз можно рассматривать как оптическую камеру. Для наведения такой "камеры" на рассматриваемый объект (точку фиксации) ее следует повернуть. Для движений глазного яблока существует глазодвигательный аппарат…

Фотодинамический эффект и фотодинамическая терапия

10. Аппарат Гольджи и эндоплазматический ретикулум

Гидрофобные фотосенсибилизаторы, такие как гиперицин, фталоцианин Pc 4, фталоцианин цинка или Фотофрин, обычно накапливаются в перинуклеарной области, богатой мембранными органеллами — митохондриями, ЭР…

Чешуекрылые европейской части России с дневным образом жизни

3.1.1 Ротовой аппарат

Ротовой аппарат чешуекрылых возник путем специализации обычных конечностей членистоногих. Поглощение и измельчение пищи. Ротовые органы бабочек являются не менее характерным признаком, чем структура крыльев и покрывающих их чешуек…

Что общего у гнилого яблока и головастика? Процесс гниения фруктов и процесс превращения головастика в лягушку связан с одним и тем же феноменом - автолизом. Руководят им уникальные структуры клеток - лизосомы. Крошечные лизосомы размером от 0,2 до 0,4 мкм разрушают не только другие органоиды, но даже целые ткани и органы. Они содержат от 40 до 60 разных лизирующих ферментов, под действием которых ткани буквально плавятся на глазах. О структуре и функциях наших внутренних биохимических лабораторий: лизосом, аппарата Гольджи и эндоплазматической сети, - вы узнаете в нашем уроке. Также мы поговорим о клеточных включениях - особом типе клеточных структур.

Тема: Основы цитологии

Урок: Строение клетки. Эндоплазматическая сеть. Комплекс Гольджи.

Лизосомы. Клеточные включения

Мы продолжаем изучать органоиды клетки.

Все органоиды делятся на мембранные и немембранные .

Немембранные органоиды мы рассмотрели на предыдущем занятии, напомним, что к ним относятся рибосомы, клеточный центр и органоиды движения.

Среди мембранных органоидов различают одномембранные и двумембранные .

В этой части курса мы рассмотрим одномембранные органоиды: эндоплазматическую сеть, аппарат Гольджи и лизосомы .

Кроме этого, мы рассмотрим включения - непостоянные образования клетки, которые возникают и исчезают в процессе жизнедеятельности клетки.

Эндоплазматическая сеть

Одним из самых важных открытий, сделанных с помощью электронного микроскопа, было обнаружение сложной системы мембран, пронизывающей цитоплазму всех эукариотических клеток. Эта сеть мембран в дальнейшем получила название ЭПС (эндоплазматической сети) (рис. 1) или ЭПР (эндоплазматического ретикулума). ЭПС представляет систему трубочек и полостей, пронизывающей цитоплазму клетки.

Рис. 1. Эндоплазматическая сеть

Слева - среди других органоидов клетки. Справа - отдельно выделенная

Мембраны ЭПС (рис. 2) имеют такое же строение, как и клеточная или плазматическая мембрана (плазмалемма). ЭПС занимает до 50% объема клетки. Она нигде не обрывается и не открывается в цитоплазму.

Различают гладкую ЭПС и шероховатую , или гранулярную ЭПС (рис. 2). На внутренних мембранах шероховатой ЭПС располагаются рибосомы - здесь идет синтез белков.

Рис. 2. Виды ЭПС

Шероховатая ЭПС (слева) несет на мембранах рибосомы и отвечает за синтез белка в клетке. Гладкая ЭПС (справа) не содержит рибосом и отвечает за синтез углеводов и липидов.

На поверхности гладкой ЭПС (рис. 2) идет синтез углеводов и липидов. Вещества, синтезированные на мембранах ЭПС, переносятся в трубочки и затем транспортируются к местам назначения, где депонируются или используются в биохимических процессах.

Шероховатая ЭПС лучше развита в клетках, которые синтезируют белки для нужд организма, например, белковые гормоны эндокринной системы человека. А гладкая ЭПС - в тех клетках, которые синтезируют сахара и липиды.

В гладкой ЭПС накапливаются ионы кальция (важные для регуляции всей функций клеток и целого организма).

Структуру, известную сегодня как комплекс или аппарат Гольджи (АГ) (рис. 3), впервые обнаружил в 1898 году итальянский ученый Камилло Гольджи ().

