Косоугольная фронтальная изометрическая проекция искажение. Аксонометрические проекции

Косоугольная диметрическая проекция (фронтальная)

Если расположить координатные оси Х и Y параллельно плоскости П¢, то показатели искажения по этим осям станут равным единице (к = т =1). Показатель искажения по оси Y обычно принимают равным 0,5. Аксонометрические оси X " и Z" составят прямой угол, ось Y" обычно проводят как биссектрису этого угла. Ось Х может быть направлена как вправо от оси Z ", так и влево.

Предпочтительно пользоваться правой системой, так как удобнее изображать предметы в рассеченном виде. В этом виде аксонометрии хорошо чертить детали, имеющие форму цилиндра или конуса.

Для удобства изображения этой детали ось Y надо совместить с осью вращения поверхностей цилиндров. Тогда все окружности будут изображаться в натуральную величину, а длина каждой поверхности будет уменьшаться в два раза (рис.10.21).

Наклонные сечения.

При выполнении чертежей деталей машин приходится нередко применять наклонные сечения.

При решении таких задач необходимо прежде всего уяснить: как должна быть расположена секущая плоскость и какие поверхности участвуют в сечении для того, чтобы деталь читалась лучше. Рассмотрим примеры.

Дана четырехгранная пирамида, которая рассекается наклонной фронтально-проецирующей плоскостью А-А (рис.11.1). Сечением будет четырехугольник.

Сначала строим проекции его на П 1 и на П 2 . Фронтальная проекция совпадает с проекцией плоскости, а горизонтальную проекцию четырехугольника строим по принадлежности пирамиде.

Затем строим натуральную величину сечения. Для этого вводится дополнительная плоскость проекций П 4 , параллельная заданной секущей плоскости А-А , на нее проецируем четырехугольник, а затем совмещаем его с плоскостью чертежа.

Эта четвертая основная задача преобразования комплексного чертежа (модуль №4, стр.15 или задача №117 из рабочей тетради по начертательной геометрии).

Построения выполняются в следующей последовательности (рис.11.2):

1. 1.На свободном месте чертежа проводим осевую линию, параллельную плоскости А-А .

2. 2.Из точек пересечения ребер пирамиды с плоскостью проводим проецирующие лучи, перпендикулярно секущей плоскости. Точки 1 и 3 будут лежать на линии, расположенной перпендикулярно осевой.

3. 3.Расстояние между точками 2 и 4 переносится с горизонтальной проекции.

4. Аналогично строится истинная величина сечения поверхности вращения - эллипс.

Расстояние между точками 1 и 5 -большая ось эллипса. Малую ось эллипса надо строить путем деления большой оси пополам (3-3 ).

Расстояние между точками 2-2, 3-3, 4-4 переносятся с горизонтальной проекции.

Рассмотрим более сложный пример, включающий многогранные поверхности и поверхности вращения (рис.11.3)

Задана четырехгранная призма. В ней расположены два отверстия: призматическое, расположенное горизонтально и цилиндрическое, ось которого совпадает с высотой призмы.

Секущая плоскость фронтально-проецирующая, поэтому фронтальная проекция сечения совпадает с проекцией этой плоскости.

Четырехугольная призма проецирующая к горизонтальной плоскости проекций, а значит и горизонтальная проекция сечения тоже есть на чертеже, она совпадает с горизонтальной проекцией призмы.

Натуральная величина сечения, в которое попадают обе призмы и цилиндр, строим на плоскости, параллельной секущей плоскости А-А (рис.11.3).

Последовательность выполнения наклонного сечения:

1. Проводится ось сечения, параллельно секущей плоскости, на свободном поле чертежа.

2. Строится сечение наружной призмы: длина его переносится с фронтальной проекции, а расстояние между точками с горизонтальной.


К атегория:

Технические чертежи

Фронтальная косоугольная диметрическая проекция

Во фронтальной косоугольной диметрической проекции принято следующее положение аксонометрических осей: ось ох направлена горизонтально; ось оу - под углом 45° к оси ох и ось oz - вертикально. По этим осям и следует вести построение фронтальной проекции предмета. Допускается применять «левое» расположение осей.

