Квадратные уравнения с параметром. Системы уравнений с параметром

Введение

§1. Разработка факультативных занятий по теме.

Заключение.

ВВЕДЕНИЕ

Главной целью факультативных занятий по математике являются расширение и углубление знаний, развитие интереса учащихся к предмету, развитие их математических способностей. Процесс обучения строится как совместная исследовательская деятельность учащихся.

Большую роль в развитии математического мышления учащихся на факультативных занятиях играет изучение темы "Уравнения с параметрами". Вместе с тем изучение этой темы в школьной программе не уделено достаточного внимания. Интерес к теме объясняется тем, что уравнения с параметрами предлагаются как на школьных выпускных экзаменах, так и на вступительных экзаменах в вузы.

Целью курсовой работы является ознакомление учащихся с теоретическими основами решения уравнений с параметрами, основными их видами и рекомендациями к решению.

§1. Теоретические основы решения уравнений с параметрами.

Рассмотрим уравнение

F (х, у, ..., z; α,β, ..., γ ) = 0 (F )

с неизвестными х, у, ..., z и с параметрами α,β, ..., γ ;при всякой допустимой системе значений параметров α 0 ,β 0 , ..., γ 0 уравнение (F) обращается в уравнение

F(х, у, ..., z; α 0 ,β 0 , ..., γ 0) = 0(F 0 )

с неизвестными х, у,..., z, не содержащее параметров. Уравнение (Fo ) имеет некоторое вполне определенное множество (быть, может, пустое) решений.

Аналогично рассматриваются системы уравнений, содержащих параметры. Допустимыми системами значений параметров считаются системы, допустимые для каждого уравнения в отдельности.

Определение. Решить уравнение (или систему), содержащее параметры, это значит, для каждой допустимой системы значений параметров найти множество всех решений данного уравнения (системы).

Понятие эквивалентности применительно к уравнению, содержащим параметры, устанавливается следующим образом.

Определение. Два уравнения (системы)

F(х, у, ..., z; α,β, ..., γ) = 0 (F ),

Ф (х, у, ..., z; α,β, ..., γ) = 0 (Ф )

с неизвестным х, у,..., z и с параметрами α,β, ..., γ называются эквивалентными, если для обоих уравнений (систем) множество допустимых систем значений параметров одно и то же и при всякой допустимой системе значений, параметров оба уравнения (системы уравнений) эквивалентны.

Итак, эквивалентные уравнения при всякой допустимой системе значений параметров имеют одно и то же множество решений.

Преобразование уравнения, изменяющее множество допустимых систем значений параметров, приводит к уравнению, не эквивалентному данному уравнению.

Предположим, что каждое из неизвестных, содержащихся в уравнении

F(x, у,z; α,β, ..., γ) =0 (F )

задано в виде некоторой функции от параметров: х = х(α,β, ..., γ );

у = у(α,β, ..., γ);….

z= z (α,β, ..., γ). (Х)

Говорят, что система функций (Х ), заданных совместно, удовлетворяет уравнению (F ), если при подстановке этих функций вместо неизвестных х, у,..., z в уравнение (F) левая его часть обращается в нуль тождественно при всех допустимых значениях параметров:

F ( x (α,β, ..., γ), y( α,β, ..., γ),…, z (α,β, ..., γ ) ≡0.

При всякой допустимой системе численных значений параметров α = α 0 ,β=β 0 , ..., γ= γ 0 соответствующие значения функций (Х ) образуют решение уравнения

F(х, у, ..., z; α 0 ,β 0 , ..., γ 0) = 0

§2. Основные виды уравнений с параметрами.

Линейные и квадратные уравнения.

Линейное уравнение, записанное в общем виде, можно рассматривать как уравнение с параметрами: ах = b , где х – неизвестное, а, b – параметры. Для этого уравнения особым или контрольным значением параметра является то, при котором обращается в нуль коэффициент при неизвестном.

При решении линейного уравнения с параметром рассматриваются случаи, когда параметр равен своему особому значению и отличен от него.

Особым значением параметра а является значение а = 0.

1. Если а ≠ 0 , то при любой паре параметров а и b оно имеет единственное решение х =

.

2. Если а = 0, то уравнение принимает вид: 0 х = b . В этом случае значение b = 0 является особым значением параметра b .

2.1. При b ≠ 0 уравнение решений не имеет.

2.2. При b = 0 уравнение примет вид: 0 х = 0. Решением данного уравнения является любое действительное число.

П р и м е р. Решим уравнение

2а(а - 2) х=а - 2. (2)

Р е ш е н и е. Здесь контрольными будут те значения параметра, при которых коэффициент при х обращается в 0. Такими значениями являются а=0 и а=2. При этих значениях а невозможно деление обеих частей уравнения на коэффициент при х. В то же время при значениях параметра а≠0, а≠2 это деление возможно. Таким образом, целесообразно множество всех действительных значений параметра разбить на подмножества

A 1 ={0}, А 2 ={2} и Аз= {а ≠0, а ≠2}

и решить уравнение (2) на каждом из этих подмножеств, т. е. решить уравнение (2) как семейство уравнений, получающихся из него при следующих значениях параметра:

1) а= 0 ; 2) а= 2 ; 3) а≠0, а≠2

Рассмотрим эти случаи.

