Методика изучения элементов алгебры. Методика изучения алгебраического материала

(8 часов)

План:

1. Цели изучения алгебраического материала в начальных классах.

2. Свойства арифметических действий, изучаемые в начальных классах.

3. Изучение числовых выражений и правил порядка выполнения действий:

Одного порядка без скобок;

Одного порядка со скобками;

Выражения без скобок, включающие 4 арифметических действия, со скобками.

4. Анализ числовых равенств и неравенств, изучаемых в начальных классах (сравнение двух чисел, числа и числового выражения, двух числовых выражений).

5. Введение буквенной символики с переменной.

6. Методика изучения уравнений:

а) дайте определение уравнения (из лекций по математике и из учебника математики для начальной школы),

б) выделите объем и содержание понятия,

в) каким методом (абстрактно-дедуктивным или конкретно-индуктивным) будете вводить это понятие? Опишите основные этапы работы над уравнением.

Выполните задания:

1. Объяснить целесообразность использования в начальных классах неравенств с переменной.

2. Подготовить сообщение к занятию о возможности формирования у учащихся функциональной пропедевтики (через игру, через изучение неравенств).

3. Подобрать задания для учащихся по выполнению существенных и несущественных свойств понятия «уравнение».

1. Абрамова О.А., Моро М.И. Решение уравнений // Начальная школа. – 1983. - №3. – С. 78-79.

2. Ыманбекова П. Средства наглядности при формировании понятия «равенство» и «неравенство» // Начальная школа. – 1978. – №11. – С. 38-40.

3. Щадрова И.В. О порядке действий в арифметическом выражении // Начальная школа. – 2000. - №2. – С. 105-107.

4. Шихалиев Х.Ш. Единый подход к решению уравнений и неравенств // Начальная школа. – 1989. - №8. – С. 83-86.

5. Назарова И.Н. Ознакомление с функциональной зависимостью при обучении решению задач // Начальная школа. – 1989. - №1. – С. 42-46.

6. Кузнецова В.И. О некоторых типичных ошибках учащихся, связанных с вопросами алгебраической пропедевтики // Начальная школа. – 1974. - №2. – С. 31.

Общая характеристика методики изучения

алгебраического материала

Введение алгебраического материала в начальный курс математики позволяет подготовить учащихся к изучению основных понятий современной математики, например таких, как «переменная», «уравнение», «неравенство» и др., способствует развитию у детей функционального мышления.

Основные понятия темы – «выражение», «равенство», «неравенство», «уравнение».

Термин «уравнение» вводится при изучении темы «Тысяча», но подготовительная работа к ознакомлению учащихся с уравнениями начинается с 1 класса. Термины «выражение», «значение выражения», «равенство», «неравенство» включаются в словарь учащихся начиная со 2 класса. Понятие «решить неравенство» в начальных классах не вводится.



Числовые выражения

В математике под выражением понимают постоянную по определенным правилам последовательность математических символов, обозначающих числа и действия над ними. Примеры выражений: 7; 5 + 4; 5 · (3 + в ); 40: 5 + 6 и т.п.

Выражения вида 7; 5 + 4; 10: 5 + 6; (5 + 3) · 10 называют числовыми выражениями в отличие от выражений вида 8 – а ; (3 + в ); 50: к , называемых буквенными выражениями или выражениями с переменной.

Задачи изучения темы

2. Познакомить учащихся с правилами порядка выполнения действий над числами и в соответствии с ними выработать умение находить числовые значения выражений.

3. Познакомить учащихся с тождественными преобразованиями выражений на основе арифметических действий.

В методике ознакомления младших школьников с понятием числового выражения можно выделить три этапа, предусматривающие ознакомление с выражениями, содержащими:

Одно арифметическое действие (I этап);

Два и более арифметических действий одной ступени (II этап);

Два и более арифметических действий разных ступеней (III этап).

С простейшими выражениями – суммой и разностью – учащихся знакомят в I классе (при изучении сложения и вычитания в пределах 10); с произведением и частным двух чисел – во II классе.

Уже при изучении темы «Десяток» в словарь учащихся вводятся названия арифметических действий, термины «слагаемое», «сумма», «уменьшаемое», «вычитаемое», «разность». Помимо терминологии, они должны также усвоить и некоторые элементы математической символики, в частности знаки действий (плюс, минус); они должны научиться читать и записывать простейшие математические выражения вида 5 + 4 (сумма чисел «пять» и «четыре»); 7 – 2 (разность чисел «семь» и «два»).



Сначала учащиеся знакомятся с термином «сумма» в значении числа, являющегося результатом действия сложения, а затем в значении выражения. Прием вычитания вида 10 – 7, 9 – 6 и т.п. основан на знании связи между сложением и вычитанием. Поэтому необходимо научить детей представлять число (уменьшаемое) в виде суммы двух слагаемых (10 – это сумма чисел 7 и 3; 9 – это сумма чисел 6 и 3).

С выражениями, содержащими два и более арифметических действий, дети знакомятся на первом году обучения при усвоении вычислительных приемов ± 2, ± 3, ± 1. они решают примеры вида 3 + 1 + 1, 6 – 1 – 1, 2 + 2 + 2 и др. Вычисляя, например, значение первого выражения, ученик поясняет: «К трем прибавить один, получится четыре, к четырем прибавить один, получится пять». Аналогичным образом поясняется решение примеров вида 6 – 1 – 1 и др. Тем самым первоклассники постепенно готовятся к выводу правила о порядке выполнения действий в выражениях, содержащих действия одной ступени, которое обобщается во II классе.

В I классе дети практически овладеют и другим правилом порядка выполнения действий, а именно выполнения действий в выражениях вида 8 – (4 + 2); (6 - 2) + 3 и др.

Обобщаются знания учащихся о правилах порядка выполнения действий и вводится еще одно правило о порядке выполнения действий в выражениях, не имеющих скобок и содержащих арифметические действия разных ступеней: сложение, вычитание, умножение и деление.

При ознакомлении с новым правилом о порядке выполнения действий работу можно организовать по-разному. Можно предложить детям прочитать правило по учебнику и применить его при вычислении значений соответствующих выражений. Можно также предложить учащимся вычислить, например, значение выражения 40 – 10: 2. ответы могут получиться разными: у одних значение выражения окажется равным 15 у других 35.

После этого учитель поясняет: «Чтобы найти значение выражения, не имеющего скобок и содержащего действия сложения, вычитания, умножения и деления, надо выполнить по порядку (слева направо) сначала действия умножения и деления, а затем (также слева направо) сложения и вычитания. В данном выражении надо сначала 10 разделить на 2, а затем из 40 вычесть полученный результат 5. значение выражения равно 35».

Учащиеся начальных классов фактически знакомятся с тождественными преобразованиями выражений.

Тождественное преобразование выражений – это замена данного выражения другим, значение которого равно значению заданного (термин и определение учащимся начальных классов не даются).

С преобразованием выражений учащиеся встречаются с 1 класса в связи с изучением свойств арифметических действий. Например, при решении примеров вида 10 + (50 + 3) удобным способом дети рассуждают так: «Удобнее десятки сложить с десятками и к полученному результату 60 прибавить 3 единицы. Запишу: 10 (50 + 3) = (10 + 50) + 3 = 63».

Выполняя задание, в котором надо закончить запись: (10 + 7) · 3 = 10 · 3 + 7 · 3 …, дети объясняют: «Слева сумму чисел 10 и 7 умножают на число 3, справа первое слагаемое 10 этой суммы умножили на число 3; чтобы сохранился знак «равно», надо второе слагаемое 7 также умножить на число 3 и полученные произведения сложить. Запишу так: (10 + 7) · 3 = 10 · 3 + 7 · 3».

При преобразовании выражений учащиеся иногда допускают ошибки вида (10 + 4) · 3 =- 10 · 3 + 4. причина подобного рода ошибок связана с неправильным использованием ранее усвоенных знаний (в данном случае с использованием правила прибавления к сумме числа при решении примера, в котором сумму надо умножить на число). Для предупреждения таких ошибок можно предложить учащимся следующие задания:

а) Сравни выражения, записанные в левой части равенств. Чем они похожи, чем отличаются? Объясни, как вычислили их значения:

(10 + 4) + 3 = 10 + (4 + 3) = 10 + 7 = 17

(10 + 4) · 3 = 10 · 3 + 4 · 3 = 30 + 12 = 42

б) Заполни пропуски и найди результат:

(20 + 3) + 5 = 20 + (3 + ð); (20 + 3) · 5 = 20 · ð + 3 · ð.

