Круговорот биологический малый. Малый (биологический) круговорот

Все вещества на нашей планете находятся в процессе круговорота. Солнечная энергия вызывает на Земле два круговорота веществ:

1) Большой (геологический или абиотический);

2) Малый (биотический, биогенный или биологический).

Круговороты веществ и потоки космической энергии создают устойчивость биосферы. Круговорот твердого вещества и воды, происходящий в результате действия абиотических факторов (неживой природы), называют большим геологическим круговоротом. При большом геологическом круговороте (протекает миллионы лет) горные породы разрушаются, выветриваются, вещества растворяются и попадают в Мировой океан; протекают геотектонические изменения, опускание материков, поднятие морского дна. Время круговорота воды в ледниках 8 000 лет, в реках - 11 дней. Именно большой круговорот поставляет живым организмам элементы питания и во многом определяет условия их существования.

Большой, геологический круговорот в биосфере характеризуется двумя важными моментами:

а) осуществляется на протяжении всего геологического развития Земли;

б) представляет собой современный планетарный процесс, принимающий ведущее участие в дальнейшем развитии биосферы.

На современном этапе развития человечества в результате большого круговорота на большие расстояния переносятся также загрязняющие вещества - оксиды серы и азота, пыль, радиоактивные примеси. Наибольшему загрязнению подверглись территории умеренных широт Северного полушария.

Малый, биогенный или биологический круговорот веществ происходит в твердой, жидкой и газообразных фазах при участии живых организмов. Биологический круговорот в противоположность геологическому требует меньших затрат энергии. Малый круговорот является частью большого, происходит на уровне биогеоценозов (внутри экосистем) и заключается в том, что питательные вещества почвы, вода, углерод аккумулируются в веществе растений, расходуются на построение тела. Продукты распада органического вещества разлагаются до минеральных компонентов. Малый круговорот незамкнут , что связано с поступлением веществ и энергии в экосистему извне и с выходом части их в биосферный круговорот.

В большом и малом круговоротах участвует множество химических элементов и их соединений, но важнейшими из них являются те, которые определяют современный этап развития биосферы, связанный с хозяйственной деятельностью человека. К ним относятся круговороты углерода, серы и азота (их оксиды - главнейшие загрязнители атмосферы ), а также фосфора (фосфаты -главный загрязнитель материковых вод) . Практически все загрязняющие вещества выступают как вредные, и их относят к группе ксенобиотиков.

В настоящее время большое значение имеют круговороты ксенобиотиков - токсичных элементов - ртути (загрязнитель пищевых продуктов) и свинца (компонент бензина) . Кроме того, из большого круговорота в малый поступают многие вещества антропогенного происхождения (ДДТ, пестициды, радионуклиды и др.), которые причиняют вред биоте и здоровью человека.

Суть биологического круговорота заключается в протекании двух противоположных, но взаимосвязанных процессов - созидания органического вещества и его разрушения живым веществом.

В отличие от большого круговорота малый имеет разную продолжительность: различают сезонные, годовые, многолетние и вековые малые круговороты .

Круговорот химических веществ из неорганической среды через растительность и животных обратно в неорганическую среду с использованием солнечной энергии химических реакций называется биогеохимическим циклом .

Настоящее и будущее нашей планеты зависит от участия живых организмов в функционировании биосферы. В круговороте веществ живое вещество, или биомасса, выполняет биогеохимические функции: газовую, концентрационную, окислительно-восстановительную и биохимическую.

Биологический круговорот происходит при участии живых организмов и заключается в воспроизводстве органического вещества из неорганического и разложении этого органического до неорганического посредством пищевой трофической цепи. Интенсивность продукционных и деструкционных процессов в биологическом круговороте зависит от количества тепла и влаги. Например, низкая скорость разложения органического вещества полярных районов зависит от дефицита тепла.

Важным показателем интенсивности биологического круговорота является скорость обращения химических элементов. Интенсивность характеризуется индексом , равным отношению массы лесной подстилки к опаду. Чем больше индекс, тем меньше интенсивность круговорота.

Индекс в хвойных лесах - 10 - 17; широколиственных 3 - 4; саванне не более 0,2; влажных тропических лесах не более 0,1 , т.е. здесь биологический круговорот наиболее интенсивный.

Поток элементов (азота, фосфора, серы) через микроорганизмы на порядок выше, чем через растения и животных. Биологический круговорот не является полностью обратимым, он тесно связан с биогеохимическим круговоротом. Химические элементы циркулируют в биосфере по различным путям биологического круговорота:

поглощаются живым веществом и заряжаются энергией;

покидают живое вещество, выделяя энергию во внешнюю среду.

Эти циклы бывают двух типов: круговорот газообразных веществ; осадочный цикл (резерв в земной коре).

Сами круговороты состоят из двух частей:

- резервного фонда (это часть вещества, не связанная с живыми организмами);

- подвижного (обменного) фонда (меньшая часть вещества, связанная с прямым обменом между организмами и их непосредственным окружением).

Круговороты делят на:

Круговороты газового типа с резервным фондом в земной коре (круговороты углерода, кислорода, азота) - способны к быстрой саморегуляции;

Круговороты осадочного типа с резервным фондом в земной коре (круговороты фосфора, кальция, железа и др.) - более инертны, основная масса вещества находится в «недоступном» живым организмам виде.

Круговороты также можно разделить на:

- замкнутые (круговорот газообразных веществ, например, кислорода, углерода и азота - резерв в атмосфере и гидросфере океана, поэтому нехватка быстро компенсируется);

- незамкнутые (создающие резервный фонд в земной коре, например, фосфор - поэтому потери плохо компенсируются, т.е. создается дефицит).