1) При а= 0уравнение (2) принимает вид 0 х = - 2. Это уравнение не имеет корней.

2) При а= 2уравнение (2) принимает вид 0 х =0. Корнем этого уравнения является любое действительное число.

3) При а≠0, а≠2 из уравнения (2) получаем, х=

откуда х=

.

0 т в е т: 1) если а= 0, то корней нет; 2) если а= 2, то х - любое действительное число; 3) если а ≠0, а ≠2 , то х =

П р и ме р. Решим уравнение

(а - 1) х 2 +2 (2а +1) х +(4а +3) =0; (3)

Р е ш е н и е. В данном случае контрольным является значение a =1. Дело в том, что при a =1 уравнение (3) является линейным, а при а≠ 1 оно квадратное (в этом и состоит качественное изменение уравнения). Значит, целесообразно рассмотреть уравнение (3) как семейство уравнений, получающихся из него при следующих значениях параметра: 1) а =l; 2) а ≠1.

Рассмотрим эти случаи.

1) При a =1 уравнение (3) примет вид бх +7=0. Из этого

уравнения находим х= -

.

2) Из множества значений параметра а≠ 1 выделим те значения, при которых дискриминант уравнения (3) обращается в 0.

Дело в том, что если дискриминант D=0 при а=а о, то при переходе значения D через точку а о дискриминант может изменить знак (например, при а<а о D< 0, а при а>а о D>0). Вместе с этим при переходе через точку а о меняется и число действительных корней квадратного уравнения (в нашем примере при а<а о корней нет, так как D< 0, а при а>а о D>0 уравнение имеет два корня). Значит, можно говорить о качественном изменении уравнения. Поэтому значения параметра, при которых обращается в 0 дискриминант квадратного уравнения, также относят к контрольным значениям.

Составим дискриминант уравнения (3):

=(2а+ l) 2 - (а - 1) (4а+3). После упрощений получаем = 5а+4.

Из уравнения

=0 находим а= - второе контрольное значение параметра а. При этом если а < , то D <0; если a , то D≥0.

Уравнение вида f (x ; a ) = 0 называется уравнением с переменной х и параметром а .

Решить уравнение с параметром а – это значит, для каждого значения а найти значения х , удовлетворяющие этому уравнению.

Пример 1. ах = 0

Пример 2. ах = а

Пример 3.

х + 2 = ах
х – ах = -2
х(1 – а) = -2

Если 1 – а = 0, т.е. а = 1, то х 0 = -2 корней нет

Если 1 – а 0, т.е. а 1, то х =

Пример 4.

(а 2 – 1) х = 2а 2 + а – 3
(а – 1)(а + 1)х = 2(а – 1)(а – 1,5)
(а – 1)(а + 1)х = (1а – 3)(а – 1)

Если а = 1, то 0х = 0
х – любое действительное число

Если а = -1, то 0х = -2
Корней нет

Если а 1, а -1, то х = (единственное решение).

Это значит, что каждому допустимому значению а соответствует единственное значение х .

Например:

если а = 5, то х = = ;

если а = 0, то х = 3 и т. д.

Дидактический материал

1. ах = х + 3

2. 4 + ах = 3х – 1

3. а = +

при а = 1 корней нет.

при а = 3 корней нет.

при а = 1 х – любое действительное число, кроме х = 1

при а = -1, а = 0 решений нет.

при а = 0, а = 2 решений нет.

при а = -3, а = 0, 5, а = -2 решений нет

при а = -с , с = 0 решений нет.

Квадратные уравнения с параметром

Пример 1. Решить уравнение

(а – 1)х 2 = 2(2а + 1)х + 4а + 3 = 0

При а = 1 6х + 7 = 0

В случае а 1 выделим те значения параметра, при которых Д обращается в нуль.

Д = (2(2а + 1)) 2 – 4(а – 1)(4а + 30 = 16а 2 + 16а + 4 – 4(4а 2 + 3а – 4а – 3) = 16а 2 + 16а + 4 – 16а 2 + 4а + 12 = 20а + 16

20а + 16 = 0

20а = -16

Если а < -4/5, то Д < 0, уравнение имеет действительный корень.

Если а > -4/5 и а 1, то Д > 0,

х =

Если а = 4/5, то Д = 0,

Пример 2. При каких значениях параметра а уравнение

х 2 + 2(а + 1)х + 9а – 5 = 0 имеет 2 различных отрицательных корня?