в) Сравни выражения и поставь между ними знак >,< или =:

(30 + 4) + 2 … 30 + (4 + 2); (30 + 4) + 2 … 30 · 2 + 4 · 2.

г) Проверь вычислением, верны ли следующие равенства:

8 · 3 + 7 · 3 = (8 + 7) · 3; 30 + (5 + 7) = 30 + 7.

Буквенные выражения

В начальных классах предусматривается проведение – в тесной связи с изучением нумерации и арифметических действий – подготовительной работы по раскрытию смысла переменной. С этой целью в учебники математики включаются упражнения, в которых переменная обозначается «окошком». Например, ð < 3, 6 < ð, ð + 2 = 5 и др.

Здесь важно побуждать учащихся к тому, чтобы они стремились подставить в «окошко» не одно, а поочередно несколько чисел, проверяя каждый раз, верная ли получатся запись.

Так, в случае ð < 3 в «окошко» можно подставить числа 0, 1, 2,; в случае 6 < ð - числа 7, 8, 9, 10, 20 и др.; в случае ð + 2 = 5 можно подставить только число 3.

В целях упрощения программы по математике для начальных классов и обеспечения ее доступности буквенная символика как средство обобщения арифметических знаний не используется. Все буквенные обозначения заменяются словесными формулировками.

Например, вместо задания

Предлагается задание в такой форме: «Увеличь число 3 в 4 раза; в 5 раз; в 6 раз; …».

Равенства и неравенства

Ознакомление учащихся начальных классов с равенствами и неравенствами связано с решением следующих задач:

Научить устанавливать отношение «больше», «меньше» или «равно» между выражениями и записывать результаты сравнения с помощью знака;

Методика формирования у младших школьников представлений о числовых равенствах и неравенствах предусматривает следующую этапность работы.

На I этапе, в первую очередь учебную неделю, первоклассники выполняют упражнения на сравнение совокупностей предметов. Здесь целесообразнее всего использовать прием установления взаимно однозначного соответствия. На этом этапе результаты сравнения еще не записываются с помощью соответствующих знаков отношения.

На II этапе учащиеся выполняют сравнение чисел, сначала опираясь на предметную наглядность, а затем на то свойство чисел натурального ряда, в соответствии с которым из двух различных чисел то число больше, которое при счете называют позже, и то число меньше, которое называют раньше. Установленные таким образом отношения дети записывают с помощью соответствующих знаков. Например, 3 > 2, 2 < 3. В дальнейшем при изучении нумерации (в концентрах «Сотня», «Тысяча», «Многозначные числа») для сравнения чисел полезно применять два способа, а именно устанавливать отношения между числами: 1) по месту их расположения в натуральном ряду; 2) на основе сравнения соответствующих разрядных чисел, начиная с высших разрядов. Например, 826 < 829, так как сотен и десятков в этих числах поровну, а единиц в первом числе меньше, чем во втором.

Так же можно сравнивать величины: 4 дм 5 см > 4 дм 3 см, так как дециметров больше, чем во второй. Кроме того, величины можно сначала выразить в единицах одного измерения и уже после этого сравнивать их: 45 см > 43 см.

Подобные упражнения вводятся уже при изучении сложения и вычитания в пределах 10. Их полезно выполнять с опорой на наглядность, например: учащиеся выкладывают на партах слева четыре кружка, а справа четыре треугольника. Выясняется, что фигур поровну – по четыре. Записывают равенство: 4 = 4. затее дети добавляют к фигурам слева один кружок и записывают сумму 4 + 1. Слева фигур больше, чем справа, значит, 4 + 1 > 4.

Используя прием уравнения, учащиеся переходят от неравенства к равенству. Например, на наборное полотно ставят 3 гриба и 4 белочки. Чтобы грибов и белочек было поровну, можно: 1) добавить один гриб (тогда будет 3 гриба и 3 белочки).

На наборном полотне 5 легковых и 5 грузовых машин. Чтобы одних машин было больше, чем других, можно: 1) убрать одну (две, три) машину (легковую или грузовую) или 2) добавить одну (две, три) машину.

Постепенно при сравнении выражений дети переходят от опоры на наглядность к сравнению их значений. Этот способ в начальных классах является основным. При сравнении выражений учащиеся могут также опираться и на знания: а) взаимосвязи между компонентами и результатом арифметического действия: 20 + 5 * 20 + 6 (слева записана сумма чисел 20 и 5, справа – сумма чисел 20 и 6. Первые слагаемые этих сумм одинаковые, второе слагаемое суммы слева меньше, чем второе слагаемое суммы справа, значит, сумма слева меньше, чем сумма справа: 20 + 5 < 20 + 6); б) отношение между результатами и компонентами арифметических действий: 15 + 2 * 15 (слева и справа сначала было поровну – по 15. Затем к 15 прибавили 2, стало больше, чем 15); в) смысла действия умножения: 5 + 5 + 5 + 5 + 5 * 5 · 3 (слева число 5 взяли слагаемым 5 раз, справа число 5 взяли слагаемым 3 раза, значит, сумма слева будет больше, чем справа: 5 + 5 + 5 + 5 + 5 > 5 + 5 + 5); г) свойств арифметических действий: (5 + 2) · 3 * 5 · 3 + 2 · 3 (слева сумму чисел 5 и 2 умножают на число 3, справа находят произведения каждого слагаемого на число 3 и складывают их. Значит, вместо звездочки можно поставить знак «равно»: (5 + 2) · 3 = 5 · 3 + 2 · 3).

В этих случаях вычисления значений выражений используются для проверки правильности постановки знака. Для записи неравенств с переменной в начальных классах используется «окошко»: 2 > ð, ð = 5, ð > 3.

Первые упражнения такого вида полезно выполнять с опорой на числовой ряд, обращаясь к которому учащиеся замечают, что число 2 больше единицы и нуля, поэтому в «окошко» (2 > ð) можно подставлять числа 0 и 1 (2 > 0, 2>1).

Аналогично выполняются и другие упражнения с окошком.

Основным способом при рассмотрении неравенств с переменной является способ подбора.

Для облегчения значений переменной в неравенствах предлагается выбирать их из конкретного ряда чисел. Например, можно предложить выписать те из данных чисел ряда 7, 8, 9, 10, 11, 12, 13, 14, при которых верна запись ð - 7 < 5.

При выполнении данного задания ученик может рассуждать так: «Подставим в «окошко» число 7: 7 минус 7 будет 0, 0 меньше 5, значит число 7 подходит. Подставим в «окошко» число 8:8 минус 7 получится 1, 1 меньше 5, значит, число 8 тоже подходит … Подставим в «окошко» число 12: 12 минус 7 получится 5, 5 меньше 5 – неверно, значит число 12 не подходит. Чтобы запись ð - 7 < 5 была верной, в «окошко» можно подставить любое из чисел 7, 8, 9, 10, 11».

Уравнения

В конце 3 класса дети знакомятся с простейшими уравнениями вида: х +8 =15; 5+х =12; х –9 =4; 13–х =6; х ·7 =42; 4·х =12; х :8 =7; 72:х =12.

Ребенок должен уметь решать уравнения двумя способами:

1) способом подбора (в простейших случаях); 2) способом, основанным на применении правил нахождения неизвестных компонентов арифметических действий. Приведем пример записи решения уравнения вместе с проверкой и рассуждений ребенка при его решении:

х – 9 = 4 х = 4 + 9 х = 13
13 – 9 = 4 4 = 4

«В уравнении х – 9 = 4 икс стоит на месте уменьшаемого. Чтобы найти неизвестное уменьшаемое, нужно к разности прибавить вычитаемое (х =4+9.) Проверим: из 13 вычтем 9, получим 4. получилось верное равенство 4 = 4, значит уравнение решено правильно».

В 4 классе ребенка можно познакомить с решением простых задач способом составления уравнения.

