Контроль за состоянием чистоты атмосферы. Нормирование и контроль состояния атмосферы

Разбор некоторых аспектов экологической доктрины Российской Федерации

2.3.1 Мониторинг и контроль состояния атмосферы

Наблюдение за состоянием атмосферного воздуха могут производить как в местах интенсивного техногенного воздействия (городах, промагломерациях) так и в удаленных от источников загрязнения районов. Сеть наблюдающих станций РФ включена в Единую Государственную Службу Экологического Мониторинга (ЕГСЭМ), исследования проводят по физическим, химическим и биологическим показателям.

Для получения информации о изменчивости состояния атмосферного воздуха проводят предварительное обследование состояния атмосферного воздуха на определенной территории с помощью передвижных средств, так можно определить границы промышленных комплексов, окрестности их влияния. После обработки полученной информации устанавливаются границы, контрастность загрязнения. Об общем состоянии воздушного пространства может сообщать наблюдательный пост, также он может контролировать источники выбросов. На таких постах обязательно производят замеры пыли, SO 2 , CO, NO 2. Выбор других веществ определяется спецификой производства и частотой превышений ПДК (предельно допустимых веществ). Пост должен находиться вне аэродинамических тени зданий и зоны зеленых насаждений, территория должна хорошо проветриваться, не подвергаться влиянию источников возможного выброса загрязнителей (автостоянок, мелких предприятий). Количество таких постов зависит от рельефа, особенностей промышленности, от структуры местности (жилая, промышленная, зеленая зона и т.д.), а также от численности населения. Ниже представлена таблица (2.2), представляющая зависимость количества постов от численности населения

Таблица 2.2 - Зависимость количества постов от численности населения

В недавно установленных постах могут быть установлены газоанализаторы и использоваться приборы «Компонент» с узлом отбора проб для определения запыленности воздуха и автоматическим контроля температуры и относительной влажности. Наблюдения за загрязнением атмосферного воздуха должны проводиться круглогодично и независимо от природных условий.

Самым важным элементом контроля атмосферного воздуха является отбор проб, если он выполнен неправильно, то дальнейший анализ теряет свой смысл. Возможны два способа отбора проб атмосферного воздуха: аспирационный (поглощение воздуха специальным прибором) и заполнением сосудов ограниченной емкости. Для исследования газообразных примесей пригодны оба способа, для контроля за веществами в виде аэрозолей только первый. При аспирационном способе анализируемое вещество концентрируется в поглотительной среде. Для точного определения расход воздуха в приборе должен быть большим: десятки и сотни литров в минуту. Лучшим способом определения концентраций вредных веществ в атмосфере является непрерывный отбор воздуха в течение 24 часов.

Лабораторно-аналитическое обеспечение деятельности в области обращения с опасными отходами

Экологический контроль в соответствии со ст...

Механизм регулирования состояния водоемов

Прогнозирование состояния водоемов или других природных систем основывается на изучении и анализе закономерностей их развития, изменчивости при действии антропогенных и других факторов. Оно базируется на стандартах...

Мониторинг загрязнения вод суши

Мониторинг окружающей среды в Московской области

Главной водной артерией является р. Волга, которая протекает на небольшом (12 км) участке Верхне-Волжской низменности, по которому проходит граница с Тверской областью. Остальные реки являются ее притоками или притоками следующих порядков...

Мониторинг среды обитания

Задание 6.Какова допустимая концентрация ртути в воздухе? Чувствительность индикаторной бумаги для регистрации паров ртути (способ приготовления рассмотрен в предыдущей задаче) составляет 5*10-7мг/мл. Определите...

Проблема загрязнения биосферы

Под мониторингом (от лат. «монитор» -- напоминающий, надзирающий) понимают систему наблюдений, оценки и прогноза состояния окружающей среды. Основной принцип мониторинга -- непрерывное слежение...

Проблема загрязнения водных объектов

Практикуются три основных метода очистки сточных вод. Первый существует давно и наиболее экономичен: сброс сточных вод в крупные водотоки, где они разбавляются пресной проточной водой, аэрируются и нейтрализуются естественным образом...

Для получения реальной информации о состоянии и уровне загрязнения различных объектов окружающей среды (согласно подпункту экологической доктрины - «обеспечение достоверности и сопоставимости данных экологического мониторинга по...

Разбор некоторых аспектов экологической доктрины Российской Федерации

Основными задачами по контролю и мониторинга природных является систематическое получение отдельных и/или обобщенных данных о качестве воды и обеспечение этими данными заинтересованные организации...

Разбор некоторых аспектов экологической доктрины Российской Федерации

В качестве загрязнителей почвы рассматривают такие загрязняющие вещества как газы и гидрозоли, сложные органические соединения (бензол, диоксин, пиридин). Негативные последствия проявляются на региональном и даже глобальном уровне...

Система экологического менеджмента нефтегазодобывающего предприятия на примере ООО "Лукойл - Западная Сибирь"

ОССЖ должны быть оборудованы техническими средствами для контроля уровней, давления, расходов при хранении, транспортировании и внесении животноводческих стоков...