Энергетической основой существования биологических круговоротов на Земле и их начальным звеном является процесс фотосинтеза. Каждый новый цикл круговорота не является точным повторением предыдущего. Например, в ходе эволюции биосферы часть процессов имела необратимый характер, в результате чего происходило образование и накопление биогенных осадков, увеличение количества кислорода в атмосфере, изменение количественных соотношений изотопов ряда элементов и т.д.

Циркуляцию веществ принято называть биогеохимическими циклами . Основные биогеохимические (биосферные) циклы веществ: цикл воды, цикл кислорода, цикл азота (участие бактерий-азотфиксаторов), цикл углерода (участие аэробных бактерий; ежегодно около 130 т углерода сбрасывается в геологический цикл), цикл фосфора (участие почвенных бактерий; ежегодно в океаны вымывается 14 млн.т фосфора), цикл серы, цикл катионов металлов.

Круговорот веществ в природе - повторяющийся циклический процесс превращения и перемещения отдельных химических элементов и их соединений. Происходил в течение всей истории развития Земли и продолжается в настоящее время. Всегда имеет место определённое отклонение в составе и количестве циркулирующего вещества, поэтому в природе нет полного повторения цикла. Это определяет поступательное развитие Земли как планеты. Особенно характерен круговорот веществ для геологической стадии развития, когда формировались осн. оболочки Земли. По масштабу проявления на первом месте находится геологический круговорот . Он представляет собой движение вещества по преимуществу во внутренних оболочках: подъём в результате восходящих тектонических движений и вулканизма; перенос его по горизонтали во внешних оболочках и аккумуляция; нисходящие движения - захоронение осадков, погружение в результате нисходящих тектонических движений. На глубине происходит метаморфизм, плавление вещества с образованием магмы и метаморфических горных пород. Основополагающую роль в создании географической оболочки играет круговорот воды .

Со времени появления жизни на Земле начался биологический круговорот . Он обеспечивает непрерывные превращения, в результате которых вещества после использования одними организмами переходят в усвояемую для других организмов форму. Энергетической основой является поступающая на Землю солнечная энергия. Растительные организмы поглощают минеральные вещества, которые через пищевые цепи попадают в организм животных, затем с помощью редуцентов (бактерий, грибов и др.) возвращаются в почву или атмосферу. От интенсивности этого круговорота зависит количество и разнообразие живых организмов на Земле и объём накапливаемой ими биомассы . Макс. интенсивность биологического круговорота на суше наблюдается во влажных тропических лесах, где растительные остатки почти не накапливаются и высвобождающиеся минеральные вещества сразу же поглощаются растениями. Весьма низка интенсивность круговорота в болотах и тундре, где не успевающие разложиться остатки растений накапливаются. Особое значение имеют круговороты биогенных химических элементов, прежде всего углерода . Растительные организмы извлекают из атмосферы до 300 млрд. т углекислого газа (или 100 млрд. т углерода) ежегодно. Растения частично поедаются животными, частично отмирают. Органическое вещество в результате дыхания организмов, разложения их остатков, процессов брожения и гниения превращается в углекислый газ или отлагается в виде сапропеля, гумуса, торфа, из которых в дальнейшем образуются угли, нефть, горючий газ. В активном круговороте углерода участвует очень небольшая его часть, значительное количество законсервировано в виде горючих ископаемых известняков и других горных пород. Осн. масса азота сосредоточена в атмосфере (3,8510№? т); в водах Мирового океана его содержится 2510№і т. В круговороте азота ведущая роль принадлежит микроорганизмам: азотофиксаторам, нитрификаторам и денитрификаторам. Ежегодно на суше в круговорот вовлекается ок. 4510? т азота, в водной среде в 4 раза меньше. Азотосодержащие соединения из отмерших остатков преобразуются нитрифицирующими микроорганизмами в оксиды азота, которые впоследствии разлагаются денитрифицирующими бактериями с выделением молекулярного азота. С живым веществом связаны также круговороты кислорода , фосфора , серы и многих других элементов. Последствия воздействия человека на круговорот веществ становятся всё значительнее. Они стали сравнимы с результатами геологических процессов: в биосфере возникают новые пути миграции веществ, появляются новые химические соединения, которых не было прежде, меняется круговорот воды.

Биосфера Земли характеризуется определенным образом сложившимися круговоротом веществ и потоком энергии. Круговорот веществ - многократное участие веществ в процессах, которые протекают в атмосфере, гидросфере и литосфере, в том числе в тех слоях, которые входят в состав биосферы Земли. Круговорот вещество осуществляется при непрерывном поступлении внешней энергии Солнца и внутренней энергии Земли.

В зависимости от движущей силы, внутри круговорота веществ можно выделить геологический (большой круговорот), биологический (биогеохимический, малый круговорот) и антропогенный круговороты.

Геологический круговорот (большой круговорот веществ в биосфере)

Этот круговорот осуществляет перераспределение вещества между биосферой и более глубокими горизонтами Земли. Движущей силой этого процесса являются экзогенные и эндогенные геологические процессы. Эндогенные процессы происходят под влиянием внутренней энергии Земли. Это энергия, которая выделяется в результате радиоактивного распада, химических реакций образования минералов и др. К эндогенным процессам относят, например, тектонические движения, землетрясения. Эти процессы ведут к образования крупных форм рельефа (материки, океанические впадины, горы и равнины). Экзогенные процессы протекают под влиянием внешней энергии Солнца. К ним относятся геологическая деятельность атмосферы, гидросферы, живых организмов и человека. Эти процессы ведут к сглаживанию крупных форм рельефа (речные долины, холмы, овраги и др.).