Подробно изучить строение комплекса Гольджи удалось значительно позже с помощью электронного микроскопа. Эта структура содержится практически во всех эукариотических клетках, и представляет собой стопку уплощенных мембранных мешочков, т. н. цистерн, и связанную с ними систему пузырьков, называемых пузырьками Гольджи .

Рис. 3. Комплекс Гольджи

Слева - в клетке, среди других органоидов.

Справа - комплекс Гольджи с отделяющимися от него мембранными пузырьками

Во внутриклеточных цистернах накапливаются вещества, синтезированные клеткой, т. е. белки, углеводы, липиды.

В этих же цистернах вещества, поступившие из ЭПС , претерпевают дальнейшие биохимические превращения, упаковываются в мембранные пузырьки и доставляются к тем местам клетки, где они необходимы. Они участвуют в достройке клеточной мембраны или выделяются наружу (секретируются ) из клетки.

Комплекс Гольджи построен из мембран и расположен рядом с ЭПС, но не сообщается с её каналами.

Все вещества, синтезированные на мембранах ЭПС (рис. 2), переносятся в комплекс Гольджи в мембранных пузырьках , которые отпочковываются от ЭПС и сливаются затем с комплексом Гольджи, где они претерпевают дальнейшие изменения.

Одна из функций комплекса Гольджи - сборка мембран. Вещества, из которых состоят мембраны - белки и липиды, как вы уже знаете, - поступают в комплекс Гольджи из ЭПС.

В полостях комплекса собираются участки мембран, из которых образуются особые мембранные пузырьки (рис. 4), они передвигаются по цитоплазме в те места, где необходима достройка мембраны.

Рис. 4. Синтез мембран в клетке комплексом Гольджи (см. видео)

В комплексе Гольджи синтезируются практически все полисахариды, необходимые для построения клеточной стенки клеток растений и грибов. Здесь они упаковываются в мембранные пузырьки, доставляются к клеточной стенке и сливаются с ней.

Таким образом, основные функция комплекса (аппарата) Гольджи - химическое превращение синтезированных в ЭПС веществ, синтез полисахаридов, упаковка и транспорт органических веществ в клетке, формирование лизосомы.

Лизосомы (рис. 5) обнаружены у большинства эукариотических организмов, но особенно много их в клетках, которые способны к фагоцитозу. Они представляют собой одномембранные мешочки, наполненные гидролитическими или пищеварительными ферментами, такими как липазы, протеазы и нуклеазы , т. е. ферменты, которые расщепляют жиры, белки и нуклеиновые кислоты.

Рис. 5. Лизосома - мембранный пузырек, содержащий гидролитические ферменты

Содержимое лизосом имеет кислую реакцию - для их ферментов характерен низкий оптимум pH. Мембраны лизосомы изолируют гидролитические ферменты, не давая им разрушать другие компоненты клетки. В клетках животных лизосомы имеют округлую форму, их диаметр - от 0,2 до 0,4 микрон.

В растительных клетках функцию лизосом выполняют крупные вакуоли. В некоторых растительных клетках, особенно погибающих, можно заметить небольшие тельца, напоминающие лизосомы.

Скопление веществ, которые клетка депонирует, использует для своих нужд, или хранит для выделения вовне, называют клеточными включениями .

Среди них зерна крахмала (запасной углевод растительного происхождения) или гликогена (запасной углевод животного происхождения), капли жира , а также гранулы белков .

Эти запасные питательные вещества располагаются в цитоплазме свободно и не отделены от неё мембраной.

Функции ЭПС

Одна из самых важных функций ЭПС - синтез липидов . Поэтому ЭПС обычно представлена в тех клетках, где интенсивно происходит этот процесс.

Как происходит синтез липидов? В клетках животных липиды синтезируются из жирных кислот и глицерина, которые поступают с пищей (в клетках растений они синтезируются из глюкозы). Синтезированные в ЭПС липиды передаются в комплекс Гольджи, где «дозревают».

ЭПС представлена в клетках коры надпочечников и в половых железах, поскольку здесь синтезируются стероиды, а стероиды - гормоны липидной природы. К стероидам относится мужской гормон тестостерон, и женский гормон эстрадиол.

Ещё одна функция ЭПС - участие в процессах детоксикации. В клетках печени шероховатая и гладкая ЭПС участвуют в процессах обезвреживания вредных веществ, поступающих в организм. ЭПС удаляет яды из нашего организма.