Экология

В соответствии со Статьей 1 Федерального закона «Об охране окружающей среды» экологический контроль это система мер, направленная на предотвращение, выявление и пресечение нарушения законодательства в области охраны окружающей среды...

Под качеством атмосферного воздуха понимают совокупность свойств атмосферы, определяющую степень воздействия физических, химических и биологических факторов на людей, растительный и животный мир, а также на материалы, конструкции и окружающую среду в целом .

Нормативами качества воздуха определены допустимые пределы содержания вредных веществ как в производственной (предназначенной для размещения промышленных предприятий, опытных производств научно-исследовательских институтов и т.п.), так и в селитебной зоне (предназначенной для размещения жилого фонда, общественных зданий и сооружений) населенных пунктов. Основные термины и определения, касающиеся показателей загрязнения атмосферы, программ наблюдения, поведения примесей в атмосферном воздухе определеныГОСТом 17.2.1.03-84. Охрана природы. Атмосфера. Термины и определения контроля загрязнения .

Предельно допустимая концентрация вредного вещества в воздухе рабочей зоны (ПДК рз) - концентрация, которая при ежедневной (кроме выходных дней) работе в течение 8 часов, или при другой продолжительности, но не более 41 часа в неделю, на протяжении всего рабочего стажа не должна вызывать заболевания или отклонения в состоянии здоровья, обнаруживаемые современными методами исследования, в процессе работы или в отдаленные сроки жизни настоящего и последующего поколений . Рабочей зоной следует считать пространство высотой до 2 м над уровнем пола или площади, на которой находятся места постоянного или временного пребывания рабочих.

Как следует из определения, ПДК рз представляет собой норматив, ограничивающий воздействие вредного вещества на взрослую работоспособную часть населения в течение периода времени, установленного трудовым законодательством. Совершенно недопустимо сравнивать уровни загрязнения селитебной зоны с установленными ПДК рз, а также говорить о ПДК в воздухе вообще, не уточняя, о каком нормативе идет речь.

Предельно допустимая концентрация максимально разовая (ПДК мр) - концентрация вредного вещества в воздухе населенных мест , не вызывающая при вдыхании в течение 20 минут рефлекторных (в том числе, субсенсорных) реакций в организме человека .

Таблица 3. Соотношение различных видов ПДК в воздухе для некоторых веществ

Понятие ПДК мр используется при установлении научно-технических нормативов - предельно допустимых выбросов загрязняющих веществ. В результате рассеяния примесей в воздухе при неблагоприятных метеорологических условиях на границе санитарно-защитной зоны предприятия концентрация вредного вещества в любой момент времени не должна превышать ПДК мр.

Предельно допустимая концентрация среднесуточная (ПДК сс) - это концентрация вредного вещества в воздухе населенных мест , которая не должна оказывать на человека прямого или косвенного воздействия при неограниченно долгом (годы) вдыхании . Таким образом, ПДК сс рассчитана на все группы населения и на неопределенно долгий период воздействия и, следовательно, является самым жестким санитарно-гигиеническим нормативом, устанавливающим концентрацию вредного вещества в воздушной среде. Именно величина ПДК сс может выступать в качестве "эталона" для оценки благополучия воздушной среды в селитебной зоне. Но использование этого норматива в качестве единицы измерения (пять ПДК сс по оксидам азота) - абсурдно!

В Приложении 2 приведены таблицы ПДК мр и ПДК сс для многих загрязняющих веществ, а также некоторые международные нормативы и стандарты качества атмосферного воздуха (раздел 2.2).

Предложен ряд комплексных показателей загрязнения атмосферы (совместно несколькими загрязняющими веществами); наиболее распространенным и рекомендованным методической документацией Госкомэкологии, является комплексный индекс загрязнения атмосферы (ИЗА). Его рассчитывают как сумму нормированных по ПДК сс и приведенных к концентрации диоксида серы средних содержаний различных веществ:

Где Y i - единичный индекс загрязнения для i -ого вещества;
q cpi - средняя концентрация i -ого вещества;
ПДК cсi - ПДК сс для i -ого вещества;
c i - безразмерная константа приведения степени вредности i -ого вещества к вредности диоксида серы, зависящая от того, к какому классу опасности (см. ниже) принадлежит загрязняющее вещество.

Для сопоставления данных о загрязненности несколькими веществами атмосферы разных городов или районов города комплексные индексы загрязнения атмосферы должны быть рассчитаны для одинакового количества (n) примесей. При составлении ежегодного списка городов с наибольшим уровнем загрязнения атмосферы для расчета комплексного индекса Y n используют значения единичных индексов Y i тех пяти веществ, у которых эти значения наибольшие .