Д = 4(а + 1) 2 – 4(9а – 5) = 4а 2 – 28а + 24 = 4(а – 1)(а – 6)

4(а – 1)(а – 6) > 0

по т. Виета: х 1 + х 2 = -2(а + 1)
х 1 х 2 = 9а – 5

По условию х 1 < 0, х 2 < 0 то –2(а + 1) < 0 и 9а – 5 > 0

В итоге 4(а – 1)(а – 6) > 0
- 2(а + 1) < 0
9а – 5 > 0
а < 1: а > 6
а > - 1
а > 5/9

(Рис. 1 )

< a < 1, либо a > 6

Пример 3. Найдите значения а , при которых данное уравнение имеет решение.

х 2 – 2(а – 1)х + 2а + 1 = 0

Д = 4(а – 1) 2 – 4(2а + 10 = 4а 2 – 8а + 4 – 8а – 4 = 4а 2 – 16а

4а 2 – 16 0

4а (а – 4) 0

а(а – 4)) 0

а(а – 4) = 0

а = 0 или а – 4 = 0
а = 4

(Рис. 2 )

Ответ: а 0 и а 4

Дидактический материал

1. При каком значении а уравнение ах 2 – (а + 1) х + 2а – 1 = 0 имеет один корень?

2. При каком значении а уравнение (а + 2) х 2 + 2(а + 2)х + 2 = 0 имеет один корень?

3. При каких значениях а уравнение (а 2 – 6а + 8) х 2 + (а 2 – 4) х + (10 – 3а а 2) = 0 имеет более двух корней?

4. При каких значениях а уравнение 2х 2 + х а = 0 имеет хотя бы один общий корень с уравнением 2х 2 – 7х + 6 = 0?

5. При каких значениях а уравнения х 2 +ах + 1 = 0 и х 2 + х + а = 0 имеют хотя бы один общий корень?

1. При а = - 1/7, а = 0, а = 1

2. При а = 0

3. При а = 2

4. При а = 10

5. При а = - 2

Показательные уравнения с параметром

Пример 1 .Найти все значения а , при которых уравнение

9 х – (а + 2)*3 х-1/х +2а *3 -2/х = 0 (1) имеет ровно два корня.

Решение. Умножив обе части уравнения (1) на 3 2/х, получим равносильное уравнение

3 2(х+1/х) – (а + 2)*3 х+1/х + 2а = 0 (2)

Пусть 3 х+1/х = у , тогда уравнение (2) примет вид у 2 – (а + 2)у + 2а = 0, или

(у – 2)(у а ) = 0, откуда у 1 =2, у 2 = а .

Если у = 2, т.е. 3 х+1/х = 2 то х + 1/х = log 3 2 , или х 2 – х log 3 2 + 1 = 0.

Это уравнение не имеет действительных корней, так как его Д = log 2 3 2 – 4 < 0.

Если у = а , т.е. 3 х+1/х = а то х + 1/х = log 3 а , или х 2 – х log 3 а + 1 = 0. (3)

Уравнение (3) имеет ровно два корня тогда и только тогда, когда

Д = log 2 3 2 – 4 > 0, или |log 3 а| > 2.

Если log 3 а > 2, то а > 9, а если log 3 а < -2, то 0 < а < 1/9.

Ответ: 0 < а < 1/9, а > 9.

Пример 2 . При каких значениях а уравнение 2 2х – (а – 3) 2 х – 3а = 0 имеет решения?

Для того чтобы заданное уравнение имело решения, необходимо и достаточно, чтобы уравнение t 2 – (a – 3) t – 3a = 0 имело хотя бы один положительный корень. Найдем корни по теореме Виета: х 1 = -3, х 2 = а = >

а – положительное число.

Ответ: при а > 0

Дидактический материал

1. Найти все значения а, при которых уравнение

25 х – (2а + 5)*5 х-1/х + 10а * 5 -2/х = 0 имеет ровно 2 решения.

2. При каких значениях а уравнение

2 (а-1)х?+2(а+3)х+а = 1/4 имеет единственный корень?

3. При каких значениях параметра а уравнение

4 х - (5а -3)2 х +4а 2 – 3а = 0 имеет единственное решение?

Логарифмические уравнения с параметром

Пример 1. Найти все значения а , при которых уравнение

log 4x (1 + ах ) = 1/2 (1)

имеет единственное решение.

Решение. Уравнение (1) равносильно уравнению

1 + ах = 2х при х > 0, х 1/4 (3)

х = у

ау 2 –у + 1 = 0 (4)

Не выполняется (2) условие из (3).