Изучение алгебраического материала в начальной школе. Введение элементов алгебры в начальный курс математики позволяет с самого начала обучения вести планомерную работу, направленную на формирование у детей таких важнейших математических понятий, как выражение, равенство, неравенство, уравнение. Включение элементов алгебры имеет своей целью главным образом более полное и более глубокое раскрытие арифметических понятий, доведение обобщений учащихся до более высокого уровня, а также создание предпосылок для успешного усвоения в дальнейшем курса алгебры. Ознакомление с использованием буквы как символа, обозначающего любое число из известной детям области чисел, создает условия для обобщения многих из рассматриваемых в начальном курсе вопросов арифметической теории, является хорошей подготовкой к ознакомлению детей в дальнейшем с понятиями переменной, функции. Более раннее ознакомление с использованием алгебраического способа решения задач позволяет внести серьезные усовершенствования во всю систему обучения детей решению разнообразных текстовых задач. Работа над всеми перечисленными вопросами алгебраического содержания, в соответствии с тем, как это намечено в учебниках, должна вестись планомерно и систематически в течение всех лет начального обучения. Изучение элементов алгебры в начальном обучении математике тесно связывается с изучением арифметики. Это выражается, в частности, и в том, что, например, уравнения и неравенства решаются не на основе применения алгебраического аппарата, а на основе использования свойств арифметических действий, на основе взаимосвязи между компонентами и результатами этих действий. Формирование каждого из рассматриваемых алгебраических понятий не доводится до формально-логического определения. Задачи изучения темы: 1. Сформировать у учащихся умения читать, записывать и сравнивать числовые выражения. 2. Познакомить учащихся с правилами выполнения порядка действий в числовых выражениях и выработать умение вычислять значения выражений в соответствии с этими правилами. 3. Сформировать у учащихся умение читать, записывать буквенные выражения и вычислять их значения при данных значениях букв. 4. Познакомить учащихся с уравнениями первой степени, содержащее действия первой и второй ступени, сформировать умение решать их способом подбора, а также на основе знания взаимосвязи между компонентами и результатом арифметических действий. Математические выражения. При формировании у детей понятия математического выражения необходимо учитывать, что знак действия, поставленный между числами, имеет два смысла: с одной стороны, он обозначает действие, которое надо выполнить над числами (например, 6+4 - к шести прибавить четыре); с другой стороны, знак действия служит для обозначения выражения (6+4 - это сумма чисел 6 и 4). Понятие о выражении формируется у младших школьников в тесной связи с понятиями об арифметических действиях и способствует лучшему их усвоению. Ознакомление с числовыми выражениями: в методике работы над выражениями предусматриваются два этапа. На первом из них формируется понятие о простейших выражениях (сумма, разность, произведение, частное двух чисел), а на втором- о сложных (сумма произведения и числа, разность двух частных и т. п.). Знакомство с первым выражением - суммой двух чисел происходит в I классе при изучении сложения и вычитания в пределах 10. Выполняя операции над множествами, учащиеся, прежде всего, усваивают конкретный смысл сложения и вычитания, поэтому в записях вида 5+1, 6-2 знаки действий осознаются ими как краткое обозначение слов «прибавить», «вычесть». Примерно в таком же плане идет работа над следующими выражениями: разностью (1 класс), произведением и частным двух чисел (2 класс). Вводятся термины «математическое выражение» и «значение математического выражения» (без определений). После записи нескольких примеров в одно действие учитель сообщает, что эти примеры иначе называются математическими выражениями. Правило, используемое при чтении выражений: 1) установить, какое действие выполняется последним; 2) вспомнить, как называются числа в этом действии; 3) прочитать, чем выражены эти числа. Упражнения в чтении и записи сложных выражений, содержащих компоненты действий, заданные простейшими выражениями, помогают детям усвоить правила порядка действий, а также подготавливают к решению уравнений. Предлагая подобные упражнения и проверяя знания и умения учащихся, учитель должен стремиться лишь к тому, чтобы они умели практически выполнять подобные задания: записать выражение, прочитать его, составить выражение по предложенной задаче, составить задачу по данному выражению (или «по-разному» прочитать данное выражение), понимали, что значит записать сумму (разность) с помощью цифр и знаков действий и что значит вычислить сумму (разность), а в дальнейшем, после введения соответствующих терминов, что значит составить выражение и что значит найти его значение. Изучение правил порядка действий. Цель работы на данном этапе - опираясь на практические умения учащихся, обратить их внимание на порядок выполнения действий в таких выражениях и сформулировать соответствующее правило. Учащиеся самостоятельно решают подобранные учителем примеры и объясняют, в каком порядке выполняли действия в каждом примере. Затем формулируют сами или читают по учебнику вывод. Работа ведется в такой последовательности: 1. Рассматривается правило о порядке выполнения действий в выражениях без скобок, когда над числами производят либо только сложение и вычитание, либо только умножение и деление. Вывод: если в выражении без скобок указаны только действия сложения и вычитания (или только действия умножения и деления), то их выполняют в том порядке, в каком они записаны (т. е. слева направо). 2. Аналогично изучают порядок действий в выражениях со скобками вида: 85-(46-14),60: (30-20), 90: (2*5). С такими выражениями учащиеся также знакомы и умеют их читать, записывать и вычислять их значение. Объяснив порядок выполнения действий в нескольких таких выражениях, дети формулируют вывод: в выражениях со скобками первым выполняется действие над числами, записанными в скобках. 3. Наиболее трудным является правило порядка выполнения действий в выражениях без скобок, когда в них содержатся действия первой и второй ступени. Вывод: порядок действий принят по договоренности: сначала выполняется умножение, деление, затем сложение, вычитание слева на право. 4. Упражнения на вычисления значения выражений, когда ученику приходится применять все изученные правила. Ознакомление с тождественными преобразованиями выражений. Тождественное преобразование выражения - это замена данного выражения другим, значение которого равно значению заданного выражения. Учащиеся выполняют такие преобразования выражений, опираясь на свойства арифметических действий и следствия, вытекающие из них (как прибавить сумму к числу, как вычесть число из суммы, как умножить число на произведение и др.). При изучении каждого свойства учащиеся убеждаются в том, что в выражениях определенного вида можно выполнять действия по-разному, но значение выражения при этом не изменяется (значение выражения не меняется при изменении порядка действий только, в том случае, если при этом применяются свойства действий) Ознакомление с буквенными выражениями. Уже в I классе возникает необходимость введения символа, обозначающего неизвестное число. В учебной и методической литературе с этой целью для учащихся предлагались самые разнообразные знаки: многоточие, обведенная пустая клетка, звездочки, вопросительный знак и т. п. Но так как все эти знаки полагается использовать в другом назначении, то для записи неизвестного числа следует использовать общепринятый для этих целей знак - букву. В дальнейшем буква как математический символ используется в начальном обучении математике также для записи обобщенных чисел, то есть когда имеются в виду не одно какое-либо целое неотрицательное число, а любое число. Такая необходимость возникает, когда надо выразить свойства арифметических действий. Буквы необходимы для обозначения величин и записи формул, отражающих зависимости между величинами, для обозначения точек, отрезков, вершин геометрических фигур. В I классе учащиеся применяют букву с целью - обозначения неизвестного искомого числа. Учащиеся знакомятся с написанием и чтением некоторых латинских букв, применяя их сразу для записи примеров с неизвестным числом (простейшие уравнения). Учащимся показывается, как перевести на язык математических символов задание, выраженное словесно: «К неизвестному числу прибавили 2 и получили 6. Найти неизвестное число». Учитель объясняет, как записать эту задачу: обозначить неизвестное число буквой х, затем показать при помощи знака +, что к неизвестному числу прибавили 2 и получили число, равное 6, что и записать, используя знак равенства: х + 2 = 6. Теперь надо выполнять действие вычитания, чтобы по сумме двух слагаемых и одному из них найти другое слагаемое. Основная работа с использованием буквы как математического символа выполняется в последующих классах. При введении буквенных выражений важную роль в системе упражнений играет умелое комбинирование индуктивного и дедуктивного методов. В соответствии с этим упражнения предусматривают переходы от числовых выражений к буквенным и, обратно, от буквенных выражений к числовым. а + b (а плюс b) также математическое выражение, только в нем слагаемые обозначены буквами: каждая из букв обозначает любые числа. Придавая буквам различные числовые значения, можно получить много, сколько угодно числовых выражений. Далее в связи с работой над выражениями раскрывается понятие постоянной. С этой целью рассматриваются выражения, в которых постоянная величина фиксируется с помощью цифр, например: a±12, 8±с. Здесь, как и на предыдущем этапе, предусматриваются упражнения на переход от числовых выражений к выражениям, записанным с помощью букв и цифр, и обратно. Аналогично можно получить математические выражения вида: 17±п, к±30, а позднее - выражения вида: 7*b, а: 8, 48:d. Работа по вычислению значений буквенных выражений при различных значениях букв, наблюдению за изменением результатов вычислений в зависимости от изменения компонентов действий закладывает основы для формирования понятия о переменной. Рассматриваются упражнения на нахождение числовых значений выражений при данных значениях буквы. Далее буквы используются для записи в обобщенном виде ранее изученных на конкретных числовых примерах свойств арифметических действий. Учащиеся, выполняя специальные упражнения, овладевают следующими умениями: 1. Записать при помощи букв свойства арифметических действий, связь между компонентами и результатами арифметических действий. 