Лекция: Природные компоненты и природно-территориальные комплексы (ПТК). Ландшафты

Поддержка верификации осуществляется путем использования методов трассировки требований, что позволяет связывать друг с другом части проекта, проводить проверку адекватности требований к прецедентам их реализации и функциям, и обратно. С помощью трассировки можно удостоверяться в том, что: все компоненты исходных требований проекта учтены; все реализуемые компоненты служат заданной цели и требованиям к комплексу программ.
Посредством трассировки следует устанавливать корректность связей между двумя или большим числом компонентов и/или про - цессов разработки требований, которые являются: предшествую - щими - последующими, или главными - подчиненными, а также соответствие между требованиями и их реализацией конкретными программными компонентами. Каждый компонент и модуль программного комплекса должен оправдывать свое существование и соответствовать каким-то заданным требованиям. Ключевыми элементами верификации и тестирования являются отношения трассировки. Эти отношения можно определять с помощью модели, использующей понятия «трассируется к» и /или «трассируется от». Если одно или несколько требований к программному компоненту создаются с целью поддержки некоторой функции, заданной в исходном документе, то требование трассируется от некоторой функции. Если некоторое требование к программному компоненту «трассируется к» определенному тестовому сценарию, то данное требова- ние тестируется этим скриптом. То, что описание компонента «трассируется от» конкретного программного требования, подразумевает, что это требование реализуется указанным компонентом.
Потребности заказчика должны отслеживаться путем анализа содержания требований, чтобы можно было определить, какие требования будут затронуты, если в течение или после разработки, потребности изменятся. Это также дает уверенность, что в специфика - ции требований указаны все потребности заказчика. Кроме того, можно проследить в направлении от требований к потребностям заказчика, чтобы определить происхождение каждого требования к комплексу программ. Если необходимо представить потребности за - казчика в форме сценариев использования функций, то анализ должен отражать трассирование между вариантами использования и функциональными требованиями.
По мере производства комплекса программ, процессы можно отслеживать в направлении от требований, и определять связи между отдельными требованиями и компонентами комплекса. Этот тип связей гарантирует, что каждое требование удовлетворено, поскольку установлено, какой компонент соответствует этому требованию. Еще один тип связей может контролировать отдельные элементы продукта в направлении к требованиям для того, чтобы знать причину и цель создания каждого компонента. В большинстве комплексов программ могут быть компоненты, не относящиеся, напрямую, к требованиям заказчика, но необходимо устанавливать, для чего нужен каждый компонент.
Если трассировщик обнаружит незапланированную функциональность при отсутствии соответствующего требования, то фрагмент программы может свидетельствовать, что разработчик реализовал требование, которое аналитик или заказчик может добавить к спецификации. Однако это может быть элемент программы, «украшающий» фрагмент, который не относится к комплексу. Связи трас- сируемости помогут сортировать подобные ситуации и получать более полное представление о том, как именно компоненты системы составляют целое, соответствующее требованиям. Сценарии верификации или тестирования, которые созданы на основе отдельных требований, которые можно проследить до этих требований, представляют собой механизм выявления нереализованных требований, поскольку нет ожидаемой функции или компонента. Пропуск реали - зации, верификации и тестирования требования - может быть существенным дефектом, если заказчик не удовлетворен или в готовом продукте отсутствует функция, особо важная для обеспечения надежности или безопасности.
Трассирование требований сложного комплекса программ - трудоемкая задача, обычно выполняемая вручную, для которой необходима соответствующая организация и квалификация специалистов. Если в ходе разработки тщательно фиксируются данные трассируе- мости требований, у руководителей будет точное представление о состоянии реализации запланированной функциональности и характеристик программного комплекса. Отсутствующие связи от требова - ний указывают на компоненты, которые еще не созданы. Если тести - рование дает неожиданный результат, то трассирование связей между тестами, требованиями и текстом модулей и компонентов могут указать на наиболее вероятные части программного кода, которые необходимо проверить на наличие дефектов. Информация о том, какие тесты проверяют какие требования, экономит время, позволяя удалять лишние, выявлять и создавать необходимые тесты (см. рис. 2.4).
Информация трассируемости облегчает внесение изменений в ходе сопровождения, что повышает производительность разработчиков при модификации комплекса программ. Информацией трассируемости целесообразно пользоваться при сертификации продукта с особыми требованиями к надежности и безопасности, чтобы продемонстрировать заказчику, что все требования были реализованы, хотя это не доказывает, что они реализованы корректно и полностью. Естественно, если требования некорректны или отсутствуют ключевые требования, то результаты трассируемости не помогут.
Документирование взаимосвязей компонентов уменьшает риск возникновения проблем, если вдруг ключевой член команды, обла- дающей важной информацией о системе, покидает проект. Отношения трассировки между компонентами проекта могут быть явными или неявными. Явная трассировка - связь или отношение, между функцией комплекса и компонентом, осуществляющим поддержку этой функции, которая определяется исключительно решением специалиста о том, что такое отношение имеет смысл.

Рис. 2.4.

Методология разработки и структура системы могут определять неявные отношения трассировки - «дочерних» требований между компонентами и «родительскими» требованиями, когда существуют формальные, иерархические отношения. Связи трассируемости помогают отслеживать «родительские» требования, взаимосвязи и зависимости между отдельными требованиями. Эта информация отражает влияние изменения, если отдельное требование удаляется или модифицируется.
Удобный способ представления связей между требованиями и другими компонентами системы - матрица трассируемости требований. Каждое функциональное требование в такой матрице, связано с определенном вариантом использования (в направлении «назад»), и с одним или более, элементами верификации и тестирования (в направлении «вперед»). Можно добавить дополнительные столбцы для расширения ссылок на другие рабочие продукты, например, на документацию системы. После того как с помощью инструментального средства заданы все известные отношения между компонентами, обязательным действием является проверка матрицы трассиров - ки взаимосвязей компонентов на наличие следующих двух возможных индикаторов дефектов или ошибок.
Если при просмотре некой строки матрицы связей не удается обнаружить никаких отношений трассировки, вероятно, что еще не определено требование к программному компоненту, отвечающее функции исходного документа требований. Тем не менее, пустые строки являются индикаторами возможных ошибок и нуждаются в тщательной проверке. Современные средства управления требованиями должны предоставлять возможность автоматизированного проведения такой проверки.
Если в некотором столбце не оказывается отмеченных отношений трассировки, вероятно, было создано требование к программному компоненту, для которого нет требующей его, функции продукта. Это может указывать на неправильное понимание роли программного требования, недостаток исходного документа проекта, а также на то, что компонент программы неправильный, не соответ - ствует системному требованию или является дефектом разработчика, и в таком случае его следует удалить.
Чтобы обнаружить пропущенные отношения, надо искать строки матрицы трассировки, которые показывают, что некая функция не связана ни с одним программным требованием (прецедентом). При обнаружении пропуска в отношениях нужно вернуться к исходному набору требований к комплексу программ и связанным с ними программным требованиям.

