Лазерное излучение и его воздействие на человека. Лазерные излучатели СО2 (лазерная трубка CO2)

Слова "лазер" - аббревиатура, образованная из начальных букв английской фразы Light amplification by stimulatcd emission of radiation - усиление света за счет создания стимулированного излучения.

Итак, лазер или оптический квантовый генератор - это генератор электромагнитного излучения оптического диапазона, основанный на использовании принудительного (стимулированного) излучения.

Лазер как техническое устройство состоит из трех основных элементов:

активной среды;

системы накачки;

соответствующего резонатора.

Основными техническими характеристиками лазеров являются: длина волны (X). мкм;

ширина линии излучения (SX) и

интенсивность излучения лазеров определяется по величине энергии (WJ или мощности (рj, Дж или Вт

длительность импульса (х), с;

частота импульсов (F), Гц.

Как классифицируются лазеры?

В соответствии с "Санитарными нормами и правилами устройства классификации лазеров" положена степень их опасного излучения для обслуживающего персонала. По этой классификации лазеры делятся на 4 класса:

класс I (безопасные) - излучение безопасно для глаз

класс II (малоопасные) - опасно для глаз прямое, зеркальное отражение излучения;

класс ПИ (середньонебезпечни) - опасное для глаз прямое, зеркальное, а также диффузно отраженное излучение на расстоянии 10 см от отражающей поверхности и для кожи прямое и зеркально отраженное излучение;

класс IV (высокоопасные) - опасное для кожи диффузно отраженное излучение на расстоянии 10 см от отражающей поверхности.

Классификация определяет специфику влияния излучения на орган зрения и кожу. Ведущим критерием для оценки степени опасности лазерного излучения принята величина мощности (энергии), длина волны, длительность импульса и экспозиции облучения.

Существует классификация лазеров по физико-техническим параметрам, при этом учитывается агрегатное состояние активной рабочего вещества (твердое, жидкое, газообразное), характер генерации (импульсный, непрерывный) способ накачки активного вещества (оптический, электрический, химический и т. Д.).

По характеру генерации излучения, лазеры подразделяются на импульсные (продолжительностью излучения 0,25 с) и непрерывного действия (продолжительность излучения более 0,25 с).

Какова действие лазерного излучения на организм человека?

Действие лазеров на организм зависит от параметров излучения (мощности) и энергии излучения на единицу поверхности, длины волны, длительности импульса, частоты импульсов, времени облучения, плоскости поверхности облучается), локализации воздействия и анатомо-физиологических особенностей облучаемого.

В зависимости от специфики технологического процесса работа с лазерным оборудованием может сопровождаться воздействием на персонал главным образом отраженного и рассеянного излучения.

Мощный поток лазерной энергии, попадающей на биологические ткани, может вызвать серьезные поражения. Лазерное излучение влияет на живой организм путем тепловой механической и электрической действия. Облучения лазерными лучами может вызвать функциональные нарушения в деятельности ЦНС, сердечно-сосудистой системы, эндокринных желез. Облучение может привести к сворачиванию или распада крови, повреждения глаз, кожи, вызвать генетические изменения, головная боль, расстройства сна, слабость и т. Д.

Биологическое действие лазерного излучения возникает вследствие поглощения организмом его энергии, что вызывает тепловой эффект. Термический эффект лазерного излучения зависит от физической характеристики лучей спектральной характеристики открытых участков кожи, состояния кровообращения и т. Д.

Способность организма поглощать энергию зависит от характера тканей. Жировая ткань организма вообще не поглощает энергию. Теплоотдача внутренних частей тела очень незначительна, что вызывает локальный нагрев а также концентрацию поглощенной энергии в небольшом объеме. Этим объясняется поражение головного мозга, внутренних органов и т. Д.

Под действием лазерного облучения жидкость, окружающая биологические структуры, мгновенно испаряется, вызывая резкого повышения давления, возникновения, вследствие этого, ударной волны и механической травмы. Происходит не только ожог, но и разрыв тканей, представляет большую опасность для зрительного анализатора.

Наибольшую часть лазерного излучения воспринимает кожный покров, что представляет собой природный экран для защиты внутренних органов. В результате облучения возникают ожоги и отеки кожи различной степени - от покраснения до некроза (омертвение кожи). Глубина проникновения лучей зависит от пигментации кожи. Чем кожа темнее тем меньше глубина проникновения лучей. Порог повреждения темно-пигментной кожи значительно меньше, чем светло-пигментной.