В последнее время растет число публикаций, описывающих эффекты действия загрязняющих веществ на биоту, в том числе атмосферных примесей на растительность. Так, установлено, что хвойные породы деревьев, лишайники чувствительнее прочих видов реагируют на присутствие в воздухе кислых газов, в первую очередь, сернистого ангидрида. Исследователи предлагают установить предельно допустимые концентрации для диких видов с тем, чтобы использовать эти нормативы при оценке ущерба и ограничении воздействия на особо охраняемые природные объекты. Однако широкое применение чувствительность растений нашла лишь в биологическом мониторинге; экологическое нормирование состояния атмосферного воздуха на практике фактически не реализовано.

24. SO 2 , его строение и свойства. SO 2 -загрязнитель атмосферного воздуха.

Окси́д се́ры(IV) (диокси́д се́ры , двуокись серы, серни́стый газ , серни́стый ангидри́д ) - SO 2 . В нормальных условиях представляет собой бесцветный газ с характерным резким запахом (запах загорающейся спички). Под давлением сжижается при комнатной температуре. Растворяется в воде с образованием нестойкой серни́стой кислоты; растворимость 11,5 г/100 г воды при 20 °C, снижается с ростом температуры. Растворяется также в этаноле, се́рной кислоте. SO 2 - один из основных компонентов вулканическихгазов.

Промышленный способ получения - сжигание серы или обжиг сульфидов, в основном -пирита:

В лабораторных условиях и в природе SO 2 получают воздействием сильных кислот насульфиты и гидросульфиты. Образующаяся сернистая кислота H 2 SO 3 сразу разлагается на SO 2 и H 2 O:

Также диоксид серы можно получить действием концентрированной серной кислоты на малоактивные металлы при нагревании:

Химические свойства

Относится к кислотным оксидам. Растворяется в воде с образованием сернистой кислоты (при обычных условиях реакция обратима):

Со щелочами образует сульфиты:

Химическая активность SO 2 весьма велика. Наиболее ярко выраженывосстановительные свойства SO 2 , степень окисления серы в таких реакциях повышается:

Последняя реакция является качественной реакцией на сульфит-ион SO 3 2− и на SO 2 (обесцвечивание фиолетового раствора).

В присутствии сильных восстановителей SO 2 способен проявлять окислительные свойства. Например, для извлечения серы из отходящих газов металлургической промышленности используют восстановление SO 2 оксидом углерода(II):

Или для получения фосфорноватистой кислоты:

Применение [править]

Большая часть оксида серы(IV) используется для производства серной кислоты. Используется также в виноделии в качестве консерванта (пищевая добавка E220). Так как этот газ убивает микроорганизмы, им окуривают овощехранилища и склады. Оксид серы(IV) используется для отбеливания соломы, шелка и шерсти, то есть материалов, которые нельзя отбеливать хлором. Применяется он также и в качестве растворителя в лабораториях. При таковом его применении следует помнить о возможном содержании в SO 2 примесей в виде SO 3 , H 2 O, и как следствие присутствия воды H 2 SO 4 и H 2 SO 3 . Их удаляют пропусканием через растворитель концентрированной H 2 SO 4 ; это лучше делать под вакуумом или в другой закрытой аппаратуре . Оксид серы(IV) применяется также для получения различных солей сернистой кислоты.

Физиологическое действие

SO 2 очень токсичен. Симптомы при отравлении сернистым газом - насморк, кашель, охриплость, сильное першение в горле и своеобразный привкус. При вдыхании сернистого газа более высокой концентрации -удушье, расстройство речи, затруднение глотания, рвота, возможен острый отёк лёгких.

При кратковременном вдыхании оказывает сильное раздражающее действие, вызывает кашель и першение в горле.

· ПДК(предельно допустимая концентрация):

· в атмосферном воздухе максимально-разовая - 0,5 мг/м³, среднесуточная - 0,05 мг/м³;

· в помещении (рабочая зона) - 10 мг/м³

Интересно, что чувствительность по отношению к SO 2 весьма различна у отдельных людей, животных и растений. Так, среди растений наиболее устойчивы по отношению к сернистому газу берёза и дуб, наименее - роза, сосна и ель.

Воздействие на атмосферу

Основная статья: Кислотный дождь

Из-за образования в больших количествах в качестве отходов диоксид серы является одним из основных газов, загрязняющих атмосферу.

Наибольшую опасность представляет собой загрязнение соединениями серы, которые выбрасываются в атмосферу при сжигании угольного топлива, нефти и природного газа, а также при выплавке металлов и производстве серной кислоты.

Антропогенное загрязнение серой в два раза превосходит природное [источник не указан 209 дней ] . Серный ангидрид образуется при постепенном окислении сернистого ангидрида кислородом воздуха с участием света. Конечным продуктом реакции является аэрозоль серной кислоты в воздухе, раствор в дождевой воде (в облаках). Выпадая с осадками, она подкисляет почву, обостряет заболевания дыхательных путей, скрыто угнетающе воздействует на здоровье человека. Выпадение аэрозоля серной кислоты из дымовых факелов химических предприятий чаще отмечается при низкой облачности и высокой влажности воздуха. Растения около таких предприятий обычно бывают густо усеяны мелкими некротическими пятнами, образовавшимися в местах оседания капель серной кислоты, что доказывает присутствие её в окружающей среде в существенных количествах. Пирометаллургические предприятия цветной и чёрной металлургии, а также ТЭЦ ежегодно выбрасывают в атмосферу десятки миллионов тонн серного ангидрида.