И их особенности

Экспедиционные исследования дают возможность наблюдать и | изучать ПТК в определенный фиксированный момент времени, [т.е. в статике. О существовании взаимосвязей и взаимодействий [ между различными компонентами природы и между более мелки-[ ми комплексами, слагающими изучаемый ПТК, которые опреде-I ляют его существование как целостного образования, исследова-I тель судит по совокупному эффекту, отражающемуся во внешнем I облике самого ПТК и различных компонентов, в пространствен-|ной структуре комплекса и т.д. Эти внешние, физиономические I признаки ПТК являются индикаторами протекающих в нем про-I цессов и скрытых внутренних связей, но не позволяют достаточно I глубоко познать сами связи и взаимодействия.

Взаимодействие между различными структурными частями ПТК I и взаимосвязи комплекса с окружающей средой осуществляются в |.виде разнообразных процессов, посредством которых происходит I обмен веществом, энергией и информацией, лежащий в основе I целостности ПТК, его функционирования. Поэтому для глубокого

■ познания сущности ПТК, его свойств, характерных черт и реакции
I на изменение внешних воздействий и тенденций дальнейшего раз-
1вития нужно изучение многообразных процессов, протекающих в

■ природе. Эти процессы характеризуются разной продолжитель­
ностью, направленностью и интенсивностью, существенно варь-
1 ируют в пространстве (от комплекса к комплексу) и во времени
■(от года к году, по сезонам и даже в течение суток).

Естественно, что кратковременные экспедиционные исследо-

I вания, фиксирующие состояние изучаемой территории на момент

[ посещения, не могут дать необходимого материала для познания

взаимосвязей между компонентами комплекса и самого комплек-

Са с окружающей средой, так как о связях между различными струк-

[турными частями ПТК и ее характере нельзя судить по единич-

|ным наблюдениям. Для этого нужен массовый материал, нужны

[многолетние круглогодичные наблюдения над протекающими в

IПрироде процессами и характером взаимосвязей во времени, т.е.

I Необходимо стационарное изучение ПТК.


Стационарные наблюдения. Их проводят на сравнительно неболь-1 ших участках в условиях по возможности типичных для более или] менее обширной территории. На стационарах ведут наблюдения за процессами двух видов: за направленным, поступательным изме­нением, за развитием природы, т.е. за эволюционными процесса­ми; за сезонными изменениями, происходящими ежегодно, и су-; точной ритмикой, т. е. за динамикой. Длительные регулярные на­блюдения позволяют проследить не только характер и интенсив­ность этих изменений, определить их количественно, но и устано­вить относительное значение различных связей и факторов в слож- \ ных и многообразных взаимодействиях, отделить существенные j связи от второстепенных и проследить своеобразные взаимовлия-1 ния, выделить главные, определяющие направление и скорость 1 изменения и развития комплекса.

Программа работ стационаров может быть различной в зависи-1 мости от тематики, природных условий территории и обеспечен-1 ности кадрами. Оборудование стационаров зависит от программы работ, а также от материальных возможностей организации, со-1 здавшей стационар.

В настоящее время существует довольно много стационаров, \ ведущих изучение отдельных компонентов природы или процес­сов (климата, стока, эрозии и т.д.). К таким стационарам относят-1 ся метеостанции, гидрологические станции и посты, воднобалан- j совые, лимнологические, агрометеорологические, эрозионные, ] снеголавинные, селестоковые, опытно-мелиоративные, агрохими- ] ческие, лесные опытные станции и т.д. Все эти стационары ведут \ наблюдения по своей методике, разработанной соответствующей отраслевой географической дисциплиной. Более комплексные ис-| следования проводят на биогеоценологических стационарах, где ] основное внимание концентрируется вокруг биотических связей (И. П. Герасимов и др., 1972; А. Г. Исаченко, 1980). В круг их наблю- I дений входят состав и строение биоты, трофические связи, био-.] продуктивность, биологический круговорот веществ. Однако свя- j зям между биогеоценозами уделяется недостаточно внимания, как: и изучению абиогенных факторов (климата, рельефа, отложений, вод). Недостатком этих исследований, с точки зрения физико-гео- I графа, является и то, что из-за своей трудоемкости их выполняют лишь для отдельных объектов, часто не связанных между собой (И.И.Мамай, 1992).

Среди стационаров особое место принадлежит заповедникам, где до относительно недавнего времени занимались главным обра-зом изучением, охраной и восстановлением отдельных видов рас- j тений и животных. Ныне некоторые из них расширили свои задачи до изучения и охраны ПТК, приближаясь тем самым к комплекс- 1 ным физико-географическим стационарам. Во многих заповедни- I ках ведутся наблюдения по программе «Летопись природы». В био- 3


сферных заповедниках (а их сейчас в России 21), включенных в сеть мониторинга, ведутся наблюдения за изменениями природы, за современными природными и антропогенными процессами. Программа работ некоторых заповедников приближается к про­граммам биогеоценологических стационаров.

В изучении отдельных компонентов природы и природных про­цессов или их групп (климатических, гидрологических, биологиче­ских, почвенных) на отраслевых стационарах достигнуты значи­тельные успехи, но взаимосвязи между различными природными процессами, проявляющимися совместно в пределах определенного ПТК, их суммарный эффект, который является движущей силой саморазвития ПТК, остаются нераскрытыми или анализируются недостаточно. Однако при решении вопросов рационального ис­пользования природных ресурсов, регулирования природных про­цессов или преобразования природы необходимо хорошо знать именно суммарный эффект многочисленных и разнообразных про­цессов, протекающих в ПТК, закономерности саморазвития раз­личных комплексов и особенности их реакции на антропогенные воздействия, т. е. необходимо изучение всей совокупности природ­ных процессов в их взаимовлиянии, изучение функционирования ПТК, его динамических и эволюционных изменений. Подобное изучение возможно лишь на комплексных физико-географических стационарах, которых пока еще слишком мало, но они представ­ляют наибольший интерес с точки зрения изучения природы.

Заметное возрастание интереса физико-географов к стационар­ным исследованиям наблюдалось в 60 - 70-х гг. XX столетия одно­временно с обращением к функциональному аспекту изучения ПТК. Это было связано прежде всего с участием географов в решении практических задач, требующих конкретной количественной ин­формации о ПТК для обоснования различных проектных разрабо­ток, и с постановкой проблемы комплексного географического прогнозирования. Кроме того, усиление системной ориентации в научных исследованиях требовало максимально полного анализа и синтеза связей, формирующих ПТК и определяющих его специ­фику как целостного образования. Для решения этой задачи также необходим большой объем разнообразной количественной инфор­мации о ПТК. Таким образом, интересы дальнейшего развития географии и практического использования результатов географи­ческих исследований все настоятельнее требовали постановки ста­ционарных исследований для углубленного изучения ПТК. Неуди­вительно, что в Институте географии Сибири и Дальнего Востока СО АН СССР, где активно развивалось функционально-динами­ческое направление изучения ПТК, было создано больше всего стационаров (шесть) в разных регионах Сибири.