Пусть а 0, то ау 2 – 2у + 1 = 0 имеет действительные корни тогда и только тогда, когда Д = 4 – 4а 0, т.е. при а 1.Чтобы решить неравенство (3), построим графики функций Галицкий М.Л., Мошкович М.М., Шварцбурд С.И. Углубленное изучение курса алгебры и математического анализа. – М.: Просвещение, 1990

  • Крамор В.С . Повторяем и систематизируем школьный курс алгебры и начал анализа. – М.: Просвещение, 1990.
  • Галицкий М.Л., Гольдман А.М., Звавич Л.И . Сборник задач по алгебре. – М.: Просвещение, 1994.
  • Звавич Л.И., Шляпочник Л.Я. Алгебра и начала анализа. Решение экзаменационных задач. – М.: Дрофа, 1998.
  • Макарычев Ю.Н. и др. Дидактические материалы по алгебре 7, 8, 9 кл. – М.: Просвещение, 2001.
  • Саакян С.И., Гольдман А.М., Денисов Д.В. Задачи по алгебре и началам анализа для 10–11-х классов. – М.: Просвещение, 1990.
  • Журналы “Математика в школе”.
  • Л.С. Лаппо и др. ЕГЭ. Учебное пособие. – М.: Экзамен, 2001–2008.
  • Задачи с параметрами. Простейшие задачи на квадратный трёхчлен.

    Сегодня мы рассмотрим задачи на квадратный трёхчлен, про который, в зависимости от параметра, надо будет что-то выяснить. Это «что-то» может быть самым разнообразным, насколько только хватит фантазии у составителей задачи. Это самый простой тип задач с параметрами. И, если на ЕГЭ вам попалась такая – считайте, что вам повезло!

    Но, прежде чем приступать к разбору самих задач, ответьте сами себе на такие простые вопросы:

    - Что такое квадратное уравнение, как оно выглядит и как решается?

    - Что такое дискриминант и куда его пристроить?

    - Что такое теорема Виета и где её можно применить?

    Если вы верно отвечаете на эти простые вопросы, то 50% успеха в решении параметрических задач на квадратный трёхчлен вам обеспечены! А остальные 50% - это обычная алгебра и арифметика: раскрытие скобок, приведение подобных, решение уравнений, неравенств и систем и т.д.

    Итак, приступим!

    Для начала рассмотрим совсем безобидную задачку. Для разминки. :)

    Пример 1


    Приступаем к решению. Во-первых, чтобы в будущем не накосячить в коэффициентах, всегда полезно выписать их отдельно. Прямо в столбик. Вот так:

    a = 1

    b = -(a-1)

    c = a-2

    Да-да! Часть коэффициентов в уравнении (а именно – b и с) зависит от параметра. В этом как раз и состоит вся фишка таких задач. А теперь снова въедливо перечитываем условие. Ключевой зацепкой в формулировке задания являются слова «единственный корень». И когда же квадратное уравнение имеет единственный корень ? Подключаем наши теоретические знания о квадратных уравнениях. Только в одном единственном случае – когда его дискриминант равен нулю .

    Так и пишем:

    D = 0

    Осталось составить выражение для дискриминанта и приравнять его к нулю. Поехали!

    Теперь надо приравнять наш дискриминант к нулю:

    Можно, конечно, решать это через дискриминант, а можно немного схитрить. На что у нас похожа левая часть, если как следует присмотреться? Она у нас похожа на квадрат разности (a -3) 2 !

    Респект внимательным! Верно! Если заменить наше выражение слева на (a -3) 2 , то уравнение будет решаться в уме!

    (a - 3) 2 = 0

    a - 3 = 0

    a = 3

    Вот и всё. Это значит, что единственный корень наше квадратное уравнение с параметром будет иметь только в одном единственном случае – когда значение параметра «а» равно тройке.)

    Ответ: 3

    Это был разминочный пример. Чтобы общую идею уловить.) Теперь будет задачка посерьёзнее.

    Пример 2


    Вот такая задачка. Начинаем распутывать. Первым делом выпишем наше квадратное уравнение:

    0,5x 2 - 2x + 3a + 1,5 = 0

    Самым логичным шагом, было бы умножить обе части на 2. Тогда у нас исчезнут дробные коэффициенты и само уравнение станет посимпатичнее. Умножаем:

    Выписываем в столбик наши коэффициенты a, b, c:

    a = 1

    b = -4

    c = 6 a +3

    Видно, что коэффициенты a и b у нас постоянны, а вот свободный член с зависит от параметра «а» ! Который может быть каким угодно – положительным, отрицательным, целым, дробным, иррациональным – всяким!

    «Для того чтобы сумма кубов корней была меньше 28, эти самые корни, во-первых, должны существовать . Сами по себе. В принципе. А корни у квадратного уравнения существуют, тогда и только тогда, когда его дискриминант неотрицательный. Кроме того, в задании говорится о двух различных корнях. Эта фраза означает, что наш дискриминант обязан быть не просто неотрицательным, а строго положительным

    Если вы рассуждаете таким образом, то вы движетесь правильным курсом! Верно.) Составляем условие положительности для дискриминанта:

    D = (-4) 2 - 4·1·(6 a +3) = 16-24 a -12 = 4-24 a

    4-24 a > 0

    -24 a > -4

    a < 1/6

    Полученное условие говорит нам о том, что два различных корня у нашего уравнения будет не при любых значениях параметра «а», а только при тех, которые меньше одной шестой! Это глобальное требование, которое должно выполняться железно. Неважно, меньше 28 наша сумма кубов корней или больше. Значения параметра «а», большие или равные 1/6, нас заведомо не устроят . Гуд.) Соломки подстелили. Движемся дальше.