В мышечных клетках присутствуют особые формы ЭПС - саркоплазматический ретикулум . Саркоплазматический ретикулум - один из видов эндоплазматической сети, который присутствует в поперечнополосатой мышечной ткани. Его основной функцией является хранение ионов кальция, и введение их в саркоплазму - среду миофибрилл.

Секреторная функция комплекса Гольджи

Функцией комплекса Гольджи является транспорт и химическая модификация веществ. Особенно хорошо это видно в секреторных клетках.

В качестве примера можно привести клетки поджелудочной железы, синтезирующие ферменты панкреатического сока, который затем выходит в проток железы, открывающийся в двенадцатиперстную железу.

Исходным субстратом для ферментов служат белки, поступающие в комплекс Гольджи из ЭПС. Здесь с ними происходят биохимические превращения, они концентрируются, упаковываются в мембранные пузырьки и перемещаются к плазматической мембране секреторной клетки. Затем они выделяются наружу посредством экзоцитоза.

Ферменты поджелудочной железы секретируются в неактивной форме, чтобы они не разрушали клетку, в которой образуются. Неактивная форма фермента называется проферментом или энзимогеном . Например, фермент трипсин, образуется в неактивной форме в виде трипсиногена в поджелудочной железе и переходит в свою активную форму - трипсин в кишечнике.

Комплексом Гольджи синтезируется также важный гликопротеин - муцин . Муцин синтезируется бокаловидными клетками эпителия, слизистой оболочки желудочно-кишечного тракта и дыхательных путей. Муцин служит барьером, защищающим расположенные под ним эпителиальные клетки от разных повреждений, в первую очередь, механических.

В желудочно-кишечном тракте эта слизь защищает нежную поверхность эпителиальных клеток от действия грубого комка пищи. В дыхательных путях и желудочно-кишечном тракте муцин защищает наш организм от проникновения патогенов - бактерий и вирусов.

В клетках кончика корня растений комплекс Гольджи секретирует мукополисахаридную слизь, которая облегчает продвижение корня в почве.

В железах на листьях насекомоядных растений, росянки и жирянки (рис. 6), аппарат Гольджи производит клейкую слизь и ферменты, с помощью которых эти растения ловят и переваривают добычу.

Рис. 6. Клейкие листья насекомоядных растений

В клетках растений комплекс Гольджи также участвует в образовании смол, камедей и восков.

Автолиз

Автолиз - это саморазрушение клеток, возникающее вследствие высвобождения содержимого лизосом внутри клетки.

Благодаря этому лизосомы в шутку называют «орудиями самоубийства». Автолиз представляет собой нормальное явление онтогенеза, он может распространяться как на отдельные клетки, так и на всю ткань или орган, как это происходит при резорбции хвоста головастика во время метаморфоза, т. е. при превращении головастика в лягушку (рис. 7).

Рис. 7. Резорбция хвоста лягушки благодаря автолизу в ходе онтогенеза

Автолиз происходит в мышечной ткани, остающейся долго без работы.

Кроме этого, автолиз наблюдается у клеток после гибели, поэтому вы могли наблюдать, как продукты питания сами портятся, если они не были заморожены.

Таким образом, мы рассмотрели основные одномембранные органоиды клетки: ЭПС, комплекс Гольджи и лизосомы, выяснили их функции в процессах жизнедеятельности отдельной клетки и организма в целом. Установили связь между синтезом веществ в ЭПС, транспортом их в мембранных пузырьках в комплекс Гольджи, «дозреванием» веществ в комплексе Гольджи и выделением их из клетки при помощи мембранных пузырьков, в том числе лизосом. Также мы говорили о включениях - непостоянных структурах клетки, которые представляют собой скопления органических веществ (крахмала, гликогена, капель масла или гранул белка). Из приведенных в тексте примеров мы можем сделать вывод о том, что процессы жизнедеятельности, которые происходят на клеточном уровне, отражаются на функционировании целого организма (синтез гормонов, автолиз, накопление питательных веществ).

Домашнее задание

1. Что такое органоиды? Чем органоиды отличаются от клеточных включений?

2. Какие группы органоидов бывают в клетках животных и растений?

3. Какие органоиды относятся к одномембранным?

4. Какие функции выполняет ЭПС в клетках живых организмов? Какие виды ЭПС выделяют? С чем это связано?

5. Что такое комплекс (аппарат) Гольджи? Из чего он состоит? Каковы его функции в клетке?

6. Что такое лизосомы? Для чего они нужны? В каких клетках нашего организма они активно функционируют?