2. Прочитать записанные с помощью букв свойства арифметических действий, зависимости, отношения. 3. Выполнить тождественное преобразование выражения на основе знания свойств арифметических действий. 4. Доказать справедливость заданных равенств или неравенств при помощи числовой подстановки. Использование буквенной символики способствует повышению уровня обобщения знаний, приобретаемых учащимися начальных классов, и готовит их к изучению систематического курса алгебры в следующих классах. Равенства, неравенства. В практике обучения в начальных классах числовые выражения с самого начала рассматриваются в неразрывной связи с числовыми равенствами и неравенствами. В математике числовые равенства и неравенства делятся на истинные и ложные. В начальных классах вместо этих терминов употребляют слова «верные» и «неверные». Задачи изучения равенств и неравенств в начальных классах заключаются в том, чтобы научить учащихся практически оперировать равенствами и неравенствами: сравнивать числа, сравнивать арифметические выражения, решать простейшие неравенства с одним неизвестным, переходить от неравенства к равенству и от равенства к неравенству. Понятия о равенствах, неравенствах раскрываются во взаимосвязи. При изучении, арифметического материала. Числовые равенства и неравенства изучаются в результате сравнения заданных чисел или арифметических выражений. Поэтому знаками «>», «<», « = » соединяются не любые два числа, не любые два выражения, а лишь те, между которыми существуют указанные отношения. Первоначально у младших школьников формируются понятия только о верных равенствах и неравенствах (не во всех программах). Сравнение чисел осуществляется сначала на основе сравнения множеств, которое выполняется, с помощью установления взаимно однозначного соответствия. Установленные отношения записываются с помощью знаков «>», «<», « = », учащиеся упражняются в чтении и записи равенств и неравенств. Впоследствии при изучении нумерации чисел в пределах 100, 1000, а также нумерации многозначных чисел сравнение чисел осуществляется либо на основе сопоставления их по месту в натуральном ряду, либо на основе разложения чисел по десятичному составу и сравнения соответствующих разрядных чисел. Сравнение величин сначала выполняется с опорой на сравнение самих предметов по данному свойству, а потом осуществляется на основе сравнения числовых значений величин, для чего заданные величины выражаются в одинаковых единицах измерения. Переход к сравнению выражений осуществляется постепенно. Сначала в процессе изучения сложения и вычитания в пределах 10 учащиеся упражняются в сравнении выражения и числа (числа и выражения). Выражение и число (число и выражение) учащиеся сравнивают, не прибегая к операциям над множествами (подумай - поставь знак - объясни - проверь вычислением). Сравнить два выражения - значит, сравнить их значения. Сначала выполняются вычисления, затем рассматриваются задания на основе рассуждений с опорой на обобщение. Термины «решить неравенство», «решение неравенства» не вводятся в начальных классах. Уравнения. Подготовкой к ознакомлению учащихся с уравнениями является вся работа с равенствами и неравенствами. Особое значение среди всех этих упражнений имеют задания, при выполнении которых надо от неравенства перейти к равенству и наоборот. Впервые с уравнением учащиеся знакомятся в первом классе после того, как они познакомились с зависимостью между компонентами сложения. Здесь учащийся воспринимает уравнение как равенство, которое справедливо при определенном значении пока неизвестного числа. Выдвигается требование - найти такое значение буквы, обозначающей неизвестное. Чтобы составить уравнение, достаточно задание, выраженное словесно, записать с помощью математических символов. В соответствии с программой в начальных классах рассматриваются уравнения первой степени с одним неизвестным вида: 7+х=10, х-3=10 + 5, х*(17-10)=70, х:2+10 = 30. Неизвестное число сначала находят подбором, а позднее на основе знания связи между результатом и компонентами арифметических действий (т. е. знания способов нахождения неизвестных компонентов). Найти неизвестное число (корень) - значит решить уравнение. С целью формирования умений решать уравнения предлагают разнообразные упражнения: 1) Решите уравнения и выполните проверку. 2) Выполните проверку решенных уравнений, объясните ошибки в неверно решенных уравнениях. 3) Составьте уравнения с числами х, 7, 10, решите и проверьте решение. 3) Из заданных уравнений выберите и решите те, в которых неизвестное число находят вычитанием (делением). 4) Из заданных уравнений выпишите те, в которых неизвестное число равно 8. 5) Рассмотрите решение уравнения, определите, чем является неизвестное в уравнении и вставьте пропущенный знак действия: х...2=12 х…2=12 х=12:2 х=12+2 7) Решите уравнения; сравните уравнения и их решения: х+8=40 х*3 = 24 х-8=40 х: 3 = 24 После того как учащиеся освоят решение простейших уравнений, уравнения усложняются в том отношении, что: 1) в правой части дается выражение: x+10=30-7; 2) один из компонентов задан выражением к + (18 - 15) = 24; 3) один из компонентов задан выражением, причем в него входит неизвестное (73 - b) + 31 = 85 Для решения таких уравнений необходимы знания порядка действий в выражении, а также умения выполнять простейшие преобразования выражений. Далее вводятся уравнения, содержащие действия первой и второй ступени. Для овладения приемом решения этих уравнений в начальных классах учащемуся необходимо в первую очередь научиться левую часть представить в виде двух компонентов, в результате действий с которыми была получена правая часть, и разобрать состав каждого компонента. При обучении решения уравнений важно вырабатывать навык проверки его корня, то есть найденного значения буквы. Здесь учащиеся должны в уравнение вместо буквы подставить ее значение, отдельно вычислить левую и правую части и сравнить полученные результаты. Отношение равенства этих результатов является основанием для заключения, что найденное число удовлетворяет условиям уравнения. Решение задач с помощью уравнений. Чтобы понять роль решения задач с помощью уравнений, рассмотрим сначала, в чем суть этого способа. Пусть надо решить путем составления уравнения задачу: «На экскурсию поехало 28 мальчиков и несколько девочек. Все они разместились в двух автобусах, по 25 человек в каждом. Сколько девочек отправилось на экскурсию?» Обозначим число девочек, которые отправились на экскурсию, какой-либо буквой, например х. Для составления равенства можно выделить различные связи, в соответствии с которыми можно составить выражения и, приравняв их, получить уравнение: а) В условии задачи сказано, что все мальчики и девочки поехали в автобусах, значит, можно выразить, сколько мальчиков и девочек поехало на экскурсию (28+x) и сколько мальчиков и девочек разместилось в автобусах (25*2), а затем приравнять эти выражения; тогда получится уравнение 28+x=25*2; решив это уравнение, получим ответ на вопрос задачи. б) В условии задачи сказано, что в каждом автобусе разместилось по 25 человек, значит, можно выразить число экскурсантов в каждом автобусе через другие числа и приравнять полученное выражение к числу 25, тогда получится уравнение (28+х): 2 = 25. Можно, рассуждая аналогичным образом, составить и другие уравнения. Для решения задачи с помощью составления уравнений обозначают буквой искомое число, выделяют в условии задачи связи, которые позволяют составить равенство, содержащее неизвестное (уравнение), записывают соответствующие выражения и составляют равенство. Полученное уравнение решают. При этом решение полученного уравнения не связывается с содержанием задачи. Решение любой задачи можно выполнить путем составления уравнения, руководствуясь указанным планом. В этом заключается универсальность способа решения задач с помощью составления уравнений, что определяет его преимущества. Кроме того, как видно, решение задач способом составления уравнений способствует овладению понятием уравнения. Поэтому уже в начальных классах в определенной системе ведется обучение решению задач путем составления уравнений. В методике обучения решению задач с помощью составления уравнений предусматриваются следующие этапы: сначала ведется подготовительная работа к решению задач с помощью уравнений, затем вводится решение простых задач с помощью уравнений и, наконец, рассматриваются приемы составления уравнений при решении составных задач.