Линейные размеры, параллельные оси оу, откладывают в масштабе, вдвое меньшем, чем по осям ох и oz. Характерным для этого вида аксонометрических проекций является то, что фигуры, параллельные фронтальной плоскости проекций V, изображаются без искажений. Поэтому такие аксонометрические проекции и называются фронтальными. Построение фронтальной проекции всегда начинают с нанесения осей, которые проводят тонкими сплошными линиями. Последовательность построения фронтальных проекций некоторых фигур показана на рис. 2.

Рис. 1. Положение аксонометрических осей: а - «правое»; б - «левое».

Если расположить ось вращения цилиндра параллельно оси oz или ох, то его основания проецируются в виде эллипсов.

Фронтальная диметрическая проекция куба с вписанными в его грани окружностями изображена на рис. 34. Окружность, расположенная на передней грани куба, изображается без искажений, а окружности, расположенные на верхней и боковой гранях, изображаются в виде эллипсов одинаковой формы и размеров.

Для построения эллипса на гранях находят восемь точек, которые затем плавно соединяют по лекалу. Четыре точки определяются сразу - это середины сторон параллелограммов, изображающих грани куба. Четыре другие точки определяются на диагоналях параллелограммов путем переноса их с диагоналей квадрата.

Для построения эллипса на верхней грани сначала на передней грани куба отмечают точки 1 и 2 пересечения диагоналей квадрата с окружностью. Затем из этих точек проводят прямые параллельно оси oz до верхнего ребра куба (верхней стороны квадрата). Из полученных на ребре точек проводят прямые параллельно оси оу до пересечения их с диагоналями параллелограмма. Это и будут точки эллипса.

Рис. 2. Последовательность построения фронтальной косоугольной диметрической проекции: а - куба; б - цилиндра; 8 - шестигранной призмы.

Рис. 3. Фронтальная днметрическая проекция куба с вписанными в его грани окружностями.

Аналогично находят диагональные точки при построении эллипса на боковой грани куба. Соединив найденные точки плавной кривой по лекалу, получим эллипсы.

Угол наклона большой оси эллипса равен примерно 7° по отношению к оси ох, если эллипс изображает окружность на верхней грани куба, и по отношению к оси oz, если эллипс изображает окружность на боковой грани куба. Малую ось эллипса располагают перпендикулярно большой.

На практике при построении фронтальных проекций деталей цилиндрической формы обычно вычерчивают не эллипсы, а овалы. Форма овала близка к форме эллипса, но вычертить его более просто, так как построение выполняют циркулем по правилам сопряжений.

Рис. 4. Построение овала на верхней грани куба.

Рис. 5. Прямоугольные проекции модели.

Овал на верхней грани куба строят следующим образом: – проводят аксонометрические оси ох, оу и oz; затем из центра О - окружность диаметром, равным диаметру окружности, изображенной на рис. 34; – проводят большую ось овала под углом 7° к оси ох и перпендикулярно к ней малую ось. Продолжение малой оси пересекает окружность в точках O1 и 02; – из точек Oi и,02, как из центров, проводят вспомогательные дуги радиусом 001 равным 002, до пересечения с продолжением малой оси в точках 03 и 04, являющихся центрами больших дуг овала; – проводят прямые 04Л и 03В, которые пересекут большую ось овала в точках 06 и Ов, являющихся центрами малых дуг овала; – из центров 03 и 04 проводят большие дуги овалов радиусом 04А, равным 03В; – из центров 08 и 06 проводят малые дуги, замыкающие овал, радиусом ОьА, равным ОйВ.

Построение овала - приближенного изображения окружности - в профильной плоскости аналогичное.

Рассмотрим построение фронтальной диметрической проекции модели по чертежу, приведенному на рис. 5. Сначала проводят оси проекций ох, оу и oz. Наиболее характерным видом модели является вид спереди, поэтому построение фронтальной проекции начинают с вычерчивания в плоскости осей ох-oz такого же изображения, каким является вид спереди. В этой плоскости тонкими, едва заметными линиями намечают прямоугольник, соответствующий наибольшей высоте и ширине модели. Для этого по оси ох от точки о влево откладывают 60 мм (ширина модели), а по оси oz вверх - 40 мм (высота модели). Из полученных отметок проводят прямые, соответственно параллельные осям проекции ох и oz. Посередине габаритного прямоугольника проводят вертикальную осевую линию.

По отношению к этой осевой линии в габаритном прямоугольнике вычерчивают контур модели, соответствующий очертанию ее изображения на виде спереди. Из угловых точек вычерченного контура проводят параллельные прямые под углом 45° по отношению к оси ох, соответствующие направлению оси оу во фронтальной проекции.