Программа работ комплексного географического стационара включает в себя наблюдения над отдельными компонентами, пре-


Досматриваемые обычно и отраслевыми стационарами, а также изу- i чение различных процессов, протекание которых обусловлено бла-,| гоприятным сочетанием свойств ряда компонентов. Программа рас-; считана на круглогодичные наблюдения, характер которых изменя-ется в соответствии с сезонными изменениями в природе (образо­вание снежного покрова и снеготаяние, вегетация растений, осен-1 ний листопад и т.д.). Все наблюдения ведут многократно на одной и той же территории по единой программе, составленной таким об­разом, чтобы наблюдения за различными природными процесса­ми были легко сопоставимы и направлены на раскрытие взаимо­действия, взаимообусловленности и суммарного эффекта. Таким образом, важнейшей задачей комплексных физико-географичес-< ких стационаров, которая не решается на отраслевых стационарах, является познание закономерностей интеграции природных процессов ■ в ПТК и возникающего в результате этого суммарного эффекта.

В настоящее время на большинстве стационаров ведется изуче- " ние функционирования ПТК и лишь на некоторых из них (Март-копский, Лесуново) изучаются состояния ПТК.

В отличие от экспедиционных исследований, фиксирующих пространственные изменения ПТК, стационарные наблюдения направлены главным образом на изучение временнш связей, по­этому в процессе их основное внимание акцентируется на наибо­лее подвижных компонентах, на мобильных и биотически актив­ных элементах.

Основным объектом изучения на стационарах являются прежде всего гомогенные ПТК - фации. Это обусловлено двумя причина-ми. Во-первых, относительной простотой структуры фации, все внутренние связи которой представлены лишь одним типом - вер-] тикальными связями и взаимодействиями между компонентами природы. Все горизонтальные связи с одноранговыми ПТК (фация­ми) и вмещающими его гетерогенными комплексами различного ранга выступают как внешние связи, связи фации с окружающей средой и могут рассматриваться в своей совокупности, без расчле-нения на составляющие. Это облегчает разработку методики изу­чения ландшафтообразующих связей на начальном этапе.

Во-вторых, фации в силу их минимальной функциональной обособленности и сильного воздействия внешней среды являются обычно самыми динамичными, самыми изменчивыми комплек­сами. И в этом отношении представляют собой наиболее подходя­щий объект для изучения временных изменений, так как требуют " самого короткого периода наблюдений для установления законо­мерностей функционирования и динамики по сравнению со все­ми другими более устойчивыми комплексами.

В процессе стационарного изучения фаций отрабатывается ме­тодика сопряженного количественного учета совокупности важней­ших составляющих ПТК, разрабатывается функционально-динами-


цеский метод исследования. Обращение к изучению с помощью количественных методов более крупных гетерогенных в простран­ственном отношении комплексов, по мнению А. А. Крауклиса (1979), на первых порах малоэффективно, ибо трудно охватить изучением сразу все многообразие формирующих эти комплексы связей. Позднее стали проводиться (Московским, Саратовским, Тбилисским и другими университетами) исследования и более сложных ПТК, правда, пока только полустационарными методами. Для познания ландшафтообразующих связей фации, определяе­мых характером и интенсивностью обмена веществом и энергией между компонентами, необходим дифференцированный подход и количественная оценка основных природных режимов фации. По определению В. Б. Сочавы (Южная тайга..., 1969. - С. 20), под «при­родным режимом понимается характерная для ПТК упорядоченность изменения природных явлений в годичном цикле в течение всего време­ни существования его современной структуры».

К числу основных природных режимов относится прежде всего радиационный режим фации, характеризующий ее энергетическую базу. Радиационный режим заметно варьирует вблизи физической поверхности Земли, поэтому каждой фации присущи свои пока­затели радиационного баланса, которые изменяются во времени. Изучение радиационного режима на стационарах должно быть на­правлено на вскрытие закономерностей формирования радиаци­онного баланса в различных фациях по сезонам года и количе­ственное определение суточной и сезонной ритмики.

Большую роль в динамике ПТК играет тепловой режим, кото­рый во многом определяется адвекцией тепла под влиянием вет­ров в приземном слое воздуха, промерзанием почвы зимой и про­должительностью безморозного периода. Для детального изучения расходной части теплового баланса необходимы режимные наблю­дения над другими компонентами, расходующими тепло, прежде всего, над водным режимом.

Радиационный, тепловой и водный режимы характеризуют мобильную составляющую ПТК, которая «выполняет обменные и транзитные функции, связывает внутренние части геосистемы и объединяет последние с ее внешним окружением» (А.А.Краук-лис, 1979. - С. 54). Изучение этих режимов базируется главным образом на использовании геофизических методов и разработан­ных гидрометеослужбой методик.

Более сложно изучение режима химического состава вещества, находящегося в обороте, так как вещество присутствует в комп­лексе в различных фазах (твердой, жидкой, газообразной и жи­вой) и проходит сложные пути преобразований в ходе динамики геосистем (В. А. Снытко, 1978). Круговорот химических элементов в различных фациях характеризуется достаточно четко выраженной сезонной динамикой, закономерности которой должны быть вскры-


Ты в процессе исследования. Одновременно выявляются и закономер-И ности динамики органического вещества, его биоты. Для изучения 1 внутренних механизмов перераспределения химических элементов! между компонентами фации на стационарах проводят специаль-1 ные ландшафтно-геохимические исследования (В.А.Снытко, 1978).!

Для познания закономерностей интеграции природных режи- 1 мов особое значение имеют биотические режимы: наземной расти- 1 тельной массы, наземных живых организмов, животного населе- 1 ния почвы, почвенных микроорганизмов. Высокая интегрирующая 1 роль биотических режимов обусловлена чисто биологическими качествами биоты и прежде всего высокой избирательностью жи-1 вых организмов к внешним условиям, благодаря чему биота вы- I ступает как важнейший внутренний фактор саморегуляции ПТК (В. Б. Сочава, 1974). Для изучения биоты наряду с геофизическими! и геохимическими методами широко используют биологические! методы исследования.

На ход природных процессов систематическое воздействие ока- 1 зывает человек. Спонтанные процессы в результате хозяйственной \ деятельности человека модифицируются и устанавливаются природ- | но-антропогенные режимы. Существование природно-антропоген- 3 ных режимов должно находить отражение и в программе режимных наблюдений на комплексных физико-географических стационарах. ]

Комплексный подход к изучению отдельных природных режи- j мов и взаимодействия различных режимов друг с другом требуют j четкой согласованности в выборе участков для наблюдения и сро- \ ков их проведения. Сами наблюдения над природными режимами должны быть поставлены так, чтобы в дальнейшем эти режимы можно было сопоставлять друг с другом, т.е. должны быть сопря- \ женными.