7. Как связаны друг с другом ЭПС, комплекс Гольджи и лизосомы?

8. Что такое автолиз? Когда и где он происходит?

9. Обсудите с друзьями явление автолиза. Каково его биологическое значение в онтогенезе?

2. YouTube ().

3. Биология 11 класс. Общая биология. Профильный уровень / В. Б. Захаров, С. Г. Мамонтов, Н. И. Сонин и др. - 5-е изд., стереотип. - Дрофа, 2010. - 388 с.

4. Агафонова И. Б., Захарова Е. Т., Сивоглазов В. И. Биология 10-11 класс. Общая биология. Базовый уровень. - 6-е изд., доп. - Дрофа, 2010. - 384 с.

Комплекс Гольджи представляет собой стопку мембранных мешочков (цистерн) и связанную с ней систему пузырьков.

На наружной, вогнутой стороне стопки из пузырьков, отпочковывающихся от глад. ЭПС, постоянно формируются новые цистерны, а на внутренней стороне цистерны превращаются обратно в пузырьки.

Основная функция комплекса Гольджи - транспорт веществ в цитоплазму и внеклеточную среду, а также синтез жиров и углеводов. Комплекс Гольджи участвует в росте и обновлении плазматической мембраны и в формировании лизосом.

Комплекс Гольджи был открыт в 1898 г. К. Гольджи. Располагая крайне примитивным оборудованием и ограниченным набором реактивов, он сделал открытие, благодаря которому совместно с Рамон-и-Кахалом получил Нобелевскую премию. Он обработал нервные клетки раствором бихромата, после чего добавил нитраты серебра и осмия. С помощью осаждения солей осмия или серебра с клеточными структурами Гольджи обнаружил в нейронах темноокрашенную сеть, которую назвал внутренним сетчатым аппаратом. При окраске общими методами пластинчатый комплекс не накапливает красителей, поэтому зона его концентрации видна как светлый участок. Например, вблизи ядра плазмоцита видна светлая зона, соответствующая области расположения органеллы.

Чаще всего комплекс Гольджи прилежит к ядру. При световой микроскопии он может распределяться в виде сложных сетей или отдельных диффузно расположенных участков (диктиосом). Форма и положение органеллы не имеют принципиального значения и могут изменяться в зависимости от функционального состояния клетки.

Комплекс Гольджи - это место конденсации и накопления продуктов секреции, вырабатываемых в других участках клетки, в основном в ЭПС. Во время синтеза белков меченные радиоизотопом аминокислоты накапливаются в гр. ЭПС, а затем их находят в комплексе Гольджи, секреторных включениях или лизосомах. Такое явление позволяет определить значение комплекса Гольджи в синтетических процессах в клетке.

При электронной микроскопии видно, что комплекс Гольджи состоит из скоплений плоских цистерн, которые называются диктиосомами. Цистерны плотно прилежат друг к другу на расстоянии 20…25 нм. Просвет цистерн в центральной части около 25 нм, а на периферии образуются расширения - ампулы, ширина которых непостоянна. В каждой стопке около 5…10 цистерн. Кроме плотно расположенных плоских цистерн в зоне комплекса Гольджи находится большое количество мелких пузырьков (везикул), особенно по краям органеллы. Иногда они отшнуровываются от ампул.

Со стороны, прилежащей к ЭПС и к ядру, в комплексе Гольджи имеется зона, содержащая значительное количество мелких пузырьков и небольших цистерн.

Комплекс Гольджи поляризован, то есть качественно неоднороден с разных сторон. Он имеет незрелую цис-поверхность, лежащую ближе к ядру, и зрелую - транс-поверхность, обращенную к поверхности клетки. Соответственно органелла состоит из нескольких взаимосвязанных компартментов, выполняющих специфические функции.

Цис-компартмент обычно обращен к клеточному центру. Его внешняя поверхность имеет выпуклую форму. С цистернами сливаются микровезикулы (транспортные пиноцитозные пузырьки), направляющиеся из ЭПС. Мембраны постоянно обновляются за счет пузырьков и, в свою очередь, восполняют содержимое мембранных образований других компартментов. В компартменте начинается посттрансляционная обработка белков, которая продолжается в следующих частях комплекса.