    Теперь приступаем к загадочной сумме кубов корней. По условию она у нас должна быть меньше 28. Так и пишем:

    Значит, для того чтобы ответить на вопрос задачи, нам надо совместно рассмотреть два условия:

    Способ для трудолюбивых заключается в непосредственном нахождении корней уравнения через параметр. Прямо по общей формуле корней. Вот так:

    Теперь составляем нужную нам сумму кубов найденных корней и требуем, чтобы она была меньше 28:

    А дальше – обычная алгебра: раскрываем сумму кубов по формуле сокращённого умножения, приводим подобные, сокращаем и т.д. Если бы корни нашего уравнения получились покрасивее, без радикалов, то такой «лобовой» способ был бы неплох. Но проблема в том, что наши корни выглядят немного страшновато. И подставлять их в сумму кубов как-то неохота, да. Поэтому, для того чтобы избежать этой громоздкой процедуры, я предлагаю второй способ – для внимательных.

    Для этого раскрываем сумму кубов корней по соответствующей формуле сокращенного умножения. Прямо в общем виде:

    Итого:

    Казалось бы, и что из этого? Сейчас интересно будет! Давайте, посмотрим ещё разок на наше уравнение. Как можно внимательнее:

    Чему здесь равен коэффициент при x 2 ? Правильно, единичке! А как такое уравнение называется? Правильно, приведённое! А, раз приведённое, то, стало быть, для него справедлива теорема Виета:

    Вот и ещё одна теорема нам пригодилась! Теперь, прямо по теореме Виета, подставляем сумму и произведение корней в наше требование для суммы кубов:

    Осталось раскрыть скобки и решить простенькое линейное неравенство:

    4·(16-18a-9) < 28

    64–72a+36 < 28

    -72a < 28-64+36

    -72a < 0

    a > 0

    Вспоминаем, что ещё у нас есть глобальное требование a < 1/6 . Значит, наше полученное множество a > 0 необходимо пересечь с условием a < 1/6 . Рисуем картинку, пересекаем, и записываем окончательный ответ.


    Ответ:

    Да. Вот такой маленький интервальчик. От нуля до одной шестой… Видите, насколько знание теоремы Виета, порой, облегчает жизнь!

    Вот вам небольшой практический совет: если в задании говорится о таких конструкциях, как сумма, произведение, сумма квадратов, сумма кубов корней, то пробуем применить теорему Виета. В 99% случаев решение значительно упрощается.

    Это были довольно простые примеры. Чтобы суть уловить. Теперь будут примеры посолиднее.

    Например, такая задачка из реального варианта ЕГЭ:

    Пример 3


    Что, внушает? Ничего не боимся и действуем по нашему излюбленному принципу: «Не знаешь, что нужно, делай что можно! »

    Опять аккуратно выписываем все коэффициенты нашего квадратного уравнения:

    a = 1

    b = -6

    c = a 2 -4 a

    А теперь вчитываемся в условие задачи и находим слова «модуль разности корней уравнения». Модуль разности нас пока не волнует, а вот слова «корней уравнения» примем во внимание. Раз говорится о корнях (неважно, двух одинаковых или двух различных), то наш дискриминант обязан быть неотрицательным! Так и пишем:

    D ≥ 0

    Что ж, аккуратно расписываем наш дискриминант через параметр а :

    D = (-6) 2 – 4·1·(12 + a 2 -4 a ) = 36 - 48 - 4а 2 + 16а = -4а 2 +16а-12.

    А теперь решаем квадратное неравенство. По стандартной схеме, через соответствующее квадратное уравнение и схематичный рисунок параболы:


    Значит, для того чтобы у нашего уравнения в принципе имелись хоть какие-то корни, параметр а должен находиться в отрезке [-1; 3]. Это железное требование. Хорошо. Запомним.)

    А теперь приступаем к этому самому модулю разности корней уравнения. От нас хотят, чтобы вот такая штука

    Принимала бы наибольшее значение. Для этого, ничего не поделать, но теперь нам всё-таки придётся находить сами корни и составлять их разность: x 1 – x 2 . Теорема Виета здесь в этот раз бессильна.

    Что ж, считаем корни по общей формуле:

    Теперь вспоминаем, что корень квадратный – величина заведомо неотрицательная . Стало быть, без ущерба для здоровья, модуль можно смело опустить. Итого наш модуль разности корней выглядит так:

    И эта функция f(a) должна принимать наибольшее значение . А для поиска наибольшего значения у нас есть такой мощный инструмент, как производная ! Вперёд и с песнями!)