Наибольших концентраций сернистый газ достигает в северном полушарии, особенно над территорией США, Европы, Китая, европейской части России и Украины. В южном полушарии содержание его значительно ниже.

МОНИТОРИНГ АТМОСФЕРЫ

Регулярные наблюденияза загрязнением воздуха проводят на постах, которые подразделяются согласно ГОСТу 17.2.3.01-86 «Охрана природы. Атмосфера. Правила контроля качества воздуха населенных пунктов» на 3 категории:

1. Стационарные посты.

2. Передвижные посты.

3. Маршрутные посты.

Стационарные посты – это специальные павильоны, оснащенные оборудованием и приборами для отбора и анализа проб воздуха и определения метеорологических параметров, служащие для систематических наблюдений

Минимальное число стационарных постов наблюденийустанавливается в зависимости от численности населения:

До 50 тыс. чел. – 1; от 100 тыс. чел. – 2; от 100 - 200 тыс. чел. – 2 - 3;

от 200 - 500 чел. – 3 - 5; от 0,5 - 1 млн. чел. – 5-10; от 1- 2 млн. чел. – 10 - 15;

более 2 млн. чел. – 15-20.

Сеть стационарных постов наблюдения должна охватывать различные участки города из расчета 1 стационарный пункт на 3-5 кв. км.

Выбранные пункты должны быть расположены на площадках с непылящим или мало пылящим покрытием, на проветриваемых местах.

Целесообразно организовать за пределами города 1 стационарный пост на расстоянии 1- 3 км с наветренной стороны по преобладающему ветру и на расстоянии 2 - 5 км с подветренной стороны.

Размещение стационарных постов наблюдений выбирается совместно с гидрометеорологической и санитарно-эпидемиологической службами, и согласовываются с главным архитектором города.

Передвижные посты служат для разовых наблюдений над дымовыми и газовыми факелами (в зависимости от направления ветра) и оценки пространственной изменчивости загрязнения на прилегающих территориях.

Основное назначение передвижных лабораторий – выявление зон с чрезмерным уровнем загрязнения компонентов биоты, отбор проб для тщательного анализа, а также для осуществления контрольных функций.

Маршрутные посты представляют собой автолаборатории для постоянных наблюдений за состоянием атмосферного воздуха на территориях, примыкающих к автомобильным магистралям с интенсивным движением

Контроль загрязнения атмосферы и метеонаблюдения проводятся строго в соответствии с международными стандартами – по полной, неполной и сокращенной программам.

По полной программе сроки отбора проб воздуха производятся в строго фиксированное время суток, через равномерные промежутки (в 1, 4, 7, 10, 13, 16, 19, 21 ч. местного дискретного времени) для того, чтобы охватить возможные изменения концентраций примесей, в связи с суточными колебаниями метеорологических факторов и выбросов вредных веществ.

По неполной программе (в 7, 13, 19. ч.) измеряются концентрации только основных и специфических загрязнителей.



По сокращенной программе (в 7, 13. ч.) измеряются концентрации основных загрязнителей и 1- 2 наиболее распространенных специфичных загрязнителя.

Измерения метеопараметров для сравнимости во всём мире проводятся одновременно (синхронно) по Гринвичскому времени (времени нулевого, Гринвичского, меридиана). Это так называемые синопти­ческие сроки.

Результаты измерений немедленно передаются в службу погоды по компьютерной связи, телефону, телеграфу или радио. Там составляются синоптические карты и разрабатывают­ся метеопрогнозы.

Для определения концентраций вредных примесей в атмосферном воздухе в близи автомагистралей и в отработавших газах двигателей используют анализаторы непрерывного действия, основанные на использовании следующих методов табл. 2.3.

Таблица 2.3

1. Абсорбционный* метод спектрального анализа, основан на свойстве веществ, избирательно поглощать часть проходящего через них электромагнитного излучения.

*Абсорбция (лат. поглощаю) – объемное поглощение газов или паров жидкостью (абсорбентом) с образованием раствора.

Специфичность спектра поглощения позволяет качественно определять состав газовых смесей, а его интенсивность связана с количеством поглощающего энергию вещества. Каждому газу присуща своя область длин волн поглощения и соответственно свой цвет.

2. Пламенно-ионизационный* метод, основан на ионизации углеводородов в водородном пламени.

*Ионизация (греч. идущий) – превращение атомов и молекул в ионы.

Ионы – электрически заряженные частицы, образующиеся в результате потери или присоединения одного или нескольких электронов к атомам или химически связанным атомным группам, (катионы (+) или анионы (-)).

В чистом водородном пламенисодержание ионов незначительно. При введении углеводородов в пламя, количество образующихся ионов значительно возрастает и под действием приложенного электрического поля между коллектором и горелкой возникает ионизационный ток,пропорциональный содержанию углеводородов.