Продолжается геологический круговорот миллионы лет и заключается в том, что горные породы подвергаются разрушению, а продукты выветривания (в том числе растворимые в воде питательные вещества) сносятся потоками воды в Мировой океан, где они образуют морские напластования и лишь частично возвращаются на сушу с осадками. Геотектонические изменения, процессы опускания материков и поднятия морского дна, перемещения морей и океанов в течение длительного времени приводят к тому, что эти напластования возвращаются на сушу и процесс начинается вновь. Символом этого круговорота веществ является спираль, а не круг, т.к. новый цикл круговорота не повторяет в точности старый, а вносит что-то новое.

К большому круговороту относится круговорот воды (гидрологический цикл) между сушей и океаном через атмосферу (рис. 3.2).

Круговорот воды в целом играет основную роль в формировании природных условий на нашей планете. С учетом транспирации воды растениями и поглощения ее в биогеохимическом цикле, весь запас воды на Земле распадается и восстанавливается на 2 млн. лет.

Рис. 3. 2. Круговорот воды в биосфере.

В гидрологическим цикле все части гидросферы связаны между собой. В нем ежегодно участвует более 500 тыс. км3 воды. Движущей силой этого процесса является солнечная энергия. Молекулы воды под действием солнечной энергии нагреваются и поднимаются в виде газа в атмосферу (ежесуточно испаряется – 875 км3 пресной воды). По мере поднятия они постепенно охлаждаются, конденсируются и образуют облака. После достаточного охлаждения облака освобождают воду в виде различных осадков, падающих обратно в океан. Вода, попавшая на землю, может следовать двумя различными путями: либо впитываться в почву (инфильтрация), либо стекать по ней (поверхностный сток). По поверхности вода стекает в ручьи и реки, направляющиеся к океану или другие места, где происходит испарение. Впитавшаяся в почву вода, может удерживаться в ее верхних слоях (горизонтах) и возвращаться в атмосферу путем транспирации. Такая вода называется капиллярной. Вода, которая увлекается силой тяжести и просачивается вниз по порам и трещинам называется гравитационной. Просачивается гравитационная вода до непроницаемого слоя горной породы или плотной глины, заполняя все пустоты. Такие запасы называются грунтовыми водами, а их верхняя граница – уровнем грунтовых вод. Подземные слои породы, по которым медленно текут грунтовые воды называются водоносными горизонтами. Под действием силы тяжести грунтовые воды двигаются по водоносному слою до тех пор, пока не найдут «выход» (например, образуя естественные родники, которые питают озера, реки, пруды, т.е. становятся частью поверхностных вод). Таким образом, круговорот воды включает три основные «петли»: поверхностного стока, испарения-транспирации, грунтовых вод. В круговороте воды на Земле ежегодно участвует более 500 тыс. км3 воды и он играет основную роль в формировании природных условий.

Биологический (биогеохимический) круговорот

(малый круговорот веществ в биосфере)

Движущей силой биологического круговорота веществ является деятельность живых организмов. Он является частью большого и происходит в пределах биосферы на уровне экосистем. Состоит малый круговорот в том, что питательные вещества, вода и углерод аккумулируются в веществе растений (автотрофы), расходуются на построение тел и жизненные процессы, как растений, так и других организмов (как правило, животных - гетеротрофов), которые поедают эти растения. Продукты распада органического вещества под действием деструкторов и микроорганизмов (бактерии, грибы, черви) вновь разлагаются до минеральных компонентов. Эти неорганические вещества могут быть вновь использованы для синтеза автотрофами органических веществ.



В биогеохимических круговоротах различают резервный фонд (вещества, которые не связаны с живыми организмами) и обменный фонд (вещества, которые связаны прямым обменом между организмами и их непосредственным окружением).

В зависимости от расположения резервного фонда биогеохимические круговороты делят на два типа:

Круговороты газового типа с резервным фондом веществ в атмосфере и гидросфере (круговороты углерода, кислорода, азота).

Круговороты осадочного типа с резервным фондом в земной коре (круговороты фосфора, кальция, железа и др.).

Круговороты газового типа, обладая большим обменным фондом, являются более совершенными. И, кроме того, они способны к быстрой саморегуляции. Круговороты осадочного типа менее совершенны, они более инертны, так как основная масса вещества содержится в резервном фонде земной коры в недоступном» живым организмам виде. Такие круговороты легко нарушаются от различного рода воздействий, и часть обмениваемого материала выходит из круговорота. Возвратиться опять в круговорот она может лишь в результате геологических процессов или путем извлечения живым веществом.

Интенсивность биологического круговорота определяется температурой окружающей среды и количеством воды. Например, биологический круговорот интенсивнее протекает во влажных тропических лесах, чем в тундре.

Круговороты основных биогенных веществ и элементов

Круговорот углерода

Вся земная жизнь основана на углероде. Каждая молекула живого организма построена на основе углеродного скелета. Атомы углерода постоянно мигрируют из одной части биосферы в другую (рис. 3. 3.).

Рис. 3. 3. Круговорот углерода.

Основные запасы углерода на Земле находятся в виде содержащегося в атмосфере и растворенного в Мировом океане диоксида углерода (CO2). Растения поглощают молекулы углекислого газа, в процессе фотосинтеза. В результате атом углерода превращается в разнообразные органические соединения и таким образом включается в структуру растений. Далее возможно несколько вариантов:

· углерод остается в растениях ® молекулы растений идут в пищу редуцентам (организмам, которые питаются мертвым органическим веществом и при этом разрушают его до простых неорганических соединений) ® углерод возвращается в атмосферу в качестве CO2;

· растения съедаются травоядными животными ® углерод возвращается в атмосферу в процессе дыхания животных и при их разложении после смерти; либо травоядные животные будут съедены плотоядными и тогда углерод опять же вернется в атмосферу теми же путями;

· растения после гибели превращаются в ископаемое топливо (например, в уголь) ® углерод возвращается в атмосферу после использования топлива, вулканических извержений и др. геотермальных процессов.