На наклонных прямых откладывают размер толщины модели, уменьшенной в два раза, т. е. 50: 2 = 25 мм. Полученные на наклонных прямых отметки соединяют последовательно прямыми линиями, в результате чего получают изображение модели во фронтальной проекции. Все указанные построения выполняют тонкими, едва заметными линиями. По окончании построения обводят полученное изображение контурными линиями и удаляют линии построения и линии невидимого контура.

Рис. 6. Последовательность построения фронтальной димет-рической проекции модели.

Рис. 7. Последовательность построения фронтальной диметрической проекции кронштейна.


Для трёхмерных объектов и панорам.

Ограничения аксонометрической проекции

Изометрическая проекция в компьютерных играх и пиксельной графике

Рисунок телевизора в почти-изометрической пиксельной графике. У пиксельного узора видна пропорция 2:1

Примечания

  1. По ГОСТ 2 .317-69 - Единая система конструкторской документации. Аксонометрические проекции.
  2. Здесь горизонтальной называется плоскость, перпендикулярная оси Z (которая является прообразом оси Z").
  3. Ingrid Carlbom, Joseph Paciorek. Planar Geometric Projections and Viewing Transformations // ACM Computing Surveys (CSUR) : журнал. - ACM , декабрь 1978. - Т. 10. - № 4. - С. 465-502. - ISSN 0360-0300 . - DOI :10.1145/356744.356750
  4. Jeff Green. GameSpot Preview: Arcanum (англ.) . GameSpot (29 февраля 2000).(недоступная ссылка - история ) Проверено 29 сентября 2008.
  5. Steve Butts. SimCity 4: Rush Hour Preview (англ.) . IGN (9 сентября 2003). Архивировано
  6. GDC 2004: The History of Zelda (англ.) . IGN (25 марта 2004). Архивировано из первоисточника 19 февраля 2012. Проверено 29 сентября 2008.
  7. Dave Greely, Ben Sawyer.

Для тoгo чтобы получить аксонометрическую проекцию пред­мета (рис. 106), необходимо мысленно: поместить предмет в сис­тему координат; выбрать аксонометрическую плоскость проекций и расположить предмет перед ней; выбрать направление парал­лельных проецирующих лучей, которое не должно совпадать ни с одной из аксонометрических осей; направить проецирующие лучи через все точки предмета и координатные оси до пересечения с аксонометрической плоскостью проекций, получив тем самым изображение проецируемого предмета и координатных осей.

На аксонометрической плоскости проекций получают изобра­жение - аксонометрическую проекцию предмета, а также про­екции осей систем координат, которые называют аксонометриче­скими осями.

Аксонометрической проекцией называется изображение, по­лученное на аксонометрической плоскости в результате парал­лельного проецирования предмета вместе с системой координат, которое наглядно отображает его форму.

Система координат состоит из трех взаимно пересекающихся плоскостей, которые имеют фиксированную точку - начало координат (точку О) и три оси (X, У, Z), исходящие из нее и расположенные под прямым углом друг к другу. Сис­тема координат позволяет производить измерения по осям, определяя положение предметов в пространстве.

Рис. 106. Получение аксонометрической (прямоугольной изометрической) проекции

Можно получить множество аксонометрических проекций, по- разному располагая предмет перед плоскостью и выбирая при этом различное направление проецирующих лучей (рис. 107).

Наиболее употребляемой является так называемая прямо­угольная изометрическая проекция (в дальнейшем будем использовать ее сокращенное название - изометрическая проек­ция). Изометрической проекцией (см. рис. 107, а) называется та­кая проекция, у которой коэффициенты искажения по всем трем осям равны, а углы между аксонометрическими осями составляют 120°. Изометрическая проекция получается с помощью па­раллельного проецирования.


Рис. 107. Аксонометрические проекции, установленные ГОСТ 2.317-69:
а - прямоугольная изометрическая проекция; б - прямоугольная диметрическая проекция;
в - косоугольная фронтальная изометриче­ская проекция;
г - косоугольная фронтальная диметрическая проекция



Рис. 107. Продолжение: д - косоугольная горизонтальная изометриче­ская проекция

При этом проецирующие лучи пер­пендикулярны аксонометрической плоскости проекций, а коор­динатные оси одинаково наклонены к аксонометрической плоско­сти проекций (cм. рис. 106). Если сравнить линейные размеры предмета и соответствующие им размеры аксонометрического изображения, то можно увидеть, что на изображении эти размеры меньше, чем действительные. Величины, показывающие отноше­ние размеров проекций отрезков прямых к действительным их размерам, называют коэффициентами искажения. Коэффициен­ты искажения (К) по осям изометрической проекции одинаковы и равны 0,82, однако для удобства построения используют так называемые практические коэффициенты искажения, которые равны единице (рис. 108).