Необходимым условием для изучения интеграции природных режимов является точный количественный учет хода процессов и воздействующих на них сил. Для установления закономерностей интеграции проводится статистическая обработка и камеральный синтез массовых данных по количественной характеристике раз­личных природных режимов, в том числе и по самым изменчивым свойствам ПТК, полученных в процессе стационарных исследова- ; ний. Однако синтез данных по изучению режимов отдельных ком­понентов недостаточен для глубокого познания интеграции при­родных режимов. Для этой цели необходимы и некоторые допол­нительные наблюдения в поле, направленные на выявление тех свойств ПТК, которые не являются принадлежностью отдельных его компонентов, а возникают в результате их взаимодействия.

Сравнительный анализ организации стационарных исследова­ний географами Института географии РАН и Института геогра­фии Сибири СО РАН и результатов их работ провел в своей док­торской диссертации А. М. Грин.


Многолетние наблюдения в условиях стационаров дают надеж­ный материал для установления закономерностей сезонной рит­мики и динамики ПТК, позволяют судить о развитии ПТК во времени. Однако трудоемкость работ и необходимость привлече­ния к ним большого количества исследователей ограничивают воз­можности создания разветвленной сети комплексных физико-гео­графических стационаров, а радиус действия эмпирических зако­номерностей, полученных путем стационарных исследований, определяется границами тех ландшафтов, в которых проводились наблюдения, так как «фация сохраняет свои структурно-динами­ческие черты в пределах определенной макрогеохоры» (Топологи­ческие..., 1974. - С. 62). Поэтому в настоящее время целесообразно шире использовать в ходе экспедиционных работ полустационар­ные исследования (непродолжительные повторные наблюдения). Полустационарные исследования. Естественно, они не дают пол­ного представления о природных режимах в ПТК, так как фикси­руют лишь определенное состояние либо его изменение в какой-то краткий отрезок времени. Однако такие наблюдения обогащают характеристики комплексов, позволяют получить некоторые дан­ные о суточной цикличности и сезонной ритмике ряда процессов, поэтому их целесообразно проводить во всех случаях, когда име­ются соответствующие условия.

Полустационарные исследования бывают различными. Это мо­гут быть выезды экспедиционного отряда на отработанный летом ключевой участок в разные сезоны года для проведения снегомер­ной съемки, для наблюдения за весенними процессами (скоро­стью таяния снега, оттаиванием и подсыханием почвы, эрозией, солифлюкцией) и т.д. Такие сезонные наблюдения проводят не­которые университеты на базах студенческих практик. К этой же категории могут быть отнесены организованные в процессе летних полевых работ длительные микроклиматические наблюдения, на­блюдения над стоком и влажностью почв, над водной и ветровой эрозией и т.д. на ключевых участках.

В полевой период экспедиционных исследований полустацио­нарные наблюдения проводятся иногда на ландшафтных профи­лях. Линии таких профилей должны быть выбраны особенно тща­тельно, чтобы они были наиболее репрезентативными для опре­деленного вида ландшафтов.

Полустационарные исследования должны включать довольно разносторонний набор наблюдений, который позволил бы соста­вить достаточно полную характеристику ПТК и получить ряд ко­личественных показателей, но в то же время мог быть выполнен небольшой группой исследователей. Чаще всего в наиболее типич­ных точках по линии профиля ведут микроклиматические наблю­дения, определяют запасы и прирост надземной и подземной био­массы, влажность почв, отбирают образцы для геохимических ана-


Лизов и т.д. Продолжительность и частота наблюдений на точках 1 профиля зависят от временной изменчивости того компонента, j который изучают, обеспеченности отряда необходимыми для на- 1 блюдений приборами, численности сотрудников и тех задач, ко-1 торые решаются полустационарными наблюдениями. Например, 1 для определения сравнительной биологической продуктивности | разных фаций достаточно разовых наблюдений, а для изучения 1 зависимости прироста биомассы от климатических особенностей j необходим ряд наблюдений в одних и тех же точках.

Непременным условием массовости полустационарных наблю- | дений, их широкого внедрения в практику экспедиционных иссле- 1 дований является применение таких методов, которые обеспечи- I вали бы простоту и надежность выполнения всего комплекса pa- j бот, использование портативных приборов и экспресс-методов (по ] определению влажности почв, запасов надземной биомассы и т.д.). |

Правильно организованные полустационарные наблюдения | позволяют получить достаточно надежный фактический материал ■ с количественными показателями, что очень важно для понима- ] ния направленности и скорости ландшафтообразующих процес- I сов, хотя и не обеспечивают той глубины и полноты характери- j стики разнообразных связей ПТК, которая может быть получена при стационарных наблюдениях.

Статьи Рисунки Таблицы

Связь между компонентами комплекса

из "Молекулярные комплексы в органической химии"

Несколько лет назад Бриглеб предположил, что аддукты ароматических веществ с нитросоединеннями образуются за счет электростатического притяжения между молекулами.
Для описания электронного обмена этого типа, происходящего при соударениях, недавно предложено название контактный перенос заряда . В главе II будут обсуждены имеющиеся экспериментальные данные, доказывающие, что в некоторых случаях изменения в спектрах, сопровождающие донорно-акцепторное взаимодействие в растворе, отчасти имеют своим источником соударения, а отчасти характеризуются более продолжительным временем контакта компонентов комплекса. Бейлис и Брекенрид.ж предположили, что изменения в УФ-спектрах, которые сопровождают относительно слабое взаимодействие, происходящее при растворении иода в ароматическом углеводороде, например в мезитилене, могут полностью вызываться физическим возмущением раствора молекулами ароматического вещества, которые включаются в клетки растворителя. Хотя в литературе описаны экспери.менты, подтверждающие подобный взгляд на взаимодействие, из большинства данных следует, что многие рассматриваемые взаимодействия имеют в своей основе не только физические явления. В ИК-спектрах растворов галогенов в ароматических растворителях найдены полосы поглощения, характеризующие истинные комплексы , и, как упоминалось выше, твердый аддукт бензола с бромом состава 1 1 выделен из охлажденного раствора компонентов .
Далее Вейс предположил, что стабильность комплекса должна зависеть от потенциала ионизации D и сродства к электрону А. Однако теплоты таких взаимодействий, имеющие обычно величину порядка нескольких килокалорий, значительно меньше теп-лот, характеризующих процесс солеобразования . Обычно органические. молекулярные комплексы диамагнитны . Тем не менее, в течение нескольких последних лет найден ряд парамагнитных комплексов, которые, следовательно, должны иметь некоторый бирадикальный характер. Эти комплексы будут рассмотрены в главе У.
Для описания взаимодействия донора и акцептора Брекман предложил термин резонансный комплекс и приписал комплексу состава 1 1 структуру резонансного гибрида - структуры, в которой отсутствует связь между компонентами комплекса, и структуры, в которой между донором и акцептором имеется связь. Подобным образом Полинг описал комплексы иона серебра с олефинами .
В последующих главах рассмотрены спектры, структура и стабильность донорно-акцепторных комплексов. В связи с этим дается более подробная трактовка идей Малликена о связи компонентов в комплексе. Кроме того, обсуждены магнитные и электрические свойства комплексов, а также возможная роль различных комплексов в качестве промежуточных продуктов в органических реакциях.