Различают 4 степени поражения кожи лазерным излучением:

I степень - ожоги эпидермиса;

II степень - ожоги дермы (пузыри поверхностных слоев дермы)

III степень - ожоги дермы до глубоких слоев;

IV степень - деструкция всей толщины кожи, подкожной клетчатки и прилегающих слоев.

Особенно опасным является действие лазерного излучения на глаза, через которые оно проходит без потерь, достигая сетчатки. Плотность энергии на сетчатке глаза возрастает при увеличении диаметра зрачка, поэтому повреждение глаза, адаптированного к темноте значительно больше, чем при ярком освещении. Чем темнее сетчатка, тем меньше порог повреждающего плотности энергии. Удаление источника лазерного излучения не гарантирует безопасность глаз.

Биологический эффект действия лазерного излучения усиливается вследствие его многократного воздействия, а также через комбинацию с другими факторами производственной среды.

Лазерное излучение в медицине представляет собой вынужденную или стимулированную волну оптического диапазона длиной от 10 нм до 1000 мкм (1 мкм=1000 нм).

Лазерное излучение имеет :
- когерентность - согласованное протекание во времени нескольких волновых процессов одной частоты;
- монохроматичность - одна длина волны;
- поляризованность - упорядоченность ориентации вектора напряженности электромагнитного поля волны в плоскости, перпендикулярной ее распространению.

Физическое и физиологическое действие лазерного излучения

Лазерное излучение (ЛИ) обладает фотобиологической активностью. Биофизические и биохимические реакции тканей на ЛИ различны и зависят от диапазона, длины волны и энергии фотона излучения:

ИК-излучение (1000 мкм - 760 нм, энергия фотонов 1-1,5 ЭВ) проникает на глубину 40-70 мм, вызывает колебательные процессы - тепловое действие;
- видимое излучение (760-400 нм, энергия фотонов 2,0-3,1 ЭВ) проникает на глубину 0,5-25 мм, вызывает диссоциацию молекул и активацию фотохимических реакций;
- УФ-излучение (300-100 нм, энергия фотонов 3,2-12.4 ЭВ) проникает на глубину 0,1-0,2 мм, вызывает диссоциацию и ионизацию молекул -фотохимическое действие.

Физиологическое действие низкоинтенсивного лазерного излучения (НИЛИ) реализуется нервным и гуморальным путем :

Изменение в тканях биофизических и химических процессов;
- изменение обменных процессов;
- изменение метаболизма (биоактивация);
- морфологические и функциональные изменения в нервной ткани;
- стимуляция сердечно-сосудистой системы;
- стимуляция микроциркуляции;
- повышение биологической активности клеточных и тканевых элементов кожи, активизирует внутриклеточные процессы в мышцах, окислительно-восстановительные процессы, образование миофибрилл;
- повышает устойчивость организма.

Высокоинтенсивное лазерное излучение (10,6 и 9,6 мкм) вызывает :

Термический ожог ткани;
- коагуляцию биологических тканей;
- обугливание, сгорание, испарение.

Лечебное действие низкоинтенсивного лазера (НИЛИ)

Противовоспалительное, снижение отечности ткани;
- аналгезирующее;
- стимуляция репаративных процессов;
- рефлексогенное воздействие - стимуляция физиологических функций;
- генерализованное воздействие - стимуляция иммунного ответа.

Лечебное действие высокоинтенсивного лазерного излучения

Антисептическое действие, образование коагуляционной пленки, защитный барьер от токсических агентов;
- резание тканей (лазерный скальпель);
- сварка металлических протезов, ортодонтических аппаратов.

Показания НИЛИ

Острые и хронические воспалительные процессы;
- травма мягких тканей;
- ожог и отморожение;
- кожные заболевания;
- заболевания периферической нервной системы;
- заболевания опорно-двигательного аппарата;
- сердечно-сосудистые заболевания;
- заболевания органов дыхания;
- заболевания желудочно-кишечного тракта;
- заболевания мочеполовой системы;
- заболевания уха, горла, носа;
- нарушения иммунного статуса.