    Дифференцируем нашу функцию и приравниваем производную к нулю:

    Получили единственную критическую точку a = 2 . Но это ещё не ответ, так как нам ещё надо проверить, что найденная точка и в самом деле является точкой максимума! Для этого исследуем знаки нашей производной слева и справа от двойки. Это легко делается простой подстановкой (например, а = 1,5 и а = 2,5).

    Слева от двойки производная положительна, а справа от двойки – отрицательна. Это значит, что наша точка a = 2 и вправду является точкой максимума. Заштрихованная зона на картинке означает, что нашу функцию мы рассматриваем только на отрезке . Вне этого отрезка нашей функции f (a ) попросту не существует . Потому, что в заштрихованной области наш дискриминант отрицательный, и разговоры о каких-либо корнях (и о функции тоже) бессмысленны. Это понятно, думаю.

    Всё. Вот теперь наша задача полностью решена.

    Ответ: 2.

    Здесь было применение производной. А бывают и такие задачи, где приходится решать уравнения либо неравенства с так ненавистными многими учениками модулями и сравнивать некрасивые иррациональные числа с корнями. Главное – не бояться! Разберём похожую злую задачку (тоже из ЕГЭ, кстати).

    Пример 4

    Итак, приступаем. Первым делом замечаем, что параметр а ни в коем случае не может быть равен нулю. Почему? А вы подставьте в исходное уравнение вместо а нолик. Что получится?

    Получили линейное уравнение, имеющее единственный корень x=2. А это уже совсем не наш случай. От нас хотят, чтобы уравнение имело два различных корня, а для этого нам необходимо, чтобы оно, как минимум, было хотя бы квадратным.)

    Итак, а ≠ 0 .

    При всех остальных значениях параметра наше уравнение будет вполне себе квадратным. И, следовательно, чтобы оно имело два различных корня, необходимо (и достаточно), чтобы его дискриминант был положительным . То есть, первое наше требование будет D > 0 .

    D = 4(a-1) 2 – 4a(a-4) = 4a 2 -8a+4-4a 2 +16a = 4+8a

    Вот так. Значит, наше уравнение имеет два различных корня тогда и только тогда, когда параметр a > -1/2. При прочих «а» у уравнения будет либо один корень, либо вообще ни одного. Берём на заметку это условие и движемся дальше.

    Зачем здесь нужен модуль? А затем, что любое расстояние (что в природе, что в математике) – величина неотрицательная . Причём здесь совершенно неважно, какой именно корень будет стоять в этой разности первым, а какой вторым: модуль – функция чётная и сжигает минус. Точно так же, как и квадрат.

    Значит, ответом на вопрос задачи является решение вот такой системы:

    Теперь, ясен перец, нам надо найти сами корни. Здесь тоже всё очевидно и прозрачно. Аккуратно подставляем все коэффициенты в нашу общую формулу корней и считаем:

    Отлично. Корни получены. Теперь начинаем формировать наше расстояние:


    Наше расстояние между корнями должно быть больше трёх, поэтому теперь нам надо решить вот такое неравенство:

    Неравенство – не подарок: модуль, корень… Но и мы всё-таки уже решаем серьёзную задачу №18 из ЕГЭ! Делаем всё что можно, чтобы максимально упростить внешний вид неравенства. Мне здесь больше всего не нравится дробь. Поэтому первым делом я избавлюсь от знаменателя, умножив обе части неравенства на |a|. Это можно сделать, поскольку мы, во-первых, в самом начале решения примера договорились, что а ≠ 0, а во-вторых, сам модуль – величина неотрицательная.

    Итак, смело умножаем обе части неравенства на положительное число |a |. Знак неравенства сохраняется :

    Вот так. Теперь в нашем распоряжении имеется иррациональное неравенство с модулем. Ясное дело, для того чтобы решить его, надо избавляться от модуля. Поэтому придётся разбивать решение на два случая – когда параметр а , стоящий под модулем, положителен и когда отрицателен. Другого пути избавиться от модуля у нас, к сожалению, нет.

    Итак!

    Случай 1 (a>0, |a|=a)

    В этом случае наш модуль раскрывается с плюсом, и неравенство (уже без модуля!) принимает следующий вид:

    Неравенство имеет структуру: «корень больше функции». Такие иррациональные неравенства решаются по следующей стандартной схеме:

    Отдельно рассматривается случай а), когда обе части неравенства возводятся в квадрат и правая часть неотрицательна и отдельно – случай б), когда правая часть всё-таки отрицательна, но зато сам корень при этом извлекается.) И решения этих двух систем объединяются .