В случае растворения исходной молекулы CO2 в морской воде также возможно несколько вариантов: углекислый газ может просто вернуться в атмосферу (этот вид взаимного газообмена между Мировым океаном и атмосферой происходит постоянно); углерод может войти в ткани морских растений или животных, тогда он будет постепенно накапливаться в виде отложений на дне Мирового океана и в конце концов превратится в известняк или из отложений вновь перейдет в морскую воду.

Скорость круговорота CO2 составляет около 300 лет.

Вмешательство человека в круговорот углерода (сжигание угля, нефти, газа, дегумификация) приводит к возрастанию содержания CO2 в атмосфере и развитию парникового эффекта. В настоящее время исследование круговорота углерода стало важной задачей для ученых, занимающихся изучением атмосферы.

Круговорот кислорода

Кислород является наиболее распространенным элементом на Земле (в морской воде содержится 85,82% кислорода, в атмосферном воздухе 23,15%, в земной коре 47,2%). Соединения кислорода незаменимы для поддержания жизни (играют важнейшую роль в процессах обмена веществ и дыхании, входит в состав белков, жиров, углеводов, из которых «построены» организмы). Главная масса кислорода находится в связанном состоянии (количество молекулярного кислорода в атмосфере составляет всего лишь 0,01% от общего содержания кислорода в земной коре).

Так как кислород содержится во многих химических соединениях, его круговорот в биосфере весьма сложен и главным образом происходит между атмосферой и живыми организмами. Концентрация кислорода в атмосфере поддерживается благодаря фотосинтезу, в результате которого зеленые растения под действием солнечного света превращают диоксид углерода и воду в углеводы и кислород. Основная масса кислорода продуцируется растениями суши – почти ¾, остальная часть – фотосинтезирующими организмами Мирового океана. Мощным источником кислорода является и фотохимическое разложение водяного пара в верхних слоях атмосферы под влиянием ультрафиолетовых лучей солнца. Кроме того, кислород совершает важнейший круговорот, входя в состав воды. Незначительное количество кислорода образуется из озона под воздействием ультрафиолетовой радиации.

Скорость круговорота кислорода около 2 тыс. лет.

Вырубка лесов, эрозия почв, различные горные выработки на поверхности уменьшают общую массу фотосинтеза и снижают круговорот кислорода на значительных территориях. Кроме того, на промышленные и бытовые нужды ежегодно расходуется 25 % кислорода, образующегося в результате ассимиляции.

Круговорот азота

Биогеохимический круговорот азота, так же как и предыдущие круговороты, охватывает все области биосферы (рис. 3.4).

Рис. 3. 4. Круговорот азота.

Азот входит в состав земной атмосферы в несвязанном виде в форме двухатомных молекул (приблизительно 78% всего объема атмосферы приходится на долю азота). Кроме того, азот входит в состав растений и животных организмов в форме белков. Растения синтезируют белки, поглощая нитраты из почвы. Нитраты образуются там из атмосферного азота и аммонийных соединений, имеющихся в почве. Процесс превращения атмосферного азота в форму, усвояемую растениями и животными, называется связыванием азота. При гниении органических веществ значительная часть содержащегося в них азота превращается в аммиак, который под влиянием живущих в почве нитрифицирующих бактерий окисляется затем в азотную кислоту. Эта кислота, вступая в реакцию с находящимися в почве карбонатами (например, с карбонатом кальция СаСОз), образует нитраты. Некоторая же часть азота всегда выделяется при гниении в свободном виде в атмосферу. Кроме того, свободный азот выделяется при горении органических веществ, при сжигании дров, каменного угля, торфа. Помимо этого, существуют бактерии, которые при недостаточном доступе воздуха могут отнимать кислород от нитратов, разрушая их с выделением свободного азота. Деятельность денитрифицирующих бактерий приводит к тому, что часть азота из доступной для зеленых растений формы (нитраты), переходит в недоступную (свободный азот). Таким образом, далеко не весь азот, входивший в состав погибших растений, возвращается обратно в почву (часть его постепенно выделяется в свободном виде).

К процессам, возмещающим потери азота, относятся, прежде всего, происходящие в атмосфере электрические разряды, при которых всегда образуется некоторое количество оксидов азота (последние с водой дают азотную кислоту, превращающуюся в почве в нитраты). Другим источником пополнения азотных соединений почвы является жизнедеятельность так называемых азотобактерий, способных усваивать атмосферный азот. Некоторые из этих бактерий поселяются на корнях растений из семейства бобовых, вызывая образование характерных вздутий - клубеньков. Клубеньковые бактерии, усваивая атмосферный азот, перерабатывают его в азотные соединения, а растения, в свою очередь, превращают последние в белки и другие сложные вещества. Таким образом, в природе совершается непрерывный круговорот азота.

В связи с тем, что ежегодно с урожаем с полей убираются наиболее богатые белками части растений (например, зерно), почва «требует» вносить удобрения, возмещающие убыль в ней важнейших элементов питания растений. В основном используют нитрат кальция (Ca(NO)2), нитрат аммония (NH4NO3), нитрат натрия (NANO3), и нитрат калия (KNO3). Также, вместо химических удобрений, используют сами растения из семейства бобовых. Если количество искусственных азотных удобрений, вносимых в почву, излишне велико, то нитраты поступают и в организм человека, где они могут превращаться в нитриты, обладающие большой токсичностью и способные вызывать онкологические заболевания.