Показания к лазерному излучению в стоматологии

Заболевания слизистой оболочки полости рта;
- заболевания пародонта;
- некариозные поражения твердых тканей зубов и кариес;
- пульпит, периодонтит;
- воспалительный процесс и травма челюстно-лицевой области;
- заболевания ВНЧС;
- лицевые боли.

Противопоказания

Опухоли доброкачественные и злокачественные;
- беременность до 3-х месяцев;
- тиреотоксикоз, диабет 1 типа, болезни крови, недостаточность функции дыхания, почек, печени, кровообращения;
- лихорадочные состояния;
- психические заболевания;
- наличие имплантированного водителя ритма;
- судорожные состояния;
- индивидуальная непереносимость фактора.

Аппаратура

Лазеры - техническое устройство, испускающее излучение в узком оптическом диапазоне. Современные лазеры классифицируются :

По активному веществу (источник индуцированного излучения) -твердотельные, жидкостные, газовые и полупроводниковые;
- по длине волны и излучения - инфракрасные, видимые и ультрафиолетовые;
- по интенсивности излучения - низкоинтенсивные и высокоинтенсивные;
- по режиму генерации излучения - импульсный и непрерывный.

Аппараты комплектуются излучающими головками и специализированными насадками - стоматологические, зеркальные, акупунктурные, магнитные и др., обеспечивающие эффективность проводимого лечения. Сочетанное использование лазерного излучения и постоянного магнитного поля усиливает лечебный эффект. Серийно производятся в основном три вида лазерной терапевтической аппаратуры:

1) на базе гелий-неоновых лазеров, работающих в непрерывном режиме генерации излучения с длиной волны 0,63 мкм и выходной мощностью 1-200 мВт:

УЛФ-01, «Ягода»
- АФЛ-1, АФЛ-2
- ШАТЛ-1
- АЛТМ-01
- ФАЛМ-1
- «Платан-М1»
- «Атолл»
- АЛОК-1 - аппарат лазерного облучения крови

2) на базе полупроводниковых лазеров, работающих в непрерывном режиме генерации излучения с длиной волны 0,67-1,3 мкм и выходной мощностью 1-50 мВт:

АЛТП-1, АЛТП-2
- «Изель»
- «Мазик»
- «Вита»
- «Колокольчик»

3) на базе полупроводниковых лазеров, работающих в импульсном режиме генерации излучения с длиной волны 0,8-0,9 мкм, мощностью импульса 2-15 Вт:

- "Узор", "Узор-2К"
- "Лазурит-ЗМ"
- "Люзар-МП"
- "Нега"
- "Азор-2К"
- "Эффект"

Аппараты для магнитолазерной терапии:

- "Млада"
- АМЛТ-01
- "Светоч-1"
- "Лазурь"
- "Эрга"
- МИЛТА - магнито-инфракрасный

Техника и методика лазерного излучения

Воздействие ЛИ проводят на очаг поражения или органа, сегментарно-метамерной зоны (накожно), биологически активной точки. При лечении глубокого кариеса и пульпита биологическим методом облучение проводят в области дна кариозной полости и шейки зуба; периодонтита - световод вводят в корневой канал, предварительно механически и медикаментозно обработанный, и продвигают до верхушки корня зуба.

Методика проведения лазерного облучения - стабильная, стабильно-сканирующая или сканирующая, контактная или дистанционная.

Дозирование

Ответные реакции на ЛИ зависят от параметров дозирования:

Длина волны;
- методика;
- режим работы - непрерывный или импульсный;
- интенсивность, плотность мощности (ПМ): низкоинтенсивное ЛИ -мягкое (1-2 мВт) применяют для воздействия на рефлексогенные зоны; среднее (2-30 мВт) и жесткое (30-500 мВт) - на область патологического очага;
- время воздействия на одно поле - 1-5 мин, суммарное время не более 15 мин. ежедневно или через день;
- курс лечения 3-10 процедур, повторный через 1-2 месяца.

Техника безопасности

Глаза врача и пациента защищают очками СЗС-22, СЗО-33;
- нельзя смотреть на источник излучения;
- стены кабинета должны быть матовыми;
- нажимать на кнопку «пуск» после установки излучателя на патологический очаг.


Чтобы было понятно, что там внутри и зачем оно вообще там нужно, хотелось бы начать с краткого описания того как лазеры работают вообще. Итак:

Теория (скучная)

Лазер это гениально простое для понимания принципа его функционирования устройство. В то же время, для того, чтобы лазер заработал, нужно учесть кучу нюансов, что открывает огромный простор для творчества инженеров. Это как с атомной бомбой: вот есть два куска урана по половине критической массы, складываем их – ан нет, не взрывается что-то, только на сапоги стекает.