    Тогда, в соответствии с этой схемой, наше неравенство распишется вот так:

    А теперь можно существенно упростить себе дальнейшую работу. Для этого вспомним, что в случае 1 мы рассматриваем только a >0 . С учётом этого требования, вторую систему можно вообще вычеркнуть из рассмотрения, поскольку, второе неравенство в ней (3a<0) эквивалентно неравенству a<0, а условия a>0 и a<0 – это два взаимно исключающих требования.

    Упрощаем нашу совокупность с учётом главного условия a>0:

    Вот так. А теперь решаем самое обычное квадратное неравенство:

    Нас интересует промежуток между корнями . Стало быть,

    Отлично. Теперь этот промежуток пересекаем со вторым условием системы a>0:

    Есть. Таким образом, первым кусочком ответа к нашему неравенству (а пока не ко всей задаче!) будет вот такой интервал:

    Всё. Случай 1 разложен по полочкам. Переходим к случаю 2.

    Случай 2 ( a< 0, | a |=- a )

    В этом случае наш модуль раскрывается с минусом, и неравенство принимает следующий вид:

    Опять имеем структуру: «корень больше функции». Применяем нашу стандартную схему с двумя системами (см. выше):

    С учётом общего требования a<0 , мы снова, как и в предыдущем случае, проводим максимальные упрощения: вычёркиваем вторую систему в силу противоречивости двух требований -3а < 0 и нашего общего условия a<0 для всего случая 2 .

    И опять сокращаем себе работу. Ибо оно у нас уже решено в процессе разбора случая 1 ! Решение этого неравенства выглядело вот так:

    Осталось лишь пересечь этот интервал с нашим новым условием a<0.

    Пересекаем:

    Вот и второй кусочек ответа готов:

    Кстати сказать, как я узнал, что ноль лежит именно между нашими иррациональными корнями? Легко! Очевидно, что правый корень заведомо положителен. А что касается левого корня, то я просто в уме сравнил иррациональное число

    С нулём. Вот так:

    А теперь объединяем оба найденных интервала. Ибо мы решаем совокупность (а не систему) :

    Готово дело. Эти два интервала – это пока ещё только решение неравенства

    Кто забыл, данное неравенство отвечает у нас за расстояние между корнями нашего уравнения. Которое должно больше 3. Но! Это ещё не ответ!

    Ещё у нас есть условие положительного дискриминанта ! Неравенство a>-1/2, помните? Это значит, что данное множество нам ещё надо пересечь с условием a>-1/2. Иными словами, теперь мы должны пересечь два множества :

    Но есть одна проблемка. Мы не знаем , как именно расположено на прямой число -1/2 относительно левого (отрицательного) корня. Для этого нам придётся сравнить между собой два числа :

    Поэтому сейчас берём черновик и начинаем сравнивать наши числа. Примерно так:

    Это значит, что дробь -1/2 на числовой прямой находится левее нашего левого корня. И картинка к окончательному ответу задачи будет какая-то вот такая:


    Всё, задача полностью решена и можно записывать окончательный ответ.

    Ответ:

    Ну как? Уловили суть? Тогда решаем самостоятельно.)

    1. Найдите все значения параметра b , при которых уравнение

    ax 2 + 3 x +5 = 0

    имеет единственный корень.

    2. Найдите все значения параметра а, при каждом из которых больший корень уравнения

    x 2 – (14 a -9) x + 49 a 2 – 63 a + 20 = 0

    меньше 9.

    3. Найдите все значения параметра а, при каждом из которых сумма квадратов корней уравнения

    x 2 – 4 ax + 5 a = 0

    равна 6.

    4. Найдите все значения параметра а, при каждом из которых уравнение

    x 2 + 2( a -2) x + a + 3 = 0

    имеет два различных корня, расстояние между которыми больше 3.

    Ответы (в беспорядке):

    1. Системы линейных уравнений с параметром

    Системы линейных уравнений с параметром решаются теми же основными методами, что и обычные системы уравнений: метод подстановки, метод сложения уравнений и графический метод. Знание графической интерпретации линейных систем позволяет легко ответить на вопрос о количестве корней и их существовании.

    Пример 1.

    Найти все значения для параметра а, при которых система уравнений не имеет решений.

    {х + (а 2 – 3)у = а,
    {х + у = 2.

    Решение.

    Рассмотрим несколько способов решения данного задания.

    1 способ . Используем свойство: система не имеет решений, если отношение коэффициентов перед х равно отношению коэффициентов перед у, но не равно отношению свободных членов (а/а 1 = b/b 1 ≠ c/c 1). Тогда имеем:

    1/1 = (а 2 – 3)/1 ≠ а/2 или систему

    {а 2 – 3 = 1,
    {а ≠ 2.

    Из первого уравнения а 2 = 4, поэтому с учетом условия, что а ≠ 2, получаем ответ.

    Ответ: а = -2.

    2 способ . Решаем методом подстановки.

    {2 – у + (а 2 – 3)у = а,
    {х = 2 – у,

    {(а 2 – 3)у – у = а – 2,
    {х = 2 – у.