3. Хемилюминесцентный* метод, основан на реакции оксидов азота и озона, попадающих одновременно в реакционную камеру, которая имеет вид:

NO + O 3 → NО 2 (NO 2 *) +О 2

Возбужденная молекула NO 2 * (образует 5-10% от общего количества молекул NO 2) отдает избыток энергии в виде излучения.

NО 2 * → hv+NО 2

Интенсивность излучения, измеряемого фотоумножителем, пропорциональна концентрации оксидов азота.

*Люминесценция (лат. свет) – свечение веществ, избыточное над их тепловым излучением при данной температуре и возбужденное какими-либо источниками энергии.

Хемо – часть сложных слов, указывающая на отношение к химии или к химическим процессам.

Для определения концентрации озона применяется газ-реагент этилен (Н 2 С = СН 2) высокой очистки (99,95%). Под действием ультрафиолетового излучения между озоном и этиленом протекает реакция, сопровождающаяся люминесцентным излучением.

4. Метод ультрафиолетовой флуоресценции* основан на облучении пробы газа, содержащего диоксид серы и (или) сероводород, ультрафиолетовым светом.

*Явление флуоресценции – свойство вещества излучать свет под воздействием источника возбуждения.

В коротко волновой области спектра (200-500 нм) молекулы SО 2 и Н 2 S из возбужденного состояния переходят в нормальное состояние, разряжаясь через флуоресценцию. Интенсивность разряжения пропорциональна содержанию диоксида серы и сероводорода.

5. Пламенно-фотометрический метод основан на внесении молекул диоксида серы в пламя смеси водород /воздух.

При этом диоксид серы восстанавливается до атомарной серы, из которой вновь образуется молекулы серы (S 2), часть из которых возбуждена.

Возвращаясь в исходное состояние, возбужденные молекулы испускают характерные для серы излучения.

6. Гравиметрический метод традиционный метод определения концентрации твердых частиц в газовых смесях, связанный с отбором пробы, пропусканием ее через фильтр, взвешиванием фильтра или определением его степени черноты по эталону.

7. Радиоизотопный метод применяется для определения концентрации твердых частиц, которая вычисляется по результатам измерений на фильтре (лента из стекловолокна) до и после нанесения пробы.

8. Электрохимический метод основан на использовании химических сенсорных датчиков, состоящих из двух чувствительных элементов и определенного химического покрытия, на котором происходит адсорбция анализируемого вещества.

9. Хроматографический* метод основан на использовании свойства разделения сложных смесей на хроматографической колонке, заполненной сорбентом.

*Хроматография (греч. – цвет) – метод разделения и анализа смесей, основанный на различном распределении их компонентов между двумя фазами – неподвижной и подвижной.

Проба газа вводится в поток соответствующего газа-носителя простейшей форсункой и вместе с ним пропускается через колонки с твердыми адсорбирующими поверхностями (адсорбентная газовая хроматография), или с нанесенными на твердые поверхности нелетучими жидкостями (газожидкостная хроматография). Отдельные компоненты смеси с различными скоростями перемещаются в колонке, выходят из нее раздельными фракциями и регистрируются. Количественная оценка осуществляется по интенсивности сигнала детектора.

10. Лазерно-локационный* метод (лидарная система контроля) основан на комбинационном рассеивании и дифференциальном поглощении загрязняющих веществ с использованием источника лазерного излучения и предназначен для дистанционного зонирования качества атмосферы.

*Лазер – прибор, испускающий световой луч очень острой направленности, т.е. с очень малой расходимостью лучей. Все излучение лазера собирается в пятнышко площадью ~ 10- 6 см 2 , в котором создается огромная плотность мощности (до 10 т Вт/см 2). Лазерный луч при своем распространении – рассеивается молекулами, частицами, неоднородностями воздуха, поглощается и изменяет свои физические параметры (частоту, форму импульса и др.), при этом появляется свечение (флюоресценция), что позволяет качественно и количественно судить о тех или иных параметрах среды.

Лидар кругового обзора, устанавливается в промышленных зонах, вблизи автомагистралей на доминирующих строениях и предназначен для непрерывного контроля выбросов аэрозолей SО 2 , СО на территориях радиусом от 7 до 15 км.

МЕТОДИКИ МОНИТОРИНГА ВОЗДУШНОЙ СРЕДЫ

Основными веществами, загрязняющими атмосферу, явля­ются – окислы азота, серы, и углерода, фенолы, аммиак, хлор, ра­диоактивная пыль и суперэкотоксиканты.

На уровень загрязнения атмосферы влияют следующие условия погоды*:

1. Инверсия (особенно приподнятая инверсия) возника­ет, когда массы теплого воздуха распространяются над регионом и препятствуют выносу загрязнителей в атмосферу. При этом температура почвы ниже температуры воздуха.