Рис. 108. Положение осей и коэффициенты искажения изометрической проекции

Существуют изометрические, диметрические и триметрические проекции. К изометрическим проекциям относятся такие проекции, которые имеют одинаковые коэффициенты искажения по всем трем осям. Диметрическими проекциями называются такие проекции, у которых два коэффициента искажения по осям одинаковые, а величина третьего отличается от них. К триметрическим проекциям относятся проекции, у которых все коэффици­енты искажения различны.

Во многих случаях при выполнении технических чертежей оказывается полезным наряду изображением предметов в системе ортогональных проекций иметь более наглядные изображения. Для построения таких изображений применяются проекции, называемые аксонометрическими .

Способ аксонометрического проецирования состоит в том, что данный предмет вместе с осями прямоугольных координат, к которым эта система относится в пространстве, параллельно проецируется на некоторую плоскость α (Рисунок 4.1).

Рисунок 4.1

Направление проецирования S определяет положение аксонометрических осей на плоскости проекций α , а также коэффициенты искажения по ним. При этом необходимо обеспечить наглядность изображения и возможность производить определения положений и размеров предмета.

В качестве примера на Рисунке 4.2 показано построение аксонометрической проекции точки А по ее ортогональным проекциям.

Рисунок 4.2

Здесь буквами k , m , n обозначены коэффициенты искажения по осям OX , OY и OZ соответственно. Если все три коэффициента равны между собой, то аксонометрическая проекция называется изометрической , если равны между собой только два коэффициента, то проекция называется диметрической , если же k≠m≠n , то проекция называется триметрической .

Если направление проецирования S перпендикулярно плоскости проекций α , то аксонометрическая проекция носит названия прямоугольной . В противном случае, аксонометрическая проекция называется косоугольной .

ГОСТ 2.317-2011 устанавливает следующие прямоугольные и косоугольные аксонометрические проекции:

  • прямоугольные изометрические и диметрические;
  • косоугольные фронтально изометрические, горизонтально изометрические и фронтально диметрические;

Ниже приводятся параметры только трех наиболее часто применяемых на практике аксонометрических проекций.

Каждая такая проекция определяется положением осей, коэффициентами искажения по ним, размерами и направлениями осей эллипсов, расположенных в плоскостях, параллельных координатным плоскостям. Для упрощения геометрических построений коэффициенты искажения по осям, как правило, округляются.

4.1. Прямоугольные проекции

4.1.1. Изометрическая проекция

Направление аксонометрических осей приведено на Рисунке 4.3.

Рисунок 4.3 – Аксонометрические оси в прямоугольной изометрической проекции

Действительные коэффициенты искажения по осям OX , OY и OZ равны 0,82 . Но с такими значениями коэффициентов искажения работать не удобно, поэтому, на практике, используются приведенные коэффициенты искажений . Эта проекция обычно выполняется без искажения, поэтому, приведенные коэффициенты искажений принимается k = m = n =1 . Окружности, лежащие в плоскостях, параллельных плоскостям проекций, проецируются в эллипсы, большая ось которых равна 1,22 , а малая – 0,71 диаметра образующей окружности D .

Большие оси эллипсов 1, 2 и 3 расположены под углом 90º к осям OY , OZ и OX , соответственно.

Пример выполнения изометрической проекции условной детали с вырезом приводится на Рисунке 4.4.

Рисунок 4.4 – Изображение детали в прямоугольной изометрической проекции

4.1.2. Диметрическая проекция

Положение аксонометрических осей проводится на Рисунке 4.5.

Для построения угла, приблизительно равного 7º10´ , строится прямоугольный треугольник, катеты которого составляют одну и восемь единиц длины; для построения угла, приблизительно равного 41º25´ — катеты треугольника, соответственно, равны семи и восьми единицам длины.