Все мы знаем, что если атому или молекуле вещества сообщить некоторую энергию, то через какое-то время этот атом/молекула от нее избавится – возможно даже, испустив квант излучения (если не столкнется с каким-нибудь другим атомом раньше). Это спонтанное излучение, и так работает лампочка: спираль нагревается электрическим током, тепловая энергия атомов (и вольфрама и всех примесей) переходит в энергию излучения. При этом спектр такого излучения примерно соответствует спектру абсолютно черного тела и представляет собой кучу разных длин волн с характерным пиком интенсивности для данной температуры.

В то же время, если по возбужденному атому ударить фотоном определенной частоты, не дожидаясь, пока атом скатится на нижний энергетический уровень сам, то в результате поглощения такого фотона атом снизит свою энергию на энергию фотона и выпустит два совершенно одинаковых фотона, идентичных тому, что прилетел. Идентичных абсолютно: по направлению, по фазе, по поляризации, и, конечно по энергии, т.е. длине волны. Это вынужденное излучение.

Если у нас много одинаковых возбужденных атомов, то велика вероятность, что «раздвоившийся» фотон ударит по такому атому, раздвоится снова и т.д., пока не кончатся возбужденные атомы в направлении распространения волны. Таким образом, всего один влетевший в пространство с нашими возбужденными атомами фотон правильной длины волны размножается многократно – усиливается, а атомы теряют энергию. Отсюда понятно, что для того, чтобы лазер работал непрерывно, излучившим атомам непрерывно же нужно сообщать энергию, переводящую их обратно на верхний энергетический уровень – «накачивать». Причем, для успешного усиления атомов на верхнем энергетическом уровне должно быть больше, чем на нижнем, это состояние вещества называется «инверсная населенность». Одного прохода усиленного пучка квантов через рабочее тело обычно недостаточно, поэтому его помещают в резонатор – два зеркала, одно из которых отражает излучение полностью, а второе – частично выпускает наружу усиленный пучок.

Атомы, о которых пойдет речь в контексте данного лазера – это ионы неодима, которые находятся в узлах решетки кристалла ванадата иттрия. Если бы они просто болтались в вакууме и находились в форме газа, то лазер был бы газовый, а поскольку они «закреплены» в кристалле, то лазер получается твердотельный. Кристалл подбирается такой, чтобы он был прозрачным для нужных нам длин волн, крепким механически, и подходил по ряду других параметров, которые для понимания работы не критичны. Собственно, кристалл ванадата иттрия YVO 4 с примесью (иначе говоря – легированием) неодимом Nd и называется рабочим телом лазера, а полностью формула записывается как Nd:YVO 4 . Тут важно понимать, что главное у нас здесь – именно неодим, а кристаллов с подходящими параметрами для легирования существует множество: Nd:Y 3 Al 5 O 12 (или короче Nd:YAG), Nd:YAlO 3 и др. У всех есть нюансы, но суть одна.

В примере вынужденного излучения у нашего атома было всего два энергетических уровня – верхний и нижний, но реальность выглядит более сурово:

Здесь мы видим «интересные» с точки зрения излучения и поглощения энергетические уровни иона неодима в кристалле аллюмо-иттриевого граната. Следует понимать, что ион неодима (как и любой квантовый объект) может поглотить только кванты определенных длин волн – энергия которых соответствует разности энергий его уровней. Это синие стрелки.

Хотя энергетически гораздо более выгодно накачивать кристалл длиной волны 869nm, мощных и дешевых источников такой длины волны нет. Поэтому используются лазерные диоды, излучающие 808nm (зато интенсивно), которые загоняют ионы на уровень выше, чем нужно. Через небольшое время происходит безызлучательный переход на уровень 4 F 3/2 . Это т.н. метастабильный энергетический уровень. «Метастабильный» означает, что на этом уровне ион остается относительно долгое время, не сбрасывая энергию, но в то же время, этот уровень и не основной (не с минимальной энергией). Это важно, поскольку в этом состоянии ион неодима должен «дождаться» своего кванта, который и будет усилен с переходом на более низкий уровень.