Изучение содержания параграфа предоставляет возможность:

Ø углубить понимание сущности понятия «компоненты природы» и взаимосвязей между ними;

Ø изучить структуру, основные свойства ПТК и ландшафта

Природный компонент – это составная материальная часть природы, представляющая одну из сфер географической оболочки Земли (литосферу, гидросферу, атмосферу и др.). Природные компоненты на поверхности Земли представлены горными породами, воздухом, поверхностными и подземными водами, почвами, растительным и животным миром . Климат (многолетний режим погоды) и рельеф не являются компонентами природы, так как они не являются материальными телами, а отражают свойства воздушных масс и земной поверхности.

Выделяют три группы природных компонентов: литогенные, гидроклиматогенные и биогенные (Рис.).

Все компоненты природы находятся в тесной взаимосвязи и изменение одного, приводит к изменению других.

Наиболее тесное взаимодействие компонентов характерно для приповерхностного (почвенного) и ближайшего надповерхностного слоя Земли, так как именно здесь происходит соприкосновение всех сфер географической оболочки Земли (литосферы, гидросферы, атмосферы и др.).Например, на климатические особенности территории оказывает влияние рельеф. Климат и рельеф воздействуют на формирование вод, почв, растительности и животного мира. В свою очередь растительный и животный мир объединены системой взаимодействия между собой и оказывают влияние на другие компоненты природы. Взаимосвязи между компонентами природы необходимо учитывать при организации хозяйственной деятельности. Например, осушение приводит к понижению грунтовых вод территории, а это оказывает влияние на, почвы, растительность и животный мир и т.д.

Природные компоненты, тесно взаимодействуя между собой на определенной территории, образуют комплексы, которые называются природно-территориальными комплексами. Под природно-территориальным комплексом (ПТК) понимается относительно однородный участок земной поверхности, который отличается своеобразным сочетанием природных компонентов. По величине территории выделяют ПТК трех уровней: планетарный, региональный и локальный

Наиболее крупный – планетарный или глобальный уровень ПТК представлен на планете географической оболочкой.

ПТК регионального уровня: материки, природные зоны, физико-географические страны, являются структурными частями географической оболочки. ПТК локального уровня представлены ландшафтами (фации, урочища).

Границы ПТК, как правило, ярко не выявлены и переход от одного комплекса к другому идет постепенно. На картах границы природных комплексов наносятся линиями, которые являются условным знаком. Для каждого природного комплекса характерна своя структура. Структура ПТК – это сочетание компонентов природы образующих ПТК.

Свойства ПТК. Главным свойством ПТК разного ранга следует считать его целостность. Целостность означает тесную взаимосвязь компонентов ПТК.

Еще одно важное свойство природного комплекса – устойчивость , которая заключается в возможности ПТК возвращаться в исходное состояние при воздействии на него внешних сил (вырубка лесов, мелиорация и т.д.).

Устойчивость природных комплексов имеет огромное значение в связи с усилением воздействия человека на природу. Кризисные явления в природе возникают, когда нарушается устойчивость и способность ПТК к самовосстановлению. Устойчивость обеспечивается разнообразием взаимосвязей между компонентами природного комплекса. Чем сложнее ПТК, тем он устойчивее, т.е. имеет больше возможностей для самовосстановления и противодействия хозяйственной деятельности человека.

ПТК постоянно развиваются, т.е. обладают таким свойством как изменчивость . Это можно видеть на примере локальных комплексов, когда идут процессы зарастания озер, возникновения оврагов, заболачивание лесов и т.д. Считается, что в естественных условиях эволюция природных комплексов происходит в направлении повышения их устойчивости. В этой связи основная проблема при антропогенном воздействии на природу заключается в том, чтобы не снижать естественной устойчивости природно-территориальных комплексов.

Понятие ландшафт. Структура ландшафта. С развитием географии изменялось представление о ПТК. На основе учения о природно-территориальных комплексах сформировалось новое направление – ландшафтоведение, объектом изучения которого является ландшафт (от нем. land– земля, schaft - суффикс, выражающий взаимосвязь).

Ландшафт является однородным природным образованием в пределах природной зоны и отражает ее основные особенности. Ландшафт может приниматься как основная единица при физико-географическом районировании. Для формирования представлений о территории, достаточно изучить ее в пределах ландшафта. Каждый ландшафт является частью более крупных территориальных географических единиц.

Ландшафт – относительно однородный участок географической оболочки, отличающийся закономерным сочетанием его компонентов и характером взаимосвязей между ними.

Ландшафт включает не только природные компоненты, но и мелкие ПТК - фации и урочища, которые составляют его морфологическую структуру.

Самым простым (элементарным) комплексом является фация, которая характеризуется наибольшей однородностью природных компонентов. Примером может быть участок небольшой речной долины, ложбины, небольшая западина и др., которые имеют однородные геологические отложения и почвы, одинаковые микроклимат, водный режим и состав биоценоза.

Фации объединяются в урочища. Урочище - это система фаций, приуроченных к отдельной крупной форме рельефа или водоразделу на однородном субстрате и общей направленности физико-географических процессов. Примерами урочищ могут служить ПТК в пределах оврага, холма. Более крупной единицей ландшафта является местность, которая представляет собой сочетание урочищ, закономерно повторяющихся в пределах ландшафта. Выделение местностей обусловлено в первую очередь особенностями геологического строения и рельефа.

Антропогенные ландшафты. В результате преобразующей деятельности человека на месте естественных ландшафтов возникают преобразованные - антропогенные.

В ландшафтоведении, в зависимости от степени антропогенного воздействия, выделяют первичные природные ландшафты , которые образованы действием лишь природных факторов; природно-антропогенные ландшафты , которые образованы действием как природных, так и антропогенных факторов, и антропогенные ландшафты , существование которых поддерживается лишь за счет деятельности людей. Степень их изменения зависит от интенсивности хозяйственного использования. Наибольшие изменения происходят при промышленном, транспортном и сельскохозяйственном использовании ландшафтов.