2. Математическое выражение и его значение.

3. Решение задач на основе составления уравнения.

Алгебра заменяет численные значения количественных характеристик множеств или величин буквенной символикой. В общем виде алгебра также заменяет знаки конкретных действий (сложения, умножения и т. п.) обобщенными символами алгебраических операций и рассматривает не конкретные результаты этих опера­ции (ответы), а их свойства.

Методически считается, что основная роль элементов алгебры в курсе начальных классов состоит математики в том, чтобы способствовать формированию обобщенных представлений детей о понятии «количество» и смысле арифметических действий.

На сегодня наблюдаются две кардинально противоположные тенденции в определении объема содержания алгебраического материала в курсе математики начальной школы. Одна тенденция связана с ранней алгебраизацией курса математики начальных классов, с насыщением его алгебраическим материалом уже с первого класса; другая тенденция связана с введением алгебраического материала в курс математики для начальной школы на его завершающем этапе, в конце 4 класса. Представителями первой тенденции можно считать авторов альтернативных учебников системы Л.В. Занкова (И.И. Аргинская), системы В.В. Давыдова (Э.Н. Александрова, Г.Г. Микулина и др.), системы «Школа 2100» (Л.Г. Петерсон), системы «Школа XXI века» (В.Н. Рудницкая). Представителем второй тенденции мож­но считать автора альтернативного учебника системы «Гармония» Н.Б. Истомину.

Учебник традиционной школы можно считать представителем «серединных» взглядов - он содержит достаточно много алгеб­раического материала, поскольку ориентирован на использование учебника математики Н.Я. Виленкина в 5-6 классах средней школы, но знакомит детей с алгебраическими понятиями начиная со 2 класса, распределяя материал на три года, и за последние 20 лет практически не расширяет список алгебраических понятий.

Обязательный минимум содержания образования по математике для начальных классов (последняя редакция 2001 г.) не содержит алгебраического материала. Не упоминают умений выпускников начальной школы работать с алгебраическими понятиями и требования к уровню их подготовки по завершении обучения в начальных классах.

  1. Математическое выражение и его значение

Последовательность букв и чисел, соединенных знаками действий, называют математическим выражением.

Следует отличать математическое выражение от равенства и неравенства, которые используют в записи знаки равенства и неравенства.

Например:

3 + 2 - математическое выражение;

7 - 5; 5 6 - 20; 64: 8 + 2 - математические выражения;

а + b; 7 - с; 23 - а 4 - математические выражения.

Запись вида 3 + 4 = 7 не является математическим выражением, это равенство.

Запись вида 5 < 6 или 3 + а > 7 - не являются математическими выражениями, это неравенства.

Числовые выражения

Математические выражения, содержащие только числа и знаки действий называют числовыми выражениями.

В 1 классе рассматриваемый учебник не использует данные понятия. С числовым выражением в явном виде (с названием) дети знакомятся во 2 классе.

Простейшие числовые выражения содержат только знаки сложения и вычитания, например: 30 - 5 + 7; 45 + 3; 8 - 2 - 1 и т. п. Выполнив указанные действия, получим значение выражения. Например: 30 - 5 + 7 = 32, где 32 - значение выражения.

Некоторые выражения, с которыми дети знакомятся в курсе математики начальных классов, имеют собственные названия: 4 + 5 - сумма;

6 - 5 - разность;

7 6 - произведение; 63: 7 - частное.

Эти выражения имеют названия для каждого компонента: компоненты суммы - слагаемые; компоненты разности - уменьшаемое и вычитаемое; компоненты произведения - множители; компоненты деления - делимое и делитель. Названия значений этих выражений совпадают с названием выражения, например: значение суммы называют «сумма»; значение частного называют «частное» и т. п.

Следующий вид числовых выражений - выражения, содержащие действия первой ступени (сложение и вычитание) и скобки. С ними дети знакомятся в 1 классе. С этим видом выражений связано правило порядка выполнения действий в выражениях со скобками: действия в скобках выполняются первыми.

Далее следуют числовые выражения, содержащие действия двух ступеней без скобок (сложение, вычитание, умножение и деление). С этим видом выражений связано правило порядка выполнения действий в выражениях, содержащих все арифметические действия без скобок: действия умножения и деления выполняются рань­ше, чем сложение и вычитание.

Последний вид числовых выражений - выражения, содержащие действия двух ступеней со скобками. С этим видом выражений связано правило порядка выполнения действий в выражениях, содержащих все арифметические действия и скобки: действия в скобках выполняются первыми, затем выполняются действия умноже­ния и деления, затем действия сложения и вычитания.

Нас окружают объекты. С первых дней ребенка в школе мы изучаем окружающий мир, в том числе и на уроках математики.

Учебник 1 кл. 1 часть. Что мы видим? Мы изучаем объекты. Что такое понятие об объекте? (это совокупность существенных свойств объекта)

В начальных классах много математических понятий сначала усваиваются поверхностно, расплывчато. При первом ознакомлении школьники узнают только о некоторых свойствах понятий, очень узко представляют их объем. И это закономерно. Не все понятия легко усвоить. Но бесспорно, что понимание и своевременное использование учителем тех или других видов определений математических понятий - одна из условий формирования у учеников твердых знаний об этих понятиях.

При усвоении научных знаний учащиеся начальной школы сталкиваются с разными видами понятий. Неумение ученика дифференцировать понятия приводит к неадекватному их усвоению.

Понятие – это совокупность суждений, мыслей, в которых что-либо утверждается об отличительных признаках исследуемого объекта. Что подразумеваем под объемом понятия? (совокупность объектов, обозначенных одним и тем же термином)

Так, программа обучения «Школа России» исходит из того, что базовыми понятиями начального курса математики являются понятия «числа» и «величины», параллельно рассматриваются алгебраический и геометрический материал, решаются текстовые задачи.

В начальной школе мы начинаем давать первые определения понятий: отрезок, квадрат, луч и т.д. Что такое определение понятия? (логическая операция, раскрывающая содержание понятия)

По объему математические понятия делятся на единичные и общие. Если в объем понятия входит только один предмет, оно называется единичным.

Примеры единичных понятий: «наименьшее двузначное число», «цифра 5», «квадрат, длина стороны которого 10 см», «круг радиусом 5 см».

Общие понятие отображает признаки определенного множества предметов. Объем таких понятий всегда будет больше объема одного элемента.

Примеры общих понятий: «множество двузначных чисел», «треугольники», «уравнения», «неравенства», «числа кратные 5», «учебники математики для начальной школы».

В обучении младших школьников наиболее часто встречаются контекстуальные и остенсивные определенияпонятий .

Любой отрывок из текста, будь какой контекст, в котором случается понятие, которое нас интересует есть, в некотором понимании, неявным его определением. Контекст ставит понятие в связь с другими понятиями и тем самим раскрывает ее содержание.

Например, употребляя в работе с детьми такие выражения, как «найти значения выражения», «сравнить значение выражений 5 + а и (а - 3) × 2, если а = 7», «прочитать выражения, которые являются суммами», «прочитать выражения, и потом прочитать уравнения», мы раскрываем понятие «математическое выражение» как запись, которая складывается из чисел или переменных и знаков действий.

Почти все определения, с которыми мы встречаемся в повседневной жизни - это контекстуальные определения. Услышав, неизвестное слово, мы стараемся сами установить его значение на основании всего сказанного.

Подобное имеет место и в обучении младших школьников. Много математических понятий в начальной школе определяются через контекст. Это, например, такие понятия, как «большой - маленький», «какой-нибудь», «любой», «один», «много», «число», «арифметическое действие», «уравнение», «задача» и т.д.