Промежуточный компаргмент осуществляет гликозилирование, фосфорилирование, карбоксилирование, сульфатирование биополимерных белковых комплексов. Происходит так называемая посттрансляционная модификация полипептидных цепочек. Идет синтез гликолипидов и липопротеидов. В промежуточном компартмснте, как и в цис-компартменте, формируются третичные и четвертичные белковые комплексы. Часть белков подвергается частичному протеолизу (разрушению), что сопровождается их трансформацией, необходимой для созревания. Таким образом, цис — и промежуточный компартменты необходимы для созревания белков и других сложных биополимерных соединений.

Транс-компартмент располагается ближе к периферии клетки. Внешняя поверхность его обычно вогнутая. Частично транс-компартмент переходит в транс-сеть - систему везикул, вакуолей и канальцев.

В клетках отдельные диктиосомы могут быть связаны друг с другом системой везикул и цистерн, примыкающих к дистальному концу скопления плоских мешков, так что образуется рыхлая трехмерная сеть - транс-сеть.

В структурах транс-компартмента и транс-сети происходят сортировка белков и других веществ, образование секреторных гранул, предшественников первичных лизосом и пузырьков спонтанной секреции. Секреторные пузырьки и прелизосомы окружают белки - клатрины.

Клатрины осаждаются на мембране формирующегося пузырька, постепенно отщепляя его от дистальной цистерны комплекса. Окаймленные пузырьки отходят от транс-сети, их перемещение гормонозависимое и контролируется функциональным состоянием клетки. Процесс транспортировки окаймленных пузырьков находится под влиянием микротрубочек. Белковые (клатриновые) комплексы вокруг пузырьков распадаются после отщепления пузырька от транс-сети и вновь формируются в момент секреции. В момент секреции белковые комплексы пузырьков взаимодействуют с белками микротрубочек, и пузырек транспортируется к наружной мембране. Пузырьки спонтанной секреции не окружены клатринами, их формирование происходит непрерывно и они, направляясь к клеточной мембране, сливаются с ней, обеспечивая восстановление цитолеммы.

В целом комплекс Гольджи участвует в сегрегации - это разделение, отделение определенных частей от основной массы, и накоплении продуктов, синтезированных в ЭПС, в их химических перестройках, созревании. В цистернах происходит синтез полисахаридов, их соединение с белками, что приводит к образованию сложных комплексов пептидогликанов (гликопротеинов). С помощью элементов комплекса Гольджи выводятся готовые секреты за пределы секреторной клетки.

Мелкие транспортные пузырьки отщепляются от гр. ЭПС в зонах, свободных от рибосом. Пузырьки восстанавливают мембраны комплекса Гольджи и доставляют в него полимерные комплексы, синтезируемые в ЭПС. Пузырьки транспортируются в цис-компартмент, где сливаются с его мембранами. Следовательно, в комплекс Гольджи поступают новые порции мембран и продуктов, синтезированных в гр. ЭПС.

В цистернах комплекса Гольджи происходят вторичные изменения в белках, синтезированных в гр. ЭПС. Эти изменения связаны с перестройкой олигосахаридных цепочек гликопротеинов. Внутри полостей комплекса Гольджи с помощью трансглюкозидаз модифицируются лизосомальные белки и белки секретов: происходит последовательная замена и наращивание олигосахаридных цепочек. Модифицирующиеся белки переходят от цистерны цис-компартмента в цистерны транс-компартмента за счет транспорта в пузырьках, содержащих белок.

В транс-компартменте белки сортируются: на внутренних поверхностях мембран цистерн располагаются белковые рецепторы, которые узнают секреторные белки, белки мембран и лизосом (гидролазы). В результате от дистальных транс-участков диктиосом отщепляются три типа мелких вакуолей: содержащие гидролазы - прелизосомы; с секреторными включениями, вакуоли, восполняющие клеточную мембрану.

Секреторная функция комплекса Гольджи заключается в том, что синтезированный на рибосомах экспортируемый белок, отделяющийся и накапливающийся внутри цистерн ЭПС, транспортируется в вакуоли пластинчатого аппарата. Затем накопленный белок может конденсироваться, образуя секреторные белковые гранулы (в поджелудочной, молочной и других железах), или оставаться в растворенном виде (иммуноглобулины в плазматических клетках). От ампулярных расширений цистерн комплекса Гольджи отщепляются пузырьки, содержащие эти белки. Такие пузырьки могут сливаться между собой, увеличиваться в размерах, образуя секреторные гранулы.

После этого секреторные гранулы начинают двигаться к поверхности клетки, соприкасаются с плазмолеммой, с которой сливаются их собственные мембраны, и содержимое гранул оказывается за пределами клетки. Морфологически этот процесс называется экструзией, или экскрецией (выбрасывание, экзоцитоз) и напоминает эндоцитоз, только с обратной последовательностью стадий.