Под антропогенным ландшафтом понимается географический ландшафт, преобразованный деятельностью людей и отличающийся по строению и свойствам от естественных. Так как деятельность человека, вызывающая образование антропогенных ландшафтов, может быть целенаправленной и нецеленаправленной (непреднамеренной), формируются разные антропогенные ландшафты. Выделяют слабоизмененные, измененные и сильноизмененные ландшафты.

Целенаправленное воздействие на ландшафты ведет к их преобразованию и формированию ландшафтов с заданными параметрами и функциями. Образуются сельскохозяйственные, промышленные, рекреационные, урбанизированные и другие, которые иногда называют окультуренными, или культурными. Под культурным ландшафтом понимается территория, на которой в результате деятельности человека ландшафт приобрел новые свойства по сравнению с прежним своим состоянием (Рис…).

Ландшафтам, в течение времени, присущи изменения качественных и количественных параметров. Такие преобразования носят название – развитие ландшафта . Факторы, вызывающие процессы развития ландшафта делятся на внутренние и внешние. В результате развития одни ландшафты могут преобразовываться и исчезать, другие, наоборот, формироваться. Задачей рационального природопользования является предотвращение нежелательного разрушения (деградации) ландшафтов, т.е. управлять развитием ландшафта.

Вопросы и задания

1. Что такое ПТК и какие природные компоненты в них выделяются?

2. Что означает понятие «устойчивость ПТК» и, какие факторы ее обеспечивают?

3. В результате какой хозяйственной деятельности могут разрушаться взаимосвязи ПТК?.. Приведите примеры.

СТРУКТУРА И СВОЙСТВА ГЕОСИСТЕМ

3.1. Геосистемы – структура и свойства;

3.2. Природные компоненты как составные части ландшафта, понятие «природные факторы».

3.3. Компоненты ландшафта (свойства, характеристики, влияющие на особенности ландшафтной организации).

3.4. Понятие «природный территориальный комплекс» (ПТК) и «геосистема», типы связей между компонентами ландшафтов.

3.5. Вертикальная и горизонтальная структура ландшафтов.

3.1. Геосистемы – структура и свойства

Важнейшим свойством всякой геосистемы является ее целостность.

Геосистемы относятся к категории открытых систем. Это значит, что они пронизаны потоками энергии и вещества, связываю­щими их с внешней средой.

В геосистемах происходит непрерывный обмен и преобразование вещества и энергии.

Всю совокупность процессов перемещения, обмена и трансформации энергии, вещества, а также информации в геосистеме можно назвать ее функционированием.

Структура геосистемы – сложное, многоплановое понятие. Ее определяют как пространственно-временную организацию (упорядоченность), или как взаимное расположение частей и способы их соединения.

Различаются две системы внутренних связей в ПТК – вертикальная, т.е. межкомпонентная, и горизонтальная, т.е. межсистемная.

Составные части геосистемы упорядочены не только в пространстве, но и во времени. Таким образом, в понятие структуры геосистемы следует включить и определенный, закономерный набор ее состояний, ритмически сменяющихся в пределах некоторого характерного интервала времени, которое можно назвать характерным временем или временем выявления геосистемы.

Инвариант – это совокупность устойчивых отличительных черт системы, придающих ей качественную определенность и специ­фичность, позволяющих отличить данную систему от всех остальных.

Устойчивость и изменчивость – два важных качества геосистемы, находящиеся в диалектическом единстве.

Особого внимания заслуживает вопрос выделения в таксономическом ряду ПТК узловой единицы, служащей связующим звеном между геосистемами регионального и локального уровней. Такой единицей, по мнению многих географов, является ландшафт.

3.2. Природные компоненты как составные части ландшафта, понятие «природные факторы».

Природные компоненты - это основные со­ставные части природного территориального комплекса (природ­ной геосистемы), взаимосвязанные процессами обмена веществом, энергией, информацией. Каждый компонент материален, представ­ляет собой определенную вещественную субстанцию.

Природными компонентами являются: литогенная – геоло­го-геоморфологическая основа (верхняя часть земной коры в пределах зоны гипергенеза и рельеф ее поверхности), приземные воздушные массы, природные воды, почвы, растительность и животный мир. Иногда, помимо названных, в число природных компонентов вклю­чают снежный покров и льды, которые, по сути дела, представля­ют собой природные воды в особых фазовых состояниях.

Со времен В. В. Докучаева все природные компоненты при­нято было разделять на так называемую "мертвую" и "живую" при­роду. Теперь их группируют в три подсистемы. Совокупность не­органических природных компонентов – литогенная основа, воз­душные массы, природные воды ("мертвая" природа) – образует геоматическую (геому) подсистему; растительность и животный мир ("живая" природа) – биотическую (биоту) подсистему. Почвы рассматриваются как промежуточная или биокосная (органо-ми-неральная) подсистема.

Каждый природный компонент обладает своими неповтори­мыми свойствами, изменяющимися в ландшафтном пространстве-времени. Различают свойства вещественные (например, минералогический состав горных пород, газовый состав воздуха, гумусированность почв), энергетические (например, температура воздуха, энергия водного потока, запасы питательных элементов в почве), информационные.

Вещественные и энергетические свойства природных компонентов выступают в геосистеме в качестве фак­торов, обеспечивающих их взаимодействие. В общенаучном плане фактор понимается как движущая сила какого-либо процесса, яв­ления. Природными факторами в связи с этим называют те свой­ства природных компонентов, а также внешней природной среды, которые оказывают определенное влияние на другие природные компоненты и на геосистему в целом.

Наиболее сильными природными факторами, определяющи­ми обособление одной природной геосистемы от другой, их струк­турную и функциональную специфику, принято считать рельеф земной поверхности, ее геологическое строение, местный климат, обводненность (гидроморфизм) территории, характер раститель­ного покрова. Эти факторы действуют внутри ландшафтной обо­лочки и потому относятся к категории внутренних ландшафтообразующих факторов.

Но так как природные геосистемы являются открытыми, на них оказывают воздействие факторы внешней среды. К внешним факторам ландшафтогенеза относятся макроклимат, глубинные тек­тонические структуры и тектонические движения земной коры, вещественно-энергетические влияния смежных или отдаленных природных геосистем (например, селевые потоки, низвергающие­ся вниз по долинам вплоть до подножья гор; пыльные бури, заро­дившиеся в пустыне и достигающие оазисов предгорий; абразионно-аккумулятивная деятельность моря на побережье). Географичес­кое положение геосистемы, ландшафта – особый внешний фактор. Он называется позиционным. Его анализ необходим для понимания роли и места геосистемы среди других. Характеристи­ка любого ландшафта обязательно начинается с оценки его геогра­фического положения, его позиции в системе объемлющих ландтшафтно-географических единиц.

Антропогенные компоненты ландшафта – это разно­образные «следы» и объекты производствен­ной и непроизводственной деятельности че­ловека – различного рода сооружения, планта­ции.