Контекстуальные определения остаются большей частью неполными и незавершенными. Они применяются в связи с неподготовленностью младшего школьника к усвоению полного и тем более научного определения.

Остенсивные определения - это определения путем демонстрации. Они напоминают обычные контекстуальные определения, но контекстом здесь есть не отрывок какого-либо текста, а ситуация, в которой оказывается объект, обозначенный понятием.

Например, учитель показывает квадрат (рисунок или бумажную модель) и говорит «Смотрите - это квадрат». Это типичное остенсивное определение.

В начальных классах остенсивные определения применяются при рассмотрении таких понятий как «красный (белый, черный и т.д.) цвет», «левый - правый», «слева направо», «цифра», «предшествующее и следующее число», «знаки арифметических действий», «знаки сравнения», «треугольник», «четырехугольник», «куб» и т.д.

На основе усвоения остенсивным путем значений слов есть возможность вводить в словарь ребенка уже вербальное значение новых слов и словосочетаний. Остенсивные определения - и только они - связывают слово с вещами.

Заметим, что в начальных классах допустимые определения наподобие «Словом «пятиугольник» мы будем называть многоугольник с пятью сторонами». Это так называемое «номинальное определение».

Какую структуру имеет понятие? (определяемое понятие = родовое + видовое) Приведите пример. В следствии этой формулы и построено изучение математического материала в начальной школе. Например, рассмотрим понятия «квадрат» и «прямоугольник». Объем понятия «квадрат» есть частью объема понятия «прямоугольник». Поэтому первое называют видовым, а второе - родовым. В родо-видовых отношениях следует различать понятие ближайшего рода и следующие родовые ступени.

Например, для вида «квадрат» ближайшим родом будет род «прямоугольник», для прямоугольника ближайшим родом будет род «параллелограмм», для «параллелограмма» - «четырехугольник», для «четырехугольника» - «многоугольник», а для «многоугольника»- «плоская фигура».

В начальных классах впервые каждое понятие вводится наглядно, путем наблюдения конкретных предметов или практического оперирования (например, при счете их). Учитель опирается на знание и опыт детей, которые они приобрели еще в дошкольном возрасте. Ознакомления с математическими понятиями фиксируется с помощью термина или термина и символа.

Особое внимание следует уделить понятию число.

Число - это отношение того, что подвергается количественной оценке (длина, вес, объем и др.) к эталону, который используется для этой оценки. Очевидно, что число зависит как от измеряемой величины, так и от эталона. Чем больше измеряемая величина, тем больше будет число при одном и том же эталоне. Наоборот, чем больше будет эталон (мера), тем меньше будет число при оценке одной и той же величины. Следовательно, учащиеся с самого начала должны понять, что сравнение чисел по величине можно производить только тогда, когда за ними стоит один и тот же эталон. В самом деле, если, например, пять получено при измерении длины сантиметрами, а три - при измерении метрами, то три обозначают большую величину, чем пять. Если учащиеся не усвоят относительной природы числа, то они будут испытывать серьезные трудности и при изучении системы счисления.

Натуральное число рассматривается как общее свойство класса эквивалентных конечных множеств. Первые представления о числе связаны с количественной характеристикой предметов.

(Множество – совокупность некоторых объектов, эквивалентные = равночисленные)

Количественная характеристика множества осознается учащимися в процессе установления взаимно однозначного соответствия между элементами непустого конечного множества и отрезком натурального числового ряда. Такое взаимно однозначное соответствие называется счетом элементов конечного множества. В этом случае количественная характеристика непустых конечных множеств находит выражение в таких отношениях, как «больше», «меньше», «равно», обозначаемых соответствующими символами.

На основе использования предметной наглядности устанавливается, например, что число кругов больше, чем квадратов, а квадратов меньше, чем кругов.


4, следовательно 5 б 4, 4 м 5

Число «нуль» в нач. школе рассматривается как характеристика пустого множества на основе практической деятельности с множеством предметов. Для этой цели используются рисунки типа:

. . .
.
. .

Или на основе результат арифметического действия при рассмотрении примеров вида: 3-1=2, 2-1=1, 1-1=0.

Рассматриваются целые неотрицательные числа в курсе математики начальной школы по концентрам: «Числа от 0 до 10», «Числа от 10 до 100», «Числа от 100 до 1000», «Числа, которые больше 1000».

Основными понятиями в каждом концентре является устная и письменная нумерация.

Устная нумерация – способ называния каждого из чисел, встречающихся в жизненной практике, с помощью слов-числительных: один, девять, сто два и т.д.

Письменная нумерация – способ записи каждого из чисел, встречающихся в жизненной практике, с помощью цифр: 1, 2, 3…9, 0 на основе принципа поместного значения цифр (каждая цифра в зависимости от места, занимаемого им в записи числа, имеет свое определенное значение). Например, в записи числа 999 цифра 9, стоящая на первом месте справа налево, означает в данном числе 9 единиц. Эта же цифра, стоящая на втором месте справа налево, означает, что в числе 9 десятков и т.д.

Арифметические действия +, -, х, : рассматриваются в н.ш. на теоретико-множественной основе.

Сложение целых неотрицательных чисел связано с операцией объединения конечных попарно непересекающихся множеств.

Вычитание натуральных чисел рассматривается на наглядной основе как удаление части конечного множества, являющего подмножеством данного множества.

Умножение целых неотрицательных чисел рассматривается как число элементов в объединении равночисленных попарно непересекающихся множеств.

Деление с теоретико-множественной точки зрения связано с разбиением конечного множества на равночисленные попарно непересекающиеся подмножества. С его помощью решаются две задачи на деление: отыскание числа элементов в каждом подмножестве разбиения (деление на равные части) (пр.: 15 яблок лежало на 3 тарелках. Сколько яблок на каждой тарелке?) и отыскивание числа таких подмножеств (деление по содержанию) (пр.: 15 яблок лежало на тарелках. На каждой тарелке лежало по 5 яблок. Сколько тарелок стояло на столе?).

Формирование у учащихся представлений о числе и десятичной системе счисления тесно связано с изучением величин.

Величина – это некоторое свойство множества предметов или явлений.

Величина – это такое свойство предметов или явлений, которое позволяет сравнить и установить пары объектов, обладающих этим свойством в равной или неравной мере.

В н.ш. рассматриваются такие величины, как длина, площадь, время, объем, масса.

Длина – величина, характеризующая протяженность, удаленность и перемещение тел или их частей вдоль заданной линии. Длина отрезка или прямой – это расстояние между его концами, измеренное каким-либо отрезком, принятым за единицу измерения длины.

Площадь – величина, характеризующая геометрические фигуры на плоскости и определяемая числом заполняющих плоскую фигуру единичных квадратов, т.е. квадратов со стороной, равной единицы длины. Измерить площадь фигуры – значит установить, столько квадратных единиц длины (кв. см, кв.дм, кв.м и т.д.) она содержит.

Объем, вместимость – это величина, характеризующая геометрические тела и определяемая в простейших случаях числом умещающихся в тело единичных кубов, т.е. кубов с ребром, равным единице длины. Тела могут иметь одинаковые (т.е. тела равновеликие) и разные объемы.

Масса – это физическая величина, являющаяся одной из основных характеристик материи, определяющая ее инерционные и гравитационные свойства. Сравнение масс тел , действий над ними сводится к сравнению и действиям над числовыми значениями масс при одной и той же единице измерения массы.

Время – величина, характеризующая последовательную смену явлений и состояний материи, длительность бытия. Календарь - система счета дней, месяцев, годов. В математике время рассматривают как скалярную величину (величина, каждое значение которой может быть выражено одним действительным числом), т.к. промежутки времени обладают свойствами, похожими на свойства длины, площади, массы. Промежутки времени так же, как и другие скалярные величины, можно сравнивать, складывать, вычитать, умножать и делить на положительное действительное число. Между величинами одного рода имеют место отношения: «больше», «меньше», «равно».

На наглядной основе вводятся понятия о доле величины и дроби. Доля рассматривается как одна из равных частей целого. Дробь определяется как пара натуральных чисел (а, n ), характеризующая множество А одинаковых долей единицы; первое из них а показывает, сколько «n- ых» долейсодержит А и называется числителей дроби, второе n – на сколько одинаковых долей разделена единица и называется знаменателем дроби.