Круговорот фосфора

Основная масса фосфора содержится в горных породах, образовавшихся в прошлые геологические эпохи. Содержание фосфора в земной коре составляет от 8 - 10 до 20 % (по весу) и находится он здесь в виде минералов (фторапатит, хлорапатит и др.), которые входят в состав природных фосфатов - апатитов и фосфоритов. В биогеохимический круговорот фосфор может попасть в результате выветривания горных пород. Эрозионными процессами фосфор выносится в море в виде минерала апатита. В превращениях фосфора большую роль играют живые организмы. Организмы извлекают фосфор из почв и водных растворов. Далее фосфор передается по цепям питания. С гибелью организмов фосфор возвращается в почву и в илы морей, и концентрируется в виде морских фосфатных отложений, что в свою очередь создает условия для создания богатых фосфором пород (рис. 3. 5.).

Рис. 3.5. Круговорот фосфора в биосфере (по П. Дювиньо, М. Тангу, 1973; с изменениями).

При неправильном применении фосфорных удобрений, в результате водной и ветровой эрозии (разрушение под действием воды или ветра) большое количество фосфора удаляется из почвы. С одной стороны, это приводит к перерасходу фосфорных удобрений и истощению запасов фосфоросодержащих руд.

С другой стороны, повышенное содержание фосфора на водных путях его переноса вызывает бурное увеличение биомассы водных растений, «цветение водоемов» и их эвтрофикацию (обогащение питательные веществами).

Так как растения уносят из почвы значительное количество фосфора, а естественное пополнение фосфорными соединениями почвы крайне незначительно, то внесение в почву фосфорных удобрений является одним из важнейших мероприятий по повышению урожайности. Ежегодно в мире добывают приблизительно 125 млн. т. фосфатной руды. Большая ее часть расходуется на производство фосфатных удобрений.

Круговорот серы

Основной резервный фонд серы находится в отложениях, в почве и атмосфере. Главная роль в вовлечении серы в биогеохимический круговорот принадлежит микроорганизмам. Одни из них восстановители, другие – окислители (рис. 3. 6.).

Рис. 3. 6. Круговорот серы (по Ю. Одуму, 1975).

В природе в большом количестве известны различные сульфиды железа, свинца, цинка и др. Сульфидная сера окисляется в биосфере до сульфатной серы. Сульфаты поглощаются растениями. В живых организмах сера входит в состав аминокислот и белков, а у растений, кроме того, в состав эфирных масел и т.д. Процессы разрушения остатков организмов в почвах и в илах морей сопровождаются сложными превращениями серы (микроорганизмы, создают многочисленные промежуточные соединения серы). После гибели живых организмов часть серы восстанавливается в почве микроорганизмами до H2S, другая часть окисляется до сульфатов и вновь включается в круговорот. Образовавшийся сероводород в атмосфере окисляется и возвращается в почву с осадками. Кроме того, сероводород может вновь образовать «вторичные» сульфиды, а сульфатная сера создает гипс. В свою очередь сульфиды и гипс вновь подвергаются разрушению, и сера возобновляет свою миграцию.

Кроме того, сера в виде SO2, SO3, H2S и элементарной серы выбрасывается вулканами в атмосферу.

Круговорот серы может быть нарушен вмешательством человека. Виной тому становится сжигание каменного угля и выбросы химической промышленности, в результате чего образуется сернистый газ, нарушающий процессы фотосинтеза и приводящий к гибели растительности.

Таким образом, биогеохимические циклы обеспечивают гомеостаз биосферы. При этом они в значительной степени подвержены влиянию человека. И одним из мощнейших антиэкологических действий человека связано с нарушением и даже разрушением природных круговоротов (они становятся ациклическими).

Антропогенный круговорот

Движущей силой антропогенного круговорота является деятельность человека. Данный круговорот включает две составляющие: биологическую, связанную с функционированием человека как живого организма, и техническую, связанную с хозяйственной деятельностью людей. Антропогенный круговорот в отличие и геологического и биологического не является замкнутым. Эта незамкнутость становится причиной истощения природных ресурсов и загрязнения природной среды.

В природе существует два основных круговорота веществ: большой (геологический) и малый (биогеохимический).

Геологический - большой круговорот веществ (Приложение А), обусловлен, взаимодействием солнечной энергии с глубинной энергией Земли и осуществляет перераспределение вещества между биосферой и более глубокими горизонтами Земли. Осадочные горные породы, образованные за счет выветривания магматических пород, в подвижных зонах земной коры вновь погружаются в зону высоких температур и давлений. Там они переплавляются и образуют магму - источник новых магматических пород. После поднятия этих пород на земную поверхность, и действия процессов выветривания вновь происходит трансформация их в новые осадочные породы. Символом круговорота веществ является спираль, а не круг. Это означает, что новый цикл круговорота не повторяет в точности старый, а вносит что-то новое, что со временем приводит к весьма значительным изменениям.

Большой круговорот - это и круговорот воды между сушей и океаном через атмосферу. Влага, испарившаяся с поверхности Мирового океана, переносится на сушу, где выпадает в виде осадков, которые вновь возвращаются в океан в виде поверхностного и подземного стока.

Круговорот воды происходит и по более простой схеме: испарение влаги с поверхности океана -- конденсация водяного пара -- выпадение осадков на эту же водную поверхность океана.

Подсчитано, что в круговороте воды на Земле ежегодно участвует более 500 тыс. км3 воды. Круговорот воды в целом играет основную роль в формировании природных условий на нашей планете. С учетом транспирации воды растениями, и поглощения ее в биогеохимическом цикле, весь запас воды на Земле распадается и восстанавливается за 2 миллиона лет.