2. Ураганы, при которых скорость ветра превышает 30 метров в секунду. Они возникают в определенных местах Мирового океана при резком повышении температуры морской воды; при движении ураганы разрушают все на своем пути.

3. Туман (промышленный и фотохимический смог) отрицательно воздействующий на окружающую среду (в частности, приводит к выпадению кислотных дождей) и создает неблагоприятные условия для жизни человека.

4. Штиль. При отсутствии ветра (V в = 0 – 0,5 м/с) над поверх­ностью земли создаются условия для застоя воздуха. Запирающий слой кислых газов и пыли при этом снижается над местностью. От высоких источников загрязнения (высоких дымовых труб) дым не поднимается столбом вверх. С низкими источниками за­грязнения (выхлопные трубы автотранспорта) дело обстоит ещё хуже отходящим газам некуда деться, и это усугубляется плохим качеством сжигаемого в автомобилях бензина и дизельного топлива.

5. Осадки. При определенной метеорологической обстановке создаются условия для образования кислотных дождей, что отрицательно сказывается на здоровье человека, снижает урожай­ность сельскохозяйственных культур и является причиной кор­розии металлов.

6. Видимость в атмосфере. На состояние этого метеорологи­ческого фактора влияет наличие в воздухе взвешенных жидких и твердых частиц (капли воды, пыль).

7. Излучения. Электромагнитные излучения, в том числе инсоляция, магнитные и радиационные излучения, в той или иной мере зависят от метеоусловий. Солнечная радиация инициирует магнитные бури; электромагнитные явления в атмосфере вызывают грозы; радиационные явления ионизирующего ха­рактера зависят от наличия в атмосфере частиц пыли с высоким уровнем радиации.

Знание законов метеорологии позволяет оценить такие экологические явления, как рассеяние загрязняющих веществ, обра­зование смогов (ядовитых туманов), инверсия (способность на­гретого загрязненного воздуха опускаться к охлажденной земле), образование шлейфа дыма от труб промышленных предприятий, проветриваемость жилых массивов.

НАБЛЮДЕНИЯ ЗА ВЫХЛОПНЫМИ ГАЗАМИ АВТОМОБИЛЕЙ.

Для оценки загрязнения атмосферы на постах при дорожном мониторинге чаще всего используют отечественные контрольно-измерительные комплексы «Пост-1» «Воздух-1», АСКЗА, «Атмосфера-2», где наряду с эколо­гическими параметрами измеряются и метеорологические харак­теристики, что позволяет прогнозировать природную ситуацию.

Место для размещения приборов выбирается на тротуаре и на середине разделительной полосы, при ее наличии. При отсутствии тротуара приборы размещают на расстоянии от проезжей части равном половине ширины проезжей части одностороннего движения.

Оценка уровня загрязнения атмосферного воздуха на автомагистралях и в прилегающей жилой застройке дается на основе натурных наблюдений и включает в себя:

1. Определение в воздухе основных компонентов выхлопных газов.

2. Определения уровня транспортного шума.

3. Определение метеорологических параметров.

Наличие этих данных наблюдений позволяют изучить:

1. Влияние транспортного потока на уровень загрязнения атмосферного воздуха.

2. Отработать методику осуществления экологического мониторинга автомобильных, дорог и транспортных потоков.

3. Управление потоками в режиме реального времени.

Контроль содержания токсичных выбросов в отработавших газах (ОГ) автомобилей проводится в два этапа:

На первом (визуальном) этапе проводится осмотр дороги:

1. Дорога разбивается на участки. Из них выбирают наиболее загруженные и характерные.

Характерные участки автомобильной дороги можно представить по типам:

1 тип - перегонные участки, где движение транспорта происходит с постоянной скоростью. Удельные выбросы токсичных компонентов ОГ наименьшие.

2 тип - перекрестки, где происходит снижение скорости, торможение, разгон, возможны остановки (светофор), работа двигателя на холостом ходу.

3 тип - места остановок транспорта, площадки и стоянки отдыха.

На стоянках автомобильный двигатель значительное время работает на холостом ходу, а при отъезде часто используется режим разгона. Эти режимы работы двигателя характеризуются повышенными объемами выбросов угарного газа, углеводородов, оксидов азота и т.д.

На втором этапе на выбранных участках дороги производится инструментальная оценка уровня загрязнения в соответствии с действующими методиками.

Предварительно перед вторым этапом определяется интенсивность движения на характерных участках дороги:

1. В течение 2-3 недель ежедневно, в период с 5 - 6 ч утра до 21- 23 ч вечера, а на транзитных автомагистралях в течение суток, подсчитывают количество проходящих в прямом и обратном направлениях транспортных средств по пяти основным категориям: легковые, грузовые, автобусы, автомобили и автобусы с дизельными двигателями, мотоциклы.

2. Подсчет количествапроходящих транспортных единиц производится в течение 20 минут каждого часа, а в 2-3 часовые периоды наибольшей интенсивности движения через каждые 20 минут.

3. На основании результатов натурных исследовании вычисляют средние значения интенсивности движения автотранспорта в течение суток в каждой из точек измерений.