    После вынесения в первом уравнении общего множителя у за скобки, получим:

    {(а 2 – 4)у = а – 2,
    {х = 2 – у.

    Система не имеет решений, если первое уравнение не будет иметь решений, то есть

    {а 2 – 4 = 0,
    {а – 2 ≠ 0.

    Очевидно, что а = ±2, но с учетом второго условия в ответ идет только ответ с минусом.

    Ответ: а = -2.

    Пример 2.

    Найти все значения для параметра а, при которых система уравнений имеет бесконечное множество решений.

    {8х + ау = 2,
    {ах + 2у = 1.

    Решение.

    По свойству, если отношение коэффициентов при х и у одинаковое, и равно отношению свободных членов системы, то она имеет бесконечное множество решений (т. е. а/а 1 = b/b 1 = c/c 1). Следовательно 8/а = а/2 = 2/1. Решая каждое из полученных уравнений находим, что а = 4 – ответ в данном примере.

    Ответ: а = 4.

    2. Системы рациональных уравнений с параметром

    Пример 3.

    {3|х| + у = 2,
    {|х| + 2у = a.

    Решение.

    Умножим первое уравнение системы на 2:

    {6|х| + 2у = 4,
    {|х| + 2у = a.

    Вычтем из первого второе уравнение, получим 5|х| = 4 – а. Это уравнение будет иметь единственное решение при а = 4. В других случаях это уравнение будет иметь два решения (при а < 4) или ни одного (при а > 4).

    Ответ: а = 4.

    Пример 4.

    Найти все значения параметра а, при которых система уравнений имеет единственное решение.

    {х + у = а,
    {у – х 2 = 1.

    Решение.

    Данную систему решим с использованием графического метода. Так, графиком второго уравнения системы является парабола, поднятая по оси Оу вверх на один единичный отрезок. Первое уравнение задает множество прямых, параллельных прямой y = -x (рисунок 1) . Из рисунка хорошо видно, что система имеет решение, если прямая у = -х + а является касательной к параболе в точке с координатами (-0,5; 1,25). Подставив в уравнение прямой вместо х и у эти координаты, находим значение параметра а:

    1,25 = 0,5 + а;

    Ответ: а = 0,75.

    Пример 5.

    Используя метод подстановки, выясните, при каком значении параметра а, система имеет единственное решение.

    {ах – у = а + 1,
    {ах + (а + 2)у = 2.

    Решение.

    Из первого уравнения выразим у и подставим во второе:

    {у = ах – а – 1,
    {ах + (а + 2)(ах – а – 1) = 2.

    Приведем второе уравнение к виду kx = b, которое будет иметь единственное решение при k ≠ 0. Имеем:

    ах + а 2 х – а 2 – а + 2ах – 2а – 2 = 2;

    а 2 х + 3ах = 2 + а 2 + 3а + 2.

    Квадратный трехчлен а 2 + 3а + 2 представим в виде произведения скобок

    (а + 2)(а + 1), а слева вынесем х за скобки:

    (а 2 + 3а)х = 2 + (а + 2)(а + 1).

    Очевидно, что а 2 + 3а не должно быть равным нулю, поэтому,

    а 2 + 3а ≠ 0, а(а + 3) ≠ 0, а значит а ≠ 0 и ≠ -3.

    Ответ: а ≠ 0; ≠ -3.

    Пример 6.

    Используя графический метод решения, определите, при каком значении параметра а, система имеет единственное решение.

    {х 2 + у 2 = 9,
    {у – |х| = а.

    Решение.

    Исходя из условия, строим окружность с центром в начале координат и радиусом 3 единичных отрезка, именно ее задает первое уравнение системы

    х 2 + у 2 = 9. Второе уравнение системы (у = |х| + а) – ломаная. С помощью рисунка 2 рассматриваем все возможные случаи ее расположения относительно окружности. Легко видеть, что а = 3.

    Ответ: а = 3.

    Остались вопросы? Не знаете, как решать системы уравнений?
    Чтобы получить помощь репетитора – .
    Первый урок – бесплатно!

    blog.сайт, при полном или частичном копировании материала ссылка на первоисточник обязательна.



    Последние материалы раздела:

    Развитие критического мышления: технологии и методики
    Развитие критического мышления: технологии и методики

    Критическое мышление – это система суждений, способствующая анализу информации, ее собственной интерпретации, а также обоснованности...

    Онлайн обучение профессии Программист 1С
    Онлайн обучение профессии Программист 1С

    В современном мире цифровых технологий профессия программиста остается одной из самых востребованных и перспективных. Особенно высок спрос на...

    Пробный ЕГЭ по русскому языку
    Пробный ЕГЭ по русскому языку

    Здравствуйте! Уточните, пожалуйста, как верно оформлять подобные предложения с оборотом «Как пишет...» (двоеточие/запятая, кавычки/без,...