Малый круговорот веществ в биосфере (биогеохимический) (Приложение Б). В отличие от большого круговорота, совершается лишь в пределах биосферы. Сущность его в образовании живого вещества из неорганических соединений в процессе фотосинтеза и в превращении органического вещества при разложении вновь в неорганические соединения. Этот круговорот для жизни биосферы -- главный, и он сам является порождением жизни. Изменяясь, рождаясь и умирая, живое вещество поддерживает жизнь на нашей планете, обеспечивая биогеохимический круговорот веществ. Главным источником энергии круговорота является солнечная радиация, которая порождает фотосинтез. Эта энергия довольно неравномерно распределяется по поверхности земного шара. Например, на экваторе количество тепла, приходящееся на единицу площади, в три раза больше, чем на архипелаге Шпицберген (80°с.ш). Кроме того, она теряется путем отражения, поглощается почвой, расходуется на транспирацию воды. Как мы уже отмечали, на фотосинтез тратится не более 5% от всей энергии, но чаще всего 2--3 %.

В ряде экосистем перенос вещества и энергии осуществляется преимущественно посредством трофических цепей.

Такой круговорот обычно называют биологическим . Он предполагает замкнутый цикл веществ, многократно используемый трофической цепью. Он имеется в водных экосистемах, особенно в планктоне с его интенсивным метаболизмом, но не в наземных экосистемах, за исключением дождевых тропических лесов, где может быть обеспечена передача питательных веществ "от растения к растению", корни которых на поверхности почвы.

Однако в масштабах всей биосферы такой круговорот невозможен. Здесь действует биогеохимический круговорот, представляющий собой обмен макро- и микроэлементов и простых неорганических веществ с веществом атмосферы, гидросферы и литосферы.

Круговорот отдельных веществ - В.И. Вернадский назвал биогеохимическими циклами. Главное в том, что химические элементы, поглощенные организмом, впоследствии его покидают, уходя в абиотическую среду, затем, через какое-то время, снова попадают в живой организм. Такие элементы называют биофилъными. Этими циклами и круговоротом в целом обеспечиваются важнейшие функции живого вещества в биосфере. В. И. Вернадский выделяет пять таких функций:

- первая функция - газовая - основные газы атмосферы Земли, азот и кислород, биогенного происхождения, как и все подземные газы - продукт разложения отмершей органики;

- вторая функция - концентрационная - организмы накапливают в своих телах многие химические элементы, среди которых на первом месте стоит углерод, среди металлов - первый кальций, концентраторами кремния являются диатомовые водоросли, йода - водоросли (ламинария), фосфора - скелеты позвоночных животных;

- третья функция - окислительно-восстановительная - организмы, обитающие в водоемах, регулируют кислородный режим и создают условия для растворения или же осаждения ряда металлов (V, Mn, Fe) и неметаллов (S) с переменной валентностью;

- четвертая функция - биохимическая -размножение, рост и перемещение в пространстве ("расползание") живого вещества;

- пятая функция - биогеохимическая деятельность человека - охватывает все разрастающееся количество веществ земной коры.

Следовательно, следует отметить лишь один-единственный на Земле процесс, который не тратит, а, наоборот, связывает солнечную энергию и даже накапливает ее -- это создание органического вещества в результате фотосинтеза. В связывании и запасании солнечной энергии и заключается основная планетарная функция круговорота веществ на Земле.

Все вещества на планете находятся в процессе кругово­рота. Солнечная энергия вызывает на Земле два круговоро­та веществ: большой (геологический, биосферный) и малый (биологический).

Большой круговорот веществ в биосфере характеризует­ся двумя важными моментами: он осуществляется на про­тяжении всего геологического развития Земли и представ­ляет собой современный планетарный процесс, принимаю­щий ведущее участие в дальнейшем развитии биосферы.

Геологический круговорот связан с образованием и раз­рушением горных пород и последующим перемещением продуктов разрушения - обломочного материала и хими­ческих элементов. Значительную роль в этих процессах иг­рали и продолжают играть термические свойства поверх­ности суши и воды: поглощение и отражение солнечных лу­чей, теплопроводность и теплоемкость. Неустойчивый гид­ротермический режим поверхности Земли вместе с плане­тарной системой циркуляции атмосферы обусловливал гео­логический круговорот веществ, который на начальном этапе развития Земли, наряду с эндогенными процессами, был связан с формированием континентов, океанов и совре­менных геосфер. Со становлением биосферы в большой кру­говорот включились продукты жизнедеятельности орга­низмов. Геологический круговорот поставляет живым ор­ганизмам элементы питания и во многом определяет усло­вия их существования.

Главные химические элементы литосферы: кислород, кремний, алюминий, железо, магний, натрий, калий и дру­гие - участвуют в большом круговороте, проходя от глу­бинных частей верхней мантии до поверхности литосферы. Магматическая порода, возникшая при кристаллизации магмы, поступив на поверхность литосферы из глубин Зем­ли, подвергается разложению, выветриванию в области био­сферы. Продукты выветривания переходят в подвижное состояние, сносятся водами, ветром в пониженные места рельефа, попадают в реки, океан и образуют мощные толщи осадочных пород, которые со временем, погружаясь на глу­бину в областях с повышенной температурой и давлением, подвергаются метаморфозу, т. е. «переплавляются». При этой переплавке возникает новая метаморфическая порода, поступающая в верхние горизонты земной коры и вновь входящая в круговорот веществ (рис.).


Наиболее интенсивному и быстрому круговороту подвер­гаются легкоподвижные вещества - газы и природные во­ды, составляющие атмосферу и гидросферу планеты. Зна­чительно медленнее совершает круговорот материал литос­феры. В целом каждый круговорот любого химического элемента является частью общего большого круговорота ве­ществ на Земле, и все они тесно связаны между собой. Жи­вое вещество биосферы в этом круговороте выполняет ог­ромную работу по перераспределению химических элемен­тов, беспрерывно циркулирующих в биосфере, переходя из внешней среды в организмы и снова во внешнюю среду.