Во время проведения замеров определяются:

1. Средние за 20 минут величины концентраций углеводородов (С n Н m), озона (О 3), окислов азота (NО Х), соединений серы (Н 2 S, S0 2).

2. Средние за час концентрации оксида углерода (СО).

3. Средние трехчасовые концентрации пыли.

4. 30 минутные данные о метеорологических величинах.

На основании полученных данных определяют:

1. Максимальные значения концентраций основных примесей, выбрасываемых автотранспортом в районах автомагистралей.

2. Периоды их наступления при различных метеорологических условиях и интенсивности движения автотранспорта.

3. Определяют границы зон и характер распространения примесей

с удалением от отдельной автомагистрали или группы автомобилей, расположенных параллельно на некотором расстоянии друг от друга.

4. Выявляют особенности распространения примесей в жилых кварталах различного типа застройки и в зеленных зонах, примыкающих к автомагистралям.

5. После чего строят блок-схему алгоритма инвентаризации источников выбросов рис. 2.1.

Разрешение на функционирование.

Рис. 2.1. Блок-схема алгоритма инвентаризации источников выбросов.

Согласно данной схеме, на основании расчетов и прямых измерений:

На первом этапе определяется номенклатура вредных веществ, поступающих в окружающую среду в нормальном (проектном) режиме функционирования.

Полученныезначения концентраций вредных веществ сопоставляют с фоновыми концентрациями для зоны влияния.

Суммарныезначения концентраций сопоставляют с действующими ПДК и по результатам сравнения принимают соответствующие решения о дальнейшем функционировании источников.

ОЦЕНКА ЗАГРЯЗНЕНИЯ ВОЗДУШНОЙ СРЕДЫ C ИСПОЛЬЗОВАНИЕМ БИОИНДИКАЦИОННЫХ МЕТОДОВ

Наиболее информативными являются различные виды лишайников (Lесаnога, Usnога, Аlесtоriа, Сеtrаriа.).

Даже незначительное наличие антропогенных загрязнений (диоксид серы, оксиды азота, углеводороды и т.д.) в воздухе ими очень хорошо диагностируются: сначала исчезают кустистые, потом листоватые и, наконец, накипные формы.

Из высших растений повышенную чувствительность к антропогенным загрязнениям имеют хвойные породы – кедр, ель, сосна.

БИОИНДИКАЦИЯ ЗАГРЯЗНЕНИЯ ВОЗДУХА ПО СОСТОЯНИЮ СОСНЫ .

Считается, что для условий лесной полосы России наиболее чувствительны к загрязнению воздуха сосновые леса. Это обуславливает выбор сосны как важнейшего индикатора антропогенного влияния, принимаемого в настоящее время за«эталон биодиагностики». Информативными по техногенному загрязнению являются морфологические и анатомическиеизменения, а также продолжительность жизни хвои. Так как при хроническом техногенном загрязнении лесов наблюдается повреждение и преждевременное опадение хвои сосны, отмечается снижение массы хвои на 30-60% в сравнении с контрольными участками.

100 р бонус за первый заказ

Выберите тип работы Дипломная работа Курсовая работа Реферат Магистерская диссертация Отчёт по практике Статья Доклад Рецензия Контрольная работа Монография Решение задач Бизнес-план Ответы на вопросы Творческая работа Эссе Чертёж Сочинения Перевод Презентации Набор текста Другое Повышение уникальности текста Кандидатская диссертация Лабораторная работа Помощь on-line

Узнать цену

Для дистанционного (неконтактного) глобального контроля загрязнений и состава атмосферы используются способы радиолокационного, акустического и лидарного (лазерного) зондирования. Это довольно сложные и дорогостоящие установки. Для контроля воздуха в приземном слое в отдельных точках планеты обычно используются более простые установки. Мы здесь рассмотрим только два принципа контроля состава воздуха: оптико-акустический и термохимический.

Известно, что интенсивность излучения (радиация) света в инфракрасном диапазоне изменяется по закону I=I0·e-·cr·d, где I0 - интенсивность падающей радиации; I - интенсивность радиации, прошедшей через поглощающий слой;  - коэффициент поглощения инфракрасной радиации определенным газом; Сr - концентрация этого газа; d - толщина поглощающего слоя.

Видимо, зная , d и изменение радиации можно определить концентрацию контролируемого газа - Сr. Из инфракрасных анализаторов наибольшее распространение получили приборы с акустическим преобразователем (оптико-акустические преобразователи).


На рисунке представлена схема простейшего газоанализатора с селективным лучеприемником акустического типа.