По значимости в процессе формирования ландшафтов природные компоненты принято располагать в следующей последовательности: рельеф земной поверхности, ее геологическое строение, местный климат, обводненность (гидроморфизм) территории, характер раститель­ного покрова.

3.3. Понятие «природный территориальный комплекс» (ПТК) и «геосистема», типы связей между компонентами ландшафтов.

Природный территориальный комплекс – участки земной поверхности характеризующиеся общностью происхождения, развития и однотипностью взаимодействия природных компонентов: горных пород, рельефа, нижних слоев тропосферы с климатическими характеристиками, поверхностных и подземных вод, почв, растительности и животного мира.. Понятие «природный территориальный комплекс» (ПТК) употребляется в нескольких значениях:

1) как синоним терминов ландшафт при­родный, природная геосистема;

2) в последние годы в ряде стран для обозначения природной соста­вляющей (Naturraum), природной части ланд­шафта (антропогенного ландшафта), т.е. сложных геосистем, включающих природную составляющую в качестве подсистемы. Иногда это же понятие передается термином геокомплекс.

Геосистема – «это особый класс управляющих систем; земное пространство всех размерностей, где от­дельные компоненты природы находятся в си­стемной связи друг с другом и как определен­ная целостность взаимодействуют с космиче­ской сферой и человеческим обществом» (Сочава, 1978, с. 292). Данная трактовка близка по содержанию к понятию ландшафт при­родный. Некоторые авторы предложили огра­ничить сферу применения термина «геосистема» лишь теми природными системами, эле­менты которых связаны однонаправленным потоком вещества.

В ландшафте различают вертикальные и го­ризонтальные связи. Связи вертикальные это связи между компонентами ландшафта – между климатом, горными породами, подзем­ными и поверхностными водами, почвами, растительным и животным миром. Изучение вертикальных связей привело к фор­мированию представлений о моносистемной модели геосистемы . Анализ верти­кальных связей – начальный шаг к познанию ландшафта и его морфологической струк­туры. Анализ вертикальных связей необходим в практических целях, во-первых, для предска­зания последствия изменений в плохо наблю­даемых компонентах на основе анализа изме­нений и последствий в легко наблюдаемых компонентах (например, по изменению харак­тера растительности дать заключение об изме­нении режима увлажнения); во-вторых, для управления воздействием на один компонент (или их группу) с целью получения положи­тельного эффекта от других (например, регу­лирование водно-теплового режима почв для повышения биопродуктивности).

Связи горизонтальные (латеральные) – между соседними геосистемами (более низкого и рав­ного рангов). Они проявляются в формирова­нии пространственной структуры ланд­шафтных образований, таких, как геохора, катена, парагенетические ландшафты, геохи­мические ландшафты и т. д. Эти связи про­являются также во влиянии одного ландшафта на другой, в формировании океанических и континентальных типов ландшафтов. Изучение горизонтальных связей привело к формированию полисистемной или хорической модели ландшафтов.

Различают связи прямые, направленные от более «активного» объекта или явления к дру­гому, более «пассивному», объекту или явле­нию (таковы, например, связи, возникающие при воздействии какого-либо сооружения на грунтовые воды), и связи обратные, возникаю­щие как ответная реакция «пассивного» объек­та и влияющие на состояние «активного» объекта.

Межкомпонентные связи в ландшафте не являются абсолют­но жесткими. Они носят вероятностный характер. Природные ком­поненты обладают некоторой степенью свободы в своем поведе­нии. Благодаря этому, ландшафт может более или менее пластично реагировать на возмущающие импульсы внешней среды.

Ландшафт способен существовать только при условии "дви­жения через него потока вещества, энергии и информации" . Вещественные, энергетические и информационные свой­ства природных компонентов теснейшим образом взаимосвязаны и отдельно друг от друга в природе не существуют. Поэтому веще­ственно-энергетический и информационный обмен между компо­нентами и геосистемами в целом немыслим в их раздельности. Однако в ходе ландшафтного анализа удается различать его виды.

Можно привести немало примеров вещественно-энергетичес­ких связей в ландшафте. Начнем с самого простого: горный речной поток, порожденный атмосферными осадками и таянием высоко­горных нивально-гляциальных покровов, низвергается вниз по ущелью, благодаря потенциалу гравитационной энергии горного рельефа, который был создан тектоническим вздыманием страны. Размывая скальные породы и обломочный материал осыпей и об­валов, поток превращает их в валунно-галечный аллювий. Его вод­ная масса насыщается влекомым, взвешенным и растворенным материалом. Одновременно происходит жидкий, твердый и ион­ный сток. Ущелье со временем превращается в террасированную долину. В деятельности горного потока интегрируются многие фак­торы абиотической природы горного ландшафта: поверхностный сток, атмосферные осадки, снежно-ледовые покровы, горный ре­льеф, слагающие ландшафт горные породы.

Особенно ярко межкомпонентные вещественно-энергетичес­кие связи прослеживаются в биогеохимическом (малом биологи­ческом) круговороте, наиболее важном в превращении ландшафта в целостную геосистему. Растительность выступает в нем самым активным компонентом. Недаром В. Б. Сочава назвал ее критичес­ким компонентом ландшафта. Непременными и незаменимыми факторами жизни растений служат, как известно, свет, тепло, воздух, вода и элементы минерального питания. Даже из простого их перечня видно, что для существования растительного покрова не­обходимы все природные компоненты ландшафта. Под биологи­ческим круговоротом понимается сложный циклический, много­ступенчатый процесс. Он включает поступление химических эле­ментов (С, N, О, Са, К, Mg, Na, P, S, Si, Cl, Fe и др.) из почвы, воды и воздуха в живые организмы главным образом в зеленые растения и превращение их под воздействием лучистой энергии Солнца в ходе фотосинтеза в сложные органические соединения. Ежегодно на Земле образуется около 170 млрд т первичного органического вещества. При этом усваивается 300-320 млрд т СО, из воздуха и выделяется около 200 млрд т свободного кислорода.

Часть созданного растениями-продуцентами биогенного ве­щества-энергии используется в трофических цепях животными. В результате минерализации растительного опада и отмерших орга­низмов происходит возвращение химических элементов в среду: почвы, воздух и воду. Этот круговорот вещества и энергии почти замкнут. Малая доля отмершей органики захороняется или выно­сится за пределы геосистемы путем вещественно-энергетического обмена с ландшафтной средой. Примерно 0,004% годичной био­логической продукции резервируется. Живое вещество высту­пает как аккумулятор солнечной энергии. В итоге за многие мил­лионы лет в ландшафтной оболочке накопились большие запа­сы свободной биогенной энергии (каустобиолиты, почвенный гумус), исчисляемые в тг10 32 ккал. Однако в настоящее время человечество за одни только сутки расходует столько ископае­мого органического топлива, сколько его откладывалось когда-то в среднем за 300-350 лет.