Малый, или биологический, круговорот веществ - это

циркуляция веществ между растениями, животными, гриба­ми, микроорганизмами и почвой. Суть биологического круго­ворота заключается в протекании двух противоположных, но взаимосвязанных процессов - создания органических ве­ществ и их разрушения. Начальный этап возникновения ор­ганических веществ обусловлен фотосинтезом зеленых расте­ний, т. е. образованием живого вещества из углекислого газа, воды и простых минеральных соединений с использованием энергии Солнца. Растения (продуценты) извлекают из почвы в растворе молекулы серы, фосфора, кальция, калия, маг­ния, марганца, кремния, алюминия, цинка, меди и других элементов. Растительноядные животные (консументы I по­рядка) поглощают соединения этих элементов уже в виде пи­щи растительного происхождения. Хищники (консументы II порядка) питаются растительноядными животными, потреб­ляя пищу более сложного состава, включающую белки, жи­ры, аминокислоты и другие вещества. В процессе разруше­ния микроорганизмами (редуцентами) органических ве­ществ отмерших растений и останков животных, в почву и водную среду поступают простые минеральные соединения, доступные для усвоения растениям, и начинается следую­щий виток биологического круговорота (рис. 33).


Возникновение и развитие ноосферы

Эволюция органического мира на Земле прошла несколько этапов.Первый –связан с возникновением биологического круговорота веществ в биосфере. Второй- сопровождался формированием многоклеточных организмов. Эти два этапа называют биогенезом.Третий этап связан с появлением человеческого общества, под влиянием которого в современных условиях происходит эволюция биосферы и превращение ее в сферу разума-ноосферу(от гр.-разум,-шар). Ноосфера- новое состояние биосферы, когда разумная деятельность человека становится главным фактором, обуславливающим ее развитие. Термин «»ноосфера» был введен Э. Леруа. В. И. Вернадский углубил и развил учение о ноосфере. Он писал: «Ноосфера есть новое геологическое явление на нашей планете.В ней человек становится крупной геологической силой». В. И. Вернадский выделил необходимые предпосылки для создания ноосферы:1.Человечество стало единым целым.2.Возможность мгновенного обмена информацией.3.Реальное равенство людей.4.Рост общего уровня жизни.5.Использование новых видов энергии. 6.Исключение войн из жизни общества. Создание этих предпосылок становится возможным в результате взрыва научной мысли в ХХ веке.

Тема – 6. Природа – человек: системный подход. Цель лекции: Сформировать целостное представление о системных постулатах экологии.

Основные вопросы:1.Понятие о системе и о сложных биосистемах.2.Особенности биологических систем.3.Системные постулаты: закон всеобщей связи, экологические законы Б. Коммонера, Закон больших чисел, Принцип Ле Шателье, Закон обратной связи в природе и закон константности количества живого вещества.4.Модели взаимодействий в системах «природа- человек» и « человек-экономика-биота-среда».

Экологическая система – главный объект экологии. Экология по своей сущности системна и в теоретическом облике близка к общей теории систем. Согласно общей теории систем система- это реальная или мыслимая совокупность частей, целостные свойства которой определяются взаимодействием между частями (элементами) системы. В реальной жизни,систему определяют как совокуность объектов, объединенных некоторой формой регулярного взаимодействий или взаимозависимости для выполнения заданной функции. В материальном существуют определенные иерархии-упорядоченные последовательности пространственно-временного соподчинения и усложнения систем. Все многообразия нашего мира представить в виде трех последовательно возникших иерархий. Это основная,природная, физико- химико- биологическая(Ф,Х,Б) иерархия и побочные две, возникшие на ее основе, социальная (С) и техническая (Т) иерархии. Существование последних по совокупно­сти обратных связей определенным образом влияет на основную иерархию. Объединение систем из разных иерархий приводит к «смешанным» классам систем. Так, объединение систем из физико-химической части иерархии (Ф, X - «среда») с живыми системами биологической части иерархии (Б - «биота») приводит к смешан­ному классу систем, называемых экологическими. А объединение систем из иерархий С

(«человек») и Т («техника») приводит к клас­су хозяйственных, или технико-экономических, систем.

Рис. . Иерархии материальных систем:

Ф, X - физико-химическая, Б - биологическая, С - социальная, Т - техническая

Должно быть понятно, что отображенное на схеме воздействие человеческого общества на природу, опосредованное техникой и технологиями (техногенез), относится ко всей иерархии природных систем: нижняя ветвь - к абиотической среде, верхняя - к биоте биосферы. Ниже будет рассмотрена сопряженность экологических и технико-экономических сторон этого взаимодействия.

Всем системам присущи некоторые общие свойства:

1. Каждая система имеет определенную структуру, определяе­мую формой пространственно-временных связей или взаимодейст вий между элементами системы. Структурная упорядоченность сама по себе не определяет организацию системы. Систему можно на­звать организованной, если ее существование либо необходимо для поддержания некоторой функциональной (выполняющей опреде­ленную работу) структуры, либо, напротив, зависит от деятельности такой структуры.