Газоанализатор состоит: из источника инфракрасного излучения 1; обтюратора 2; рабочей камеры 4; лучеприемника 7; оптически прозрачных для инфракрасного излучения окон 3, 5, 6; микрофона 8. Поток инфракрасной радиации, излучаемый источником и периодически прерываемый обтюратором с определенной частотой, сначала поступает в рабочую камеру, через которую проходит анализируемая смесь, а потом в лучеприемник, заполненный газом, концентрация которого определяется. Под действием прерывистого потока инфракрасной радиации газ в лучеприемнике будет периодически нагреваться и охлаждаться и внутри лучеприемника будут возникать периодические колебания температуры газа T, вызывающие колебания давления величиной Р (на том же рисунке – часть "б"). Амплитуда этих колебаний будет пропорциональна концентрации анализируемого газа. (чем больше концентрация, тем большая часть радиации поглощается в рабочей камере, тем меньше будет амплитуда колебаний.

Рассмотренная схема оптоакустического газоанализатора дает представление о сущности метода анализа, но обладает рядом недостатков, среди главных из которых неизбирательность, а также зависимость от параметров смеси (температура, давление, плотность и т.д.). В реальных случаях используют многоканальные дифференциальные оптические схемы с устройствами подготовки и фильтрации газовой смеси (как оптической, так и механической).

Другим очень перспективным в наше время является термохимический (термокаталитический) метод контроля газовых смесей, применяемый для обнаружения и измерения концентраций горючих газов и паров воздуха.

В основе этого метода лежит использование специальных чувствительных элементов, представляющих собой микроспираль из микропровода в термостойкой изоляции, на которой сформирован шарик из‑окиси алюминия. Рабочий чувствительный элемент покрыт сверху еще катализатором на основе платино-паладиевой черни, сравнительный элемент этого покрытия не имеет. Работает газоанализатор следующим образом: обычно рабочий и сравнительный элементы включаются в одну ветвь мостовой электрической схемы, и помещается в одну пористую реакционную камеру. Сравнительный элемент используется для компенсации влияния неизмеряемых параметров газовой смеси. При подключении к мостовой схеме определенного напряжения, под влиянием протекающего тока спираль нагревается до определенной величины, нагревая шарики из‑окиси алюминия. Анализируемая газовая смесь попадает через поры реакционной камеры в ее внутреннюю полость и, подходя к шарикам, начинает процесс беспламенного горения на рабочем чувствительном элементе, в ходе которого выделяется тепло, которое дополнительно разогревает спираль рабочего чувствительного элемента. Материалы микропровода обычно используются с большим положительным температурным коэффициентом сопротивления (ТКС). Сопротивление спирали рабочего элемента резко увеличивается, и на диагонали выхода мостовой схемы появляется напряжение, пропорциональное концентрации горючей составляющей в воздухе.

Такие схемы отличаются большой надежностью, избирательностью и простотой. Для избирательного определения горючих компонентов газовой смеси необходимо менять температуру первоначального нагрева спирали.


На приведенном ниже рисунке изображен чувствительный элемент (часть рисунка "а") и общая мостовая схема первичного преобразователя, термохимического газоанализатора (часть "б").

На этом рисунке: 1 – платино-паладиевый катализатор; 2 – g-окись алюминия; 3 – микроспираль; Рчэ – рабочий чувствительный элемент; Счэ – сравнительный чувствительный элемент; R1 и R2 – сопротивления плеч отношения; Uпит – напряжение питания; Uвых – выходное сопротивление первичного преобразователя, пропорциональная концентрации горючего компонента, Р.К. – пористая реакционная камера.

Количество вредностей, выделяющихся из оборудования определяется по следующим формулам:

а) Для оборудования работающего под давлением:

Gg=m·rн·V (кг/час), где rн – плотность газа при рабочем давлении и температуре, кг/м3; V – объем газовой фазы в оборудование, м3; m – показатель (коэффициент) негерметичности, час-1 (является функцией давления газовой фазы, вида газовой смеси, конструкции оборудования - берётся из справочных таблиц).

б) Для оборудования, работающего под разрежением (вынос вредных веществ происходит молекулярной диффузией навстречу потоку воздуха):

Gp=F··Co·exp(г/с), где F – площадь отверстий в корпусах оборудования, м2; – скорость, входящего через отверстия воздуха, м/с; а – длинна канала, м; С – концентрация газа внутри оборудования, г/м3; D – коэффициент диффузии газа в воздухе, м2/с.

Концентрация газовой смеси при авариях от точечного (размер разрушений мал, по сравнению с расстоянием от источника) источника, определяется по формуле:

Мг/м3, где М – мощность выброса, мг/с; t – продолжительность аварии, с; х – расстояние от источника аварии, м; А – константа (А=0,11).



Последние материалы раздела:

Изменение вида звездного неба в течение суток
Изменение вида звездного неба в течение суток

Тема урока «Изменение вида звездного неба в течение года». Цель урока: Изучить видимое годичное движение Солнца. Звёздное небо – великая книга...

Развитие критического мышления: технологии и методики
Развитие критического мышления: технологии и методики

Критическое мышление – это система суждений, способствующая анализу информации, ее собственной интерпретации, а также обоснованности...

Онлайн обучение профессии Программист 1С
Онлайн обучение профессии Программист 1С

В современном мире цифровых технологий профессия программиста остается одной из самых востребованных и перспективных. Особенно высок спрос на...