Возбужденный ион неодима может излучить квант с одой из четырех длин волн, пригодных к дальнейшему усилению (красные стрелки). Причем, хотя наибольшая вероятность излучения – на длине волны 1064nm, остальные переходы также возможны. С ними борются, применяя дихроичные зеркала резонатора, которые отражают только волны длиной 1064nm, а остальные – выпускают наружу, не давая усилиться в резонаторе. Таким образом можно выбрать одну или несколько из возможных частот излучения лазера просто заменяя зеркала.

Итак, накачивая лазерным диодом наш кристалл, помещенный в резонатор, мы получаем лазерное излучение с длиной волны 1064nm. Стоит отметить, что накачивать неодим можно не только лазерным диодом, но и лампами-вспышками и другими источниками излучения, у которых в спектре есть нужные длины волн, т.е. именно лазер как источник накачки тут не обязателен. Просто лазерный диод очень эффективен в плане преобразования электрической энергии в излучение одной нужной нам частоты (КПД достигает более 50%), а то, что его излучение имеет поляризацию и когерентность – это положительные, но не обязательные качества.

ИК-излучение 1064nm превращается в зеленое 532nm в процессе, называемом «генерация второй гармоники» (SHG). Боюсь, у меня не получится доступно объяснить суть этого процесса не увеличивая объем статьи вдвое, поэтому примем просто, что нелинейный кристалл, в котором это происходит, является черным ящиком, который получает на вход два кванта, а на выходе выдает один, но удвоенной частоты. Причем эффективность этого процесса зависит от амплитуды соответствующей кванту волны (в этом и есть его нелинейность), поэтому смотря через кристалл на окружающий мир, мы не увидим никаких сдвигов цвета – интенсивность света слишком мала. А вот при лазерных плотностях энергии эти эффекты проявляются во всей красе.

Так же как и с рабочим телом, существует множество нелинейных кристаллов: KTP (титанил-фосфат калия, KTiOPO 4), LBO (триборат лития, LiB 3 O 5) и множество других – все со своими плюсами и минусами. В непрерывных (CW) лазерах нелинейный кристалл помещают внутрь резонатора, чтобы добиться большей поляризации диэлектрика за счет многократного прохождения ИК-пучка через кристалл и тем самым повышая эффективность генерации второй гармоники. Лазеры такой конструкции называются лазерами с внутрирезонаторным удвоением частоты (intracavity second harmonic generation). В импульсных лазерах этим не заморачиваются – плотности энергии в импульсе и так достаточно чтобы еще усложнять резонатор.

Все DPSS лазеры средней мощности строятся по приблизительно одной оптической схеме:

LD – диод накачки, F – фокусирующая линза, HR – входное зеркало (пропускает 808nm и отражает 1064nm), Nd:Cr – кристалл, легированный неодимом (на его правую по схеме поверхность напылено отражающее покрытие для 532nm), KTP – нелинейный кристалл, OC – выходное зеркало (отражает 1064nm и пропускает все остальное).

Зеркала HR и OC образуют полусферический резонатор Фабри-Перо. Зеркало HR обычно напылено на кристалл рабочего тела, его стараются сделать с максимальной отражающей способностью для длины волны, генерируемой лазером. Отражающую способность зеркала OC выбирают так, чтобы максимизировать КПД лазера: чем выше коэффициент усиления среды (т.е. чем меньше проходов по кристаллу с неодимом нужно сделать пучку чтобы достаточно усилиться), тем больше коэффициент пропускания.

Как видно из схемы, единственным элементом, который задерживает излучение 808nm от лазерного диода, является кристалл рабочего тела. Все, что он не смог поглотить, проходит через зеркала в выходную апертуру. Поэтому после зеркала OC обычно ставят дихроичный фильтр, отражающий непоглощенное излучение накачки.

Теперь, зная основные теоретические принципы работы лазера и основы его конструкции, можно переходить к следующей части.

Практика

Откручиваем нижнюю панель и получаем доступ к четырем винтам, крепящим верхнюю крышку:

Аккуратно снимаем крышку, смещая ее вперед, чтобы не задеть линзу объектива:

Сам лазер занимает относительно небольшой объем излучателя. Видно два юстируемых держателя оптики – это хороший признак: значит, во-первых есть что юстировать, и во-вторых, значит, что лазер сделан не на «склейке» рабочего тела и нелинейного кристалла. Склейка непригодна для извлечения больших мощностей и не поддается юстировке.