Параллельно с арифметическим материалом и изучением величин рассматривается теоретический материал: коммутативное свойство сложения и умножения (переместительное); сочетательное свойство умножения и сложения (ассоциативное), распределительное свойство деления относительно суммы и разности; распределительное свойство деления относительно суммы и разности; дистрибутивное свойство умножения относительно сложения и вычитания – рассматриваются как правила умножения суммы (разности) на число (a + b) x c = a x c + b x c . Кроме того, рассматривается зависимость между компонентами и результатом арифметического действия. Позднее на основе этой зависимости рассматривается решение уравнений.

В школьной практике многие учителя добиваются от учеников заучивания определений понятий и требуют знания их основных доказываемых свойств. Однако результаты такого обучения обычно незначительны. Это происходит потому, что большинство учащихся, применяя понятия, усвоенные в школе, опираются на малосущественные признаки, существенные же признаки понятий ученики осознают и воспроизводят только при ответе на вопросы, требующие определения понятия. Часто учащиеся безошибочно воспроизводят понятия, то есть обнаруживают знание его существенных признаков, но применить эти знания на практике не могут, опираются на те случайные признаки, выделенные благодаря непосредственному опыту. Процессом усвоения понятий можно управлять, формировать их с заданными качествами.

Более подробно остановимся на поэтапном формировании понятий.

После выполнения пяти-восьми заданий с реальными предметами или моделями учащиеся без всякого заучивания запоминают и признаки понятия, и правило действия. Затем действие переводится во внешнеречевую форму, когда задания даются в письменном виде, а признаки понятий, правило, и предписание называются или записываются учащимися по памяти. На этом этапе учащиеся могут работать парами, поочередно выступая то в роли исполнителя, то в роли контролера.

В том случае, когда действие легко и верно выполняется во внешнеречевой форме, его можно перевести во внутреннюю форму. Задание дается в письменном виде, а воспроизведение признаков, их проверку, сравнение полученных результатов с правилом учащийся совершает про себя. Учащийся все еще получает указания типа «Назови про себя первый признак», «Проверь, есть ли он» и т.д. Вначале контролируется правильность каждой операции и конечного ответа. Постепенно контроль осуществляется лишь по конечному результату и производится по мере необходимости.

Если действие выполняется правильно, то его переводят на умственный этап: учащийся сам и выполняет, и контролирует действие. В программе обучения на этом этапе предусматривается контроль со стороны обучающего только за конечным продуктом действия; обучаемый получает обратную связь при наличии затруднений или неуверенности в правильности результата. Процесс выполнения теперь скрыт, действие стало полностью умственным, идеальным, но содержание его известно обучающему, так как он сам его строил и сам преобразовал из действия внешнего, материального.

Так постепенно происходит преобразование действия по форме. Преобразование действия по обобщенности обеспечивается специальным подбором заданий. При этом учитывается как специфическая, так и общелогическая часть ориентировочной основы действия.

Для обобщения специфической части, связанной с применением системы необходимых и достаточных признаков, даются для распознавания все типичные виды объектов, относящихся к данному понятию. Так, при формировании понятия угол важно, чтобы учащиеся поработали с углами, отличающимися по величине (от 0° до 360° и больше), по положению в пространстве и т.п. Кроме того, важно взять и такие объекты, которые имеют лишь некоторые признаки данного понятия, но к нему не относятся.

Для обобщения логической части действия распознавания даются для анализа все основные случаи, предусмотренные логическим правилом подведения под понятие, т.е. задания с положительным, отрицательным и неопределенным ответами. Можно включать также задания с избыточными условиями. Характерно, что в практике обучения, как правило, дается лишь один тип задач: с достаточным составом условий и положительным ответом. В результате учащиеся усваивают действие распознавания в недостаточно обобщенном виде, что, естественно, ограничивает пределы его применения. Задачи с избыточными, неопределенными условиями дают возможность научить учащихся не только обнаруживать те или иные признаки в предметах, но и устанавливать достаточность их для решения стоящей задачи. Последние в жизненной практике часто выступают как самостоятельная проблема.

Преобразование действия по двум другим свойствам достигается повторяемостью однотипных заданий. Делать это целесообразно, как было указано, лишь на последних этапах. На всех других этапах дается лишь такое число заданий, которое обеспечивает усвоение действия в данной форме. Задерживать действие на переходных формах нельзя, так как это приведет к автоматизации его в данной форме, что препятствует переводу действия в новую, более позднюю форму.

В «Обязательном минимуме содержания начального образования» по образовательной области «Математика» изучение алгебраического материала, как это было ранее, не выделено в качестве отдельной дидактической единицы подлежащей обязательному изучению. В данной части документа кратко отмечено, что необходимо «дать знания о числовых и буквенных выражениях, их значениях и различиях между этими выражениями». В «Требованиях к качеству подготовки выпускников» можно лишь найти короткую фразу неопределенного смысла «научить вычислять неизвестный компонент арифметического действия». Вопрос о том, как научить «вычислять неизвестный компонент» должен решать автор программы или технологии обучения.

Рассмотрим, как характеризуются понятия «выражение», «равенство», «неравенство», «уравнение» и какова методика их изучения в различных методическихсистемах обучения

7.1. Выражения и их виды …
в курсе математики

начальной школы

Выражением называют математическую запись, состоящую из чисел, обозначенных буквами или цифрами, соединенных знаками арифметических действий. Отдельно взятое число есть также выражение. Выражение, в котором все числа обозначены цифрами, называют числовым выражением .

Если в числовом выражении выполнить указанные действия, то получим число, которое называют значением выражения.

Выражения можно классифицировать по числу арифметических действий, которые используются при записи выражений, и по способу обозначения чисел. По первому основанию выражения разбиваются на группы: элементарных (не содержащих знака арифметического действия), простых (один знак арифметического действия) и составных (более одного знака арифметических действий) выражений. По второму основанию различают числовые (числа записаны цифрами) и буквенные (хотя бы одно число или все числа обозначены буквами) выражения.

Математическую запись, которую в математике принято называть выражением, необходимо отличать от других видов записей.

Примером или вычислительным упражнением называют запись выражения вместе с требованием к его вычислению.

5+3 выражение, 8- его значение

5+3= вычислительное упражнение (пример),

8- результат вычислительного упражнения (примера)

В зависимости от знака арифметического действия, который используется в записи простого выражения, простые выражения разбивают на группы выражений со знаком «+,», «-», « », «:». Эти выражения имеют особые названия (2 + 3 — сумма; 7 — 4 – разность; 7 × 2 – произведение; 6: 3 — частное) и общепринятые способы чтения, с которыми знакомятся учащиеся начальной школы.

Способы чтения выражений со знаком «+»:

25+17 – 25 плюс 17

25+17 – к 25-ти прибавить 17

25+17 – 25 да 17

25+17 – 25 и еще 17.

25+17 – сумма чисел двадцать пять и семнадцать (сумма 25-ти и 17-ти)

25+17 – 25 увеличить на 17

25+17 – 1-ое слагаемое 25, 2-ое слагаемое 17

С записью простых выражений дети знакомятся по мере того, как вводится соответствующее математическое действие. Например, знакомство с действием сложения сопровождается записью выражения на сложение 2 + 1, здесь же даются образцы первых форм чтения этих выражений: «к двум прибавить один», «два и один», «два да один», «два плюс один». Другие формулировки вводятся по мере знакомства детей с соответствующими понятиями. Изучая название компонентов действий и их результатов, дети учатся читать выражение, используя эти названия (первое слагаемое 25, второе 17 или сумма 25-ти и 17-ти). Знакомство с понятиями «увеличить на…», «уменьшить на…» позволяет ввести новую формулировку для чтения выражений на сложение и вычитание с этими терминами «двадцать пять увеличить на семнадцать», «двадцать пять уменьшить на семнадцать». Так же поступают с остальными видами простых выражений.

С понятиями «выражение», «значение выражения» в ряде образовательных систем («Школа России» и «Гармония») дети знакомятся несколько позже, чем научатся их записывать, вычислять и читать не всеми, но многими формулировками. В других программах и системах обучения (система Л.В. Занкова, «Школа 2000…», «Школа 2100») эти математические записи сразу называют выражениями и используют это слово в вычислительных заданиях.