Информационные связи в ландшафтах прослеживаются как в пространстве, так и во времени. Суть их состоит в передаче тер­риториального и временного упорядоченного разнообразия одним природным компонентом другому компоненту, и наоборот. Таким образом, компоненты как бы стремятся запечатлеть свою простран­ственно-временную организацию в других компонентах и геосис­теме в целом. В отношении пространственной организации очень сильное информационное давление на другие природные компо­ненты оказывает литогенная основа. Разнообразие горных пород, а главное, неровности рельефа дневной поверхности находят соответствующее отражение в пространственной смене почвенного и растительного покрова, водного режима и микроклимата. Как терри­ториально дифференцирована литогенная основа, так в главных чертах устроен в плане и ландшафт в целом.

Классическим примером информационного влияния релье­фа на ландшафт является известное правило предварения В. В. Але­хина (1882-1946), известного геоботаника, профессора МГУ. Со­гласно правилу предварения, на склонах северной экспозиции раз­вивается растительность более северных зон, подзон, а на скло­нах южной экспозиции – более южных. В лесостепной зоне, на­пример, склоны долин и балок, обращенные на север, как правило, заняты широколиственными лесами, а склоны южной экспозиции -степными ценозами.

В информационных ландшафтных связях можно видеть ана­логию с известным принципом симметрии П. Кюри (1859-1906), согласно которому симметрия причины сохраняется в симметрии следствия. Если в указанной формуле вместо слова "симметрия" поставить слово "организация", то она в полной мере будет харак­теризовать суть трансляционной информации в ландшафте.

Межкомпонентные связи в ландшафте не являются абсолют­но жесткими. Они носят вероятностный характер. Природные ком­поненты обладают некоторой степенью свободы в своем поведе­нии. Благодаря этому, ландшафт может более или менее пластично реагировать на возмущающие импульсы внешней среды. До опре­деленных пороговых нагрузок он способен оставаться относитель­но устойчивым. Н. Винер писал, что "...любое строение выдержи­вает нагрузку только потому, что оно не является стопроцентно жестким" . Сравнивая ландшафт с другими природны­ми системами, А. И. Перельман говорил: "По степени совершен­ства связей ландшафт сильно уступает таким системам, как крис­таллы, атомы, организмы. Ландшафт – это система не только с дру­гой природой связей, но и с более "расшатанными" связями, более слабой интеграцией" .

К тем определениям ландшафтоведения как науки, которые были уже даны, можно добавить еще одно: ландшафтоведение -наука о внутриландшафтных и межландшафтных системных свя­зях. Знание таких связей позволяет обоснованно решать многие проблемы природопользования.

3.4. Вертикальная и горизонтальная структура ландшафтов .

Структура ландшафта (от лат. stru – ctura – строение, расположение, порядок) – «от­носительно устойчивое единство элементов, их отношений и целостности объекта; инвариантный аспект системы».

Структура ландшафта – основное понятие теории ландшафта, тесно связанное с предста­влениями об устойчивости и изменениях ланд­шафтов, исходное при разработке мероприя­тий по охране природы.

Первоначально термин «структура ландшаф­та» употреблялся только в смысле «простран­ственное строение», «морфология ландшаф­та»: «порядок взаимного совершенно опреде­ленного расположения морфологических ча­стей ландшафта – фаций, урочищ, местностей». По мере развития научных представлений это понятие трансформировалось и приобрело такой вид: «строение ландшафта, выражаю­щееся в характере внутренних взаимосвязей между слагающими его компонентами, в про­странственном расположении и обособленно­сти более мелких ландшафтных комплексов» (Мильков, 1970, с. 131). Эти определения ха­рактеризовали лишь вертикальный и горизон­тальный пространственные аспекты структуры ландшафтов. Существенным дополнением ста­ло введение в определение «структуры ланд­шафтов» представления о временных ее аспек­тах. В. Б. Сочава (1963, с. 58) предложил рассматривать структуру ландшафтов как «...совокупность элементарных геосистем (с различными взаимосвязями между их компо­нентами), характеризующихся сезонным рит­мом и образующих серии и ряды трансформа­ции, а также различные мозаичные сочетания». В этом определении удачно сочетаются пред­ставления о компонентной, пространственной и временной сущности понятия «структура ландшафтов».

Вертикальное (ярусное) строение ландшафта может быть охарактеризовано как верти­кальный разрез ландшафта природного, как главный вертикальный ярус (Hauptstockwerk), представляющий собой сочетание взаимосвя­занных ярусов отдельных геосфер – атмосферы, литосферы, гидросферы, педосферы и т.д. В вертикальном строении ландшафта значе­ние имеют своеобразные производные со­вместного развития названных выше от­дельных геосфер – рельеф как производное ли­тосферы, с ее тектоническими движениями, гидросферы, атмосферы, а нередко и биоты, почва – продукт взаимодействия биоты и ли­тосферы в определенных климатических усло­виях, местный климат (микро- и мезоклимат) – режим состояний атмосферы, обусловленный взаимодействием общих атмосферных процес­сов, рельефа, биоты и т.д.

Изучение вертикального строения (верти­кальной морфологии) ландшафта является предпосылкой изучения связей между компо­нентами, а также обмена веществом и энер­гией между ними.

Горизонтальное (территориальное) строение ландшафта – сочетание входящих в его состав ландшафтов более низкого таксономического уровня и «ландшафтных элементов». Оно от­ражено на картах в виде мозаики или тек­стуры, являющейся важным свойством ланд­шафтов, особенно при ландшафтном деши­фрировании аэро- и космических снимков. Устойчиво повторяющееся, обусловленное ге­незисом или обменом веществом и энергией сочетание более мелких единиц называют (не очень точно) «морфологией ландшафта» или «морфологической структурой ландшафта» (см. также – ландшафт элементарный, катена). Го­ризонтальное строение служит основанием ие­рархических классификаций ландшафтов.

Каждая элементарная геосистема обладает своей вертикаль­ной структурой. Закономерно сменяясь в пространстве, они обра­зуют горизонтальную структуру ландшафта.



Последние материалы раздела:

Изменение вида звездного неба в течение суток
Изменение вида звездного неба в течение суток

Тема урока «Изменение вида звездного неба в течение года». Цель урока: Изучить видимое годичное движение Солнца. Звёздное небо – великая книга...

Развитие критического мышления: технологии и методики
Развитие критического мышления: технологии и методики

Критическое мышление – это система суждений, способствующая анализу информации, ее собственной интерпретации, а также обоснованности...

Онлайн обучение профессии Программист 1С
Онлайн обучение профессии Программист 1С

В современном мире цифровых технологий профессия программиста остается одной из самых востребованных и перспективных. Особенно высок спрос на...