2. Согласно принципу необходимого разнообразия система не мо­жет состоять из идентичных элементов, лишенных индивидуально­сти. Нижний предел разнообразия - не менее двух элементов (про­тон и электрон, белок и нуклеиновая кислота, «он» и «она»), верх­ний - бесконечность. Разнообразие - важнейшая информацион­ная характеристика системы. Оно отличается от числа разновидно­стей элементов и может быть измерено.3.Свойства системы невозможно постичь лишь на основании свойств ее частей. Решающее значение имеет именно взаимодейст­вие между элементами. По отдельным деталям машины перед сбор­кой нельзя судить о ее действии. Изучая по отдельности некоторые формы грибов и водорослей, нельзя предсказать существование их симбиоза в виде лишайника. Совместное действие двух или более различных факторов на организм почти всегда отличается от суммы их раздельных эффектов. Степень несводимости свойств системы к сумме свойств отдельных элементов, из которых она состоит, опре­деляет эмерджентность системы.

4.Выделение системы делит ее мир на две части - саму систе­му и ее среду. В зависимости от наличия (отсутствия) обмена веще­ством, энергией и информацией со средой принципиально возмож­ны: изолированные системы (никакой обмен невозможен); замкну­тые системы (невозможен обмен веществом); открытые системы(возможен обмен веществом и энергией). Обмен энергии определя­ет обмен информацией. В живой природе существуют только от­крытые динамические системы, между внутренними элементами ко­торых и элементами среды осуществляются переносы вещества, энергии и информации. Любая живая система - от вируса до биосферы - представляет собой открытую динамическую систему.

5. Преобладание внутренних взаимодействий в системе над внешними и лабильность системы по отношению к внешним воз­
действиям определяют ее способность к самосохранению благодаря качествам организованности, выносливости и устойчивости. Внеш­нее воздействие на систему, превосходящее силу и гибкость еевнутренних взаимодействий, приводит к необратимым изменениям
и гибели системы. Устойчивость динамической системы поддержи­вается непрерывно выполняемой ею внешней циклической работой. Для этого необходимы поток и преобразование энергии в сие. теме. Вероятность достижения главной цели системы - самосохранения (в том числе и путем самовоспроизведения) определяется кaк ее потенциальная эффективность.

6. Действие системы во времени называют ее поведением. Вызванное внешним фактором изменение поведения обозначают как реакцию системы, а изменение реакции системы, связанное с изменением структуры и направленное на стабилизацию поведения, -.как ее приспособление, или адаптацию. Закрепление адаптивных изменений структуры и связей системы во времени, при котором ее потенциальная эффективность увеличивается, рассматривается кaк развитие, или эволюция, системы. Возникновение и существование всех материальных систем в природе обусловлено эволюцией. Динамические системы эволюционируют в направлении от более вероятной к менее вероятной организации, т.е. развитие идет по пути усложнения организации и образования подсистем в структуре системы. В природе все формы поведения систем - от элементарной реакции до глобальной эволюции - существенно нелинейны. Важной особенностью эволюции сложных систем является
неравномерность, отсутствие монотонности. Периоды постепенного накопления незначительных изменений иногда прерываются резкими качественными скачками, существенно меняющими свойства системы. Обычно они связаны с так называемыми точками бифуркации - раздвоением, расщеплением прежнего пути эволюции. 0т выбора того или иного продолжения пути в точке бифуркации очень многое зависит, вплоть до появления и процветания нового мира частиц, веществ, организмов, социумов или, наоборот, гибели системы. Даже для решающих систем результат выбора часто непредсказуем, а сам выбор в точке бифуркации может быть обусловлен случайным импульсом. Любая реальная система может быть представлена в виде некоторого материального подобия или знакового образа, т.е. соответственно аналоговой или знаковой моделью системы. Моделирование неизбежно сопровождается некоторым упрощением и формализацией взаимосвязей в системе. Эта формализация может быть
осуществлена в виде логических (причинно-следственных) и/или математических (функциональных) отношений.По мере возрастания сложности систем у них появляются новые эмерджентные качества. При этом сохраняются качества более простых систем. Поэтому общее разнообразие качеств системы возрастает по мере ее усложнения (рис. 2.2).

Рис. 2.2. Закономерности изменений свойств иерархий систем с повышением их уровня (по Флейшману, 1982):

1 - разнообразие, 2 - устойчивость, 3 - эмерджентность, 4 - сложность, 5 - неидентичность, 6 - распространенность

В порядке возрастания активности по отношению к внешним воз­действиям качества системы могут быть упорядочены в следующей последовательности: 1 - устойчивость, 2 - надежность, обусловлен­ная информированностью о среде (помехоустойчивость), 3 - управляемость, 4 - самоорганизация. В этом ряду каждое последующее ка­чество имеет смысл при наличии предыдущего.

Пар Сложность структуры системы опреде­ляется числом п ее элементов и числом т

связей между ними. Если в какой-либо системе исследуется число частных дискретных состояний, то сложность системы С определя­ется логарифмом числа связей:

C=lgm. (2.1)

Системы условно классифицируются по сложности следующим образом: 1) системы, имеющие до тысячи состояний (О < 3), относятся к простым; 2) системы, имеющие до миллиона состояний (3 < С < 6), являют собой сложные системы; 3) системы с числом состояний свыше миллиона (С > 6) идентифицируются как очень сложные.

Все реальные природные биосистемы очень сложны. Даже в структуре единичного вируса число биологически значимых моле­кулярных состояний превышает последнее значение.



Последние материалы раздела:

Изменение вида звездного неба в течение суток
Изменение вида звездного неба в течение суток

Тема урока «Изменение вида звездного неба в течение года». Цель урока: Изучить видимое годичное движение Солнца. Звёздное небо – великая книга...

Развитие критического мышления: технологии и методики
Развитие критического мышления: технологии и методики

Критическое мышление – это система суждений, способствующая анализу информации, ее собственной интерпретации, а также обоснованности...

Онлайн обучение профессии Программист 1С
Онлайн обучение профессии Программист 1С

В современном мире цифровых технологий профессия программиста остается одной из самых востребованных и перспективных. Особенно высок спрос на...