Обучая детей читать выражения различными формулировками, мы вводим их в мир математических терминов, даем возможность познать математический язык, отрабатываем смысл математических отношений, что, несомненно, повышает математическую культуру ученика, способствует осознанному усвоению многих математических понятий.

Ø Прием «делай как я». Правильная речь учителя, за которым дети повторяют формулировки, — основа грамотной математической речи школьников. Значительный эффект дает использование приема сравнения формулировок, которые произносят дети, с заданным образцом. Полезно использовать прием, когда учитель специально допускает речевые ошибки, а дети его исправляют.

Ø Дать несколько выражений и предложить прочитать эти выражения разными способами. Один ученик читает выражение, а другие проверяют. Полезно давать столько выражений, сколько формулировок знают дети к этому времени.

Ø Учитель диктует выражения разными способами, а дети записывают сами выражения, не вычисляя их значения. Такие задания направлены на то, чтобы проверить знание детьми математической терминологии, а именно: умение записывать выражения или вычислительные упражнения, прочтенные разными математическими формулировками.

Если ставится задача, предусматривающая проверку сформированности вычислительного навыка полезно читать выражения или вычислительные упражнения только теми формулировками, которые хорошо усвоены, не заботясь об их разнообразии, а детям предложить записывать только результаты вычислений, сами выражения можно не записывать.

Выражение, состоящее из нескольких простых, называют составным.

Следовательно, существенным признаком составного выражения является его составленность из простых выражений. Знакомство с составным выражением можно осуществить по следующему плану:

1. Дать простое выражение и вычислить его значение

(7 + 2 = 9), назвать его первым или данным.

2. Составить второе выражение так, чтобы значение первого стало компонентом второго (9 — 3), назвать это выражение продолжением для первого. Вычислить значение второго выражения(9 – 3 = 6).

3. Проиллюстрировать процесс слияния первого и второго выражений, опираясь на пособие.

Пособие представляет собой прямоугольный лист бумаги, который разделен на 5 частей и сложен в виде гармошки. На каждой части пособия имеются определенные записи:

7 + 2 = — 3 = 6

Скрывая вторую и третью части данного пособия (из первого выражения скрываем требование к его вычислению и его значение, а во втором скрываем ответ на вопрос первого), получаем составное выражение и его значение (7 + 2 -3 = 6). Даем ему название – составное (составлено из других).

Иллюстрируем процесс слияния других пар выражений или вычислительных упражнений, подчеркивая:

ü объединить в составное можно лишь такую пару выражений, когда значение одного из них является компонентом другого;

ü значение выражения продолжения совпадает со значением составного выражения.

Закрепляя понятие составного выражения полезно выполнять задания двух видов.

1 вид. Дана совокупность простых выражений, необходимо выделить из них пары, для которых верно отношение «значение одного из них является компонентом другого». Составить из каждой пары простых выражений одно составное выражение.

2 вид. Дано составное выражение. Необходимо записать простые выражения, из которых оно составлено.

Описанный прием полезно использовать по нескольким причинам:

§ по аналогии можно ввести понятие составной задачи;

§ ярче выделяется существенный признак составного выражения;

§ предупреждаются ошибки при вычислении значений составных выражений;

§ данный прием позволяет проиллюстрировать роль скобок в составных выражениях.

Составные выражения, содержащие знаки «+», «-» и скобки, изучаются с первого класса. В некоторых системах обучения («Школа России», «Гармония», «Школа 2000») не предусматривается изучение скобок в первом классе. Их вводят во втором классе при изучении свойств арифметических действий (сочетательное свойство суммы). Скобки вводятся как знаки, с помощью которых в математике можно показать порядок выполнения действий в выражениях содержащих более одного действия. В дальнейшем дети знакомятся с составными выражениями, содержащими действия первой и второй ступеней со скобками и без них. Изучение составных выражений сопровождается изучением правил порядка действий в этих выражениях и способов чтения составных выражений.

Значительное внимание во всех программах уделяется преобразованию выражений, которые осуществляются на основании сочетательного свойства суммы и произведения, правил вычитания числа из суммы и суммы из числа, умножения суммы на число и деления суммы на число. На наш взгляд, в отдельных программах, недостаточно упражнений направленных на формирование умения читать составные выражения, что, естественно, позже сказывается на умении решать уравнения вторым способом (см. ниже). В последних изданиях учебно-методических комплексов по математике для начальных классов по всем программам большое внимание уделяется заданиям на составление программ и алгоритмов вычислений для составных выражений в три — девять действий.

Выражения , в которых одно число или все числа обозначены буквами, называютбуквенными (а + 6; (а +в с – буквенные выражения). Пропедевтикой к введению буквенных выражений являются выражения, где одно из чисел заменяется точками или пустым квадратом. Называют эту запись выражением «с окошком» (+4 – выражение с окошком).

Типичными заданиями, содержащими буквенные выражения, являются задания на нахождение значений выражений при условии, что буква принимает различные значения из заданного перечня значений. (Вычисли значения выражений а + в и а в , если а = 42, в = 90 или а = 100, в = 230). Для вычисления значений буквенных выражений заданные значения переменных поочередно подставляют в выражения и далее работают как с числовыми выражениями.

Буквенные выражения могут использоваться для введения обобщенных записей свойств арифметических действий, формируют представления о возможности переменных значений компонентов действий и позволяют подвести детей к центральному математическому понятию «переменная величина». Кроме того, с помощью буквенных выражений дети осознают свойства существования значений суммы, разности, произведения, частного на множестве целых неотрицательных чисел. Так, в выражении а + в при любых значениях переменных а и в можно вычислить значение суммы, а значение выражения а в , на указанном множестве можно вычислить только в том случае, если в меньше или равно а . Анализируя задания, направленные на установление возможных ограничений для значений а и в в выражениях а в и а : в , дети устанавливают свойства существования значения произведения и значения частного в адаптированном к возрасту виде.

Буквенная символика используется в качестве средства обобщения знаний и представлений детей о количественных характеристиках объектов окружающего мира и о свойствах арифметических действий. Обобщающая роль буквенной символики делает ее очень сильным аппаратом для формирования обобщенных представлений и способов действий с математическим содержанием, что, несомненно, повышает возможности математики в развитии и формировании абстрактных форм мышления.

7.2. Изучение равенств и неравенств в курсе

математики начальных классов

Сравнение чисел и/или выражений приводит к появлению новых математических понятий «равенство» и «неравенство».

Равенством называют запись, содержащую два выражения соединенные знаком «=» — равно (3 = 1 + 2; 8 + 2 =7 + 3 — равенства).

Неравенством называют запись, содержащую два выражения и знак сравнения, указывающий на отношения «больше» или «меньше» между данными выражениями

(3 < 5; 2+4 > 2+3 — неравенства).

Равенства и неравенства бывают верными и неверными . Если значения выражений, стоящих в левой и правой части равенства, совпадают, то равенство считается верным, если нет, то равенство будет неверным. Соответственно: если в записи неравенства знак сравнения правильно указывает на отношения между числами (элементарными выражениями) или значениями выражений, то неравенство верно, в противном случае, неравенство неверно.

Большинство заданий в математике связано с вычислением значений выражений. Если значение выражения найдено, то выражение и его значение можно соединить знаком «равно», что принято записывать в виде равенства: 3+1=4. Если значение выражения вычислили верно, то равенство называют верным, если неверно, то записанное равенство считают неверным.

С равенствами дети знакомятся в первом классе одновременно с понятием «выражение» в теме «Числа первого десятка». Осваивая символическую модель образования последующего и предыдущего числа, дети записывают равенства 2 + 1 = 3 и 4 – 1 = 3. В дальнейшем равенства активно используются при изучении состава однозначных чисел и далее с этим понятием связано изучение практически каждой темы в курсе математики начальной школы.

Вопрос о введении понятий «верное» и «неверное» равенства в различных программах решается неоднозначно. В системе «Школа 2000…» это понятие вводят одновременно с записью равенства, в системе «Школа России» — при изучении темы «Состав однозначных чисел» в записях