Комплекс Гольджи может резко увеличиваться в размерах в клетках, активно осуществляющих секреторную функцию, что обычно сопровождается развитием ЭПС, а в случае синтеза белков - ядрышка.

Во время деления клетки комплекс Гольджи распадается до отдельных цистерн (диктиосом) и/или пузырьков, которые распределяются между двумя делящимися клетками и в конце телофазы восстанавливают структурную целостность органеллы. Вне деления происходит непрерывное обновление мембранного аппарата за счет пузырьков, мигрирующих из ЭПС и дистальных цистерн диктиосомы за счет проксимальных компартментов.

Если вы нашли ошибку, пожалуйста, выделите фрагмент текста и нажмите Ctrl+Enter .

Аппарат Гольджи, он же комплекс Гольджи, представляет собой один из важнейших компонентов в строении клетки. Эта клеточная , названая в честь итальянского биолога Камилло Гольджи, который ее открыл в 1898 году, она имеет вид комплекса полостей, ограниченных одиночными мембранами. По сути, аппарат Гольджи это мембранная структура эукариотической клетки.

Строение аппарата Гольджи

Если мы посмотрим на аппарат Гольджи в электронный , то увидим него нечто напоминающее стопку наложенных друг на друга мешочков, около которых находится множество пузырьков. В середине каждого подобного мешка находится узкий канал, который расширяется на концах в так званые цистерны. От них в свою очередь отпочковываются пузырьки. Вокруг центральной стопки образуется система связанных между собой трубочек.

Внешняя сторона аппарат Гольджи имеет немного выпуклую форму, там наши стопки образуют новые цистерны путем слияния пузырьков отпочковывающихся от гладкой эндоплазматической сети. С внутренней стороны аппарата цистерны завершают свое созревание и также распадаются вновь на пузырьки. Подобным образом происходит перемещение цистерн (мешочков, стопок) от наружной стороны органеллы к внутренней.

Также часть комплекса Гольджи, которая располагается ближе к ядру клетки, называется «цис», а часть, которая находится ближе к мембране, называется «транс».

Так выглядит аппарат Гольджи на рисунке.

Функции комплекса Гольджи

Роль аппарата Гольджи в жизни клетки разнообразна, в основном она сводится к модификации и перераспределению синтезирующих веществ и также их выведению за пределы клетки, образованию лизосом и построению .

Весьма высока активность аппарата Гольджи в секреторных клетках. Белки, которые поступающие из эндоплазматической сети концентрируются в аппарате Гольджи, затем в пузырьках Гольджи переносятся к мембране.

В клетках растений при формировании клеточной стенки именно Гольджи секретирует углеводы, которые служат матриксом для нее. При помощи микротрубочек отпочковавшиеся пузырьки Гольджи перемещаются и их мембраны сливаются с цитоплазматической мембраной, а содержимое включается в клеточную стенку.

Комплекс Гольджи бокаловидных клеток (они находятся в толще эпителия слизистой оболочки кишечника и дыхательных путей) секретирует гликопротеин муцин, он образует слизь.

А в клетках кишечника именно аппарат Гольджи выполняет важную функцию по перемещению липидов. Происходит это таким образом: жирные кислоты и глицерол попадают в клетки, затем в эндоплазматической сети происходит синтез своих липидов, большая часть их которых покрывается белками и при помощи Гольджи транспортируется к клеточной мембране, пройдя через которую липиды окажутся в лимфе.



Последние материалы раздела:

Программа и учебные пособия для воскресных школ А тех, кто вокруг, не судить за грехи
Программа и учебные пособия для воскресных школ А тех, кто вокруг, не судить за грехи

Учебно-методический комплект "Вертоград" включает Конспекты учителя, Рабочие Тетради и Сборники тестов по следующим предметам:1. ХРАМОВЕДЕНИЕ...

Перемещение Определить величину перемещения тела
Перемещение Определить величину перемещения тела

Когда мы говорим о перемещении, важно помнить, что перемещение зависит от системы отсчета, в которой рассматривается движение. Обратите внимание...

Щитовидная железа: психосоматика проблемы
Щитовидная железа: психосоматика проблемы

Точка силы находится здесь и сейчас – в наших умах. Каждая наша мысль буквально творит наше будущее. Мы формируем свои убеждения в детстве, а потом...