Коэффициенты искажения по осям ОХ и OZ k=n=0,94 а по оси OY – m=0,47 . При округлении этих параметров принимается k=n=1 и m=0,5 . В этом случае размеры осей эллипсов будут: большая ось эллипса 1 равна 0,95D и эллипсов 2 и 3 – 0,35D (D – диаметр окружности). На Рисунке 4.5 большие оси эллипсов 1, 2 и 3 расположены под углом 90º к осям OY, OZ и OX, соответственно.

Пример прямоугольной диметрической проекции условной детали с вырезом приводится на Рисунке 4.6.

Рисунок 4.5 – Аксонометрические оси в прямоугольной диметрической проекции

Рисунок 4.6 – Изображение детали в прямоугольной диметрической проекции

4.2 Косоугольные проекции

4.2.1 Фронтальная диметрическая проекция

Положение аксонометрических осей приведено на Рисунке 4.7. Допускается применять фронтальные диметрические проекции с углом наклона к оси OY, равным 30 0 и 60 0 .

Коэффициент искажения по оси OY равен m=0,5 а по осям OX и OZ — k=n=1 .

Рисунок 4.7 – Аксонометрические оси в косоугольной фронтальной диметрической проекции

Окружности, лежащие в плоскостях, параллельных фронтальной плоскости проекций, проецируются на плоскость XOZ без искажения. Большие оси эллипсов 2 и 3 равны 1,07D , а малая ось – 0,33D (D — диаметр окружности). Большая ось эллипса 2 составляет с осью ОХ угол 7º 14´ , а большая ось эллипса 3 составляет такой же угол с осью OZ.

Пример аксонометрической проекции условной детали с вырезом приводится на Рисунке 4.8.

Как видно из рисунка, данная деталь располагается таким образом, чтобы её окружности проецировались на плоскость XОZ без искажения.

Рисунок 4.8 – Изображение детали в косоугольной фронтальной диметрической проекции

4.3 Построение эллипса

4.3.1 Построения эллипса по двум осям

На данных осях эллипса АВ и СD строятся как на диаметрах две концентрические окружности (Рисунок 4.9, а).

Одна из этих окружностей делится на несколько равных (или неравных) частей.

Через точки деления и центр эллипса проводятся радиусы, которые делят также вторую окружность. Затем через точки деления большой окружности проводятся прямые, параллельные линии АВ.

Точки пересечения соответствующих прямых и будут точками, принадлежащими эллипсу. На Рисунке 4.9, а показана лишь одна искомая точка 1.

а б в

Рисунок 4.9 – Построение эллипса по двум осям (а), по хордам (б)

4.3.2 Построение эллипса по хордам

Диаметр окружности АВ делится на несколько равных частей, на рисунке 4.9,б их 4. Через точки 1-3 проводятся хорды параллельно диаметру CD. В любой аксонометрической проекции (например, в косоугольной диметрической) изображаются эти же диаметры с учетом коэффициента искажения. Так на Рисунке 4.9,б А 1 В 1 =АВ и С 1 D 1 = 0,5CD . Диаметр А 1 В 1 делится на то же число равных частей, что и диаметр АВ, через полученные точки 1-3 проводятся отрезки, равные соответственным хордам, умноженным на коэффициент искажение (в нашем случае – 0,5).

4.4 Штриховка сечений

Линии штриховки сечений (разрезов) в аксонометрических проекциях наносятся параллельно одной из диагоналей квадратов, лежащих в соответствующих координатных плоскостях, стороны которых параллельны аксонометрическим осям (Рисунок 4.10: а – штриховка в прямоугольной изометрии; б – штриховка в косоугольной фронтальной диметрии).

а б
Рисунок 4.10 – Примеры штриховки в аксонометрических проекциях



Последние материалы раздела:

Развитие критического мышления: технологии и методики
Развитие критического мышления: технологии и методики

Критическое мышление – это система суждений, способствующая анализу информации, ее собственной интерпретации, а также обоснованности...

Онлайн обучение профессии Программист 1С
Онлайн обучение профессии Программист 1С

В современном мире цифровых технологий профессия программиста остается одной из самых востребованных и перспективных. Особенно высок спрос на...

Пробный ЕГЭ по русскому языку
Пробный ЕГЭ по русскому языку

Здравствуйте! Уточните, пожалуйста, как верно оформлять подобные предложения с оборотом «Как пишет...» (двоеточие/запятая, кавычки/без,...