Все щели тщательно замазаны силиконовым гелем, который исключает доступ пыли и влаги в резонатор. По паре юстировочных винтов расположено по центру на верхней части и сбоку от каждого из держателей. Основание лазера крепится к радиатору всего двумя винтами, которые прижимают его к термоэлементу. Таким образом, передний край платформы просто висит над радиатором, что внушает сомнения в общей жесткости конструкции.

Свободного места между оптическими элементами нет: моя идея поставить в резонатор модовую диафрагму и ИК-фильтр перед объективом оказалась обречена на провал. Об эталонах частоты и других оптических элементах, конечно, и речи быть не может; конструкция лазера не подразумевает модификации.

Снимаем вентилятор, чтобы получить доступ к лазерному диоду

Снимаем объектив и оба держателя:

Открывается вид на кристалл ванадата иттрия размером 5x5x3 мм, который может выдержать до 15 Вт накачки и выдать до порядка 6 Вт излучения на длине волны 1064nm. Доля примеси неодима составляет скорее всего около 1 атомного процента. На эту сторону нанесено просветляющее покрытие для 1064nm и отражающее для 532nm.

Теперь посмотрим на элементы в юстируемых держателях
Держатели выполнены из дюраля, позволяют производить юстировку в горизонтальной плоскости боковыми винтами и в вертикальной – верхними. Юстировку предполагается выполнять так: отпустить оба винта для одной оси, потом найти нужное положение держателя одним из винтов и зафиксировать его вторым винтом. Винты – самые обычные китайские M3, не микрометрические или точные.

Кристалл KTP имеет размеры 3x3x7 мм, и теоретически может «обслужить» гораздо большую мощность – до порядка 20 Вт @ 532nm. На его торцы нанесено просветляющее покрытие для волн длиной 532 и 1064nm, коэффициент отражения которого составляет менее 0.5%. Для юстировки кристалла неплохо было бы иметь и третью степень свободы – вращение вдоль оси резонатора, но тут изготовители положились на точность огранки и вклеивания.

В выходной держатель вклеено дихроичное вогнутое зеркало (на глаз вогнутости не видно): оно пропускает свет на длине волны 532nm и отражает 1064nm. При этом значительная часть излучения 808nm тоже проходит его насквозь.

Снимаем лазерный диод

Диод в корпусе F-mount закреплен на массивном латунном основании с нанесенной на него термопастой. В этом типе корпусов предусмотрено отверстие для установки терморезистора, контролирующего температуру диода; терморезистор присутствует на штатном месте. Произведён диод компанией Focuslight; т.к. кроме серийного номера, другой маркировки на нем нет, его мощность, скорее всего, составляет 5 Вт – это самая низкая мощность для диодов в таком корпусе, и логично предположить, что ничего мощнее и дороже китайцы туда ставить не станут. Исходя из даташита на этот тип диода, максимальный ток составляет 5.5A, т.е. без превышения допустимых величин установленный на заводе ток можно увеличить на 200 мА, что должно добавить еще порядка 50 мВт выходной мощности. Диод легко можно заменить на 10-ваттный, благо остальные компоненты позволяют, и получить на выходе более 3 Вт зеленого пучка (о его качестве, стабильности и модовом составе судить не берусь).

Крепление диода позволяет вращать его вдоль оси резонатора, чтобы подобрать оптимальную поляризацию накачивающего излучения.

Вид на рабочее тело с дугой стороны

На эту сторону кристалла нанесено просветляющее покрытие для 808nm и отражающее более 99.5% для 1064nm, которое образует плоское зеркало резонатора.

Как видим, никакой фокусирующей оптики между диодом и кристаллом нет: это снижает эффективность накачки.

Откручиваем основание лазера от радиатора

Под основанием находится распространенный элемент Пельтье марки TEC1-12706. Его характеристики: питание до 15В, ток до 6А, отводимая мощность до 50Вт при температуре горячей поверхности 60°C; размеры 40x40x4 мм. Под выходным держателем оптики проделано отверстие – вероятно, для нагревающего элемента при другой компоновке: в этом держателе крепился бы нелинейный кристалл, в предыдущем – фокусирующая оптика, а выходное зеркало крепилось бы отдельно (заодно это бы частично решило бы проблему с температурным расширением основания). Но это только мое предположение.

Собираем все обратно

Стоит ли говорить, что после сборки лазер не заработал? Однако я довольно-таки быстро поймал генерацию, играя юстировками выходного зеркала. Дальнейшая настройка зеркала не составила труда. С юстировкой же кристалла KTP все оказалось гораздо сложнее: честно говоря, я не представляю, как это делали китайцы, крутя отверткой филипсовские винты. Поэтому все юстировочные винты я заменил на болты под шестигранник, что дало возможность производить более точную юстировку ключом, при этом не давя на крепления.

И даже несмотря на это, точный критический угол KTP мне зафиксировать не удалось: все равно мощность пучка заметно скачет даже при простом надавливании пальцем и даже сама по себе. Тут нужно отметить, что генерация была в очень широких пределах юстировки кристалла, но в некоторых положениях мощность скачкообразно росла и так же скачкообразно падала при малейших внешних возмущениях. В итоге, вспоминая байку про лаборанта, колотившего пассатижами по корпусу лазера, чтобы вернуть на место люфтящее зеркало, мне удалось достичь стабильной мощности порядка 1650 мВт, то есть потеря составила порядка 200 мВт.

Теперь становится понятно, почему у этих лазеров такой большой разброс по мощности: возможно, что 1.8 Вт сделались возможными только благодаря счастливому удару при транспортировке, а с завода лазер выходил совсем с другой мощностью. К сожалению, никакого бланка об испытаниях к лазеру приложено не было.

Заключение

На кристаллах в лазере не сэкономили: они допускают гораздо большие мощности накачки. Предполагаю, что это сделано для унификации, и трехваттый лазер отличается от одноваттного только мощностью лазерного диода, блоком питания и в три раза большей ценой. Жесткость и точность механики оставляют желать лучшего – видно желание сделать недорого, но хотя бы конструкция ремонтопригодна. Заявленная долговечность конструкции, похоже, определяется в основном долговечностью лазерного диода (а найти ее в документации не удалось) и чистотой сборочного помещения – при разборке лазера никаких загрязнений на оптике я не увидел.

И подводя итог, хочу ответить на основной вопрос к первой части статьи, который возник у многих – «Зачем этот лазер вообще такой нужен?» Исходя из его мощности, недостаточной для эффективной накачки титан-сапфира и красителей, модового состава и стабильности, которые тоже так себе, основная сфера его применения – OEM компонент для лазерных проекторов. Его также можно использовать в целях подсветки: для регистрации люминесценции, в конфокальной микроскопии и т.п. областях где требуется высокая мощность подсветки при относительно стабильной частоте.

Все наши излучатели (лазерные трубки со2) проходят тестирование американским контрольным прибором Synrad Laser Wizard.

В лазерных станках производства Китая, CO2 излучатель (газовая трубка, (отпаянный co2 лазер) является расходным элементом, в отличии перезаправляемых CO2 излучателей европейских и американских производителей, стоимость излучателя ниже, чем процедура перезаправки. Но главным плюсом является скорость восстановление работоспособности оборудования. Если для перезаправки лазера, Вам потребуется неделя, то процедура замены китайского лазерного излучателя займет у вас 10-20 минут.

На странице: 15 25 50 75 100

По умолчанию Наименование (А -> Я) Наименование (Я -> А) Цена (по возрастанию) Цена (по убыванию) Рейтинг (по убыванию) Рейтинг (по возрастанию) Модель (А -> Я) Модель (Я -> А)

Лазерные излучатели Reci (лазерные трубки RECI) отличаются от стандартных излучателей увеличенным сроком службы. Не смотря на несколько большую цену, экономически они более выгодны при пересчете соотношения время работы/цена. Для установки в станки оборудованные под обычные лазерные излучатели, н..

Лазерные излучатели Reci (лазерные трубки RECI) отличаются от стандартных излучателей увеличенным сроком службы. Не смотря на несколько большую цену, экономически они более выгодны при пересчете соотношения время работы/цена. Для установки в станки оборудованные под обычные лазерные излучатели, н..

Лазерные излучатели Reci (лазерные трубки RECI) отличаются от стандартных излучателей увеличенным сроком службы. Не смотря на несколько большую цену, экономически они более выгодны при пересчете соотношения время работы/цена. Для установки в станки оборудованные под обычные лазерные излучатели, н..

Самые распространенные, недорогие лазерные излучатели СО2. Несмотря на стоимость, показали себя как надежное решение для большинства задач, связанных с лазерной резкой и гравировкой. Мы поставляем только высококачественные излучатели, с обязательной проверкой перед продажей, специальным прибором..

Самые распространенные, недорогие лазерные излучатели СО2. Несмотря на стоимость, показали себя как надежное решение для большинства задач, связанных с лазерной резкой и гравировкой. Мы поставляем только высококачественные излучатели, с обязательной проверкой перед продажей, специальным прибором..

ЛАЗЕРНОЕ ИЗЛУЧЕНИЕ – это вынужденное (посредством лазера) испускание атомами вещества порций-квантов электромагнитного излучения. Слово «лазер» – аббревиатура, образованная из начальных букв английской фразы Light Amplification by Stimulated Emission of Radiation (усиление света с помощью индуцированного излучения). Следовательно, (оптический квантовый генератор) – это генератор электромагнитного излучения оптического диапазона, основанный на использовании вынужденного (стимулированного) излучения. Лазерная установка включает активную (лазерную) среду с оптическим резонатором, источник энергии ее возбуждения и, как правило, систему охлаждения. За счет монохроматичности лазерного луча и его малой расходимости (высокой степени коллиминированности) создаются исключительно высокие энергетические экспозиции, позволяющие получить локальный термоэффект. Это является основанием для использования лазерных установок при обработке материалов (резание, сверление, поверхностная закалка и др.), в хирургии и т. д.

Л. и. способно распространяться на значительные расстояния и отражаться от границы раздела двух сред, что позволяет применять это свойство для целей локации, навигации, связи и т. д. Путем подбора тех или иных веществ в качестве активной среды может индуцировать практически на всех длинах волн, начиная с ультрафиолетовых и кончая длинноволновыми инфракрасными. Наибольшее распространение в промышленности получили лазеры, генерирующие электромагнитные излучения с длиной волны 0,33; 0,49; 0,63; 0,69; 1,06; 10,6 мкм.

Основные физические величины, характеризующие Л. и.:

длина волны, мкм;

применение средств защиты;

ограничение времени воздействия излучения;

назначение и лиц, ответственных за организацию и проведение работ;

ограничение допуска к проведению работ;

Надзора за режимом работ;

четкая противоаварийных работ и регламентация порядка ведения работ в аварийных условиях;

Персонала.

Санитарно-гигиенические и лечебно-профилактические методы:

контроль за уровнями вредных и опасных факторов на рабочих местах;

контроль за прохождением персоналом предварительных и периодических медицинских осмотров.

От Л. и. должны обеспечивать предотвращение воздействия излучения или снижение его величины до уровня, не превышающего допустимого. К СКЗ от Л. и. относятся: ограждения, защитные экраны, блокировки и автоматические затворы, кожухи и др. СИЗ от Л. и. включают: , щитки, маски и др. СКЗ должны предусматриваться на стадии проектирования и монтажа лазеров, при организации рабочих мест, при выборе эксплуатационных параметров. Выбор средств защиты должен производиться в зависимости от класса лазера, интенсивности излучения в рабочей зоне, характера выполняемой работы. Показатели защитных свойств средств защиты не должны снижаться под воздействием др. вредных и опасных факторов (вибрации, температуры и т. д.). Конструкция средств защиты должна обеспечивать возможность смены основных элементов (светофильтров, экранов, смотровых стекол и пр.). СИЗ глаз и лица ( и щитки), снижающие интенсивность Л. и. до ПДУ, должны применяться только в тех случаях (пусконаладочные, ремонтные и экспериментальные работы), когда СКЗ не обеспечивают персонала.



Последние материалы раздела:

Изменение вида звездного неба в течение суток
Изменение вида звездного неба в течение суток

Тема урока «Изменение вида звездного неба в течение года». Цель урока: Изучить видимое годичное движение Солнца. Звёздное небо – великая книга...

Развитие критического мышления: технологии и методики
Развитие критического мышления: технологии и методики

Критическое мышление – это система суждений, способствующая анализу информации, ее собственной интерпретации, а также обоснованности...

Онлайн обучение профессии Программист 1С
Онлайн обучение профессии Программист 1С

В современном мире цифровых технологий профессия программиста остается одной из самых востребованных и перспективных. Особенно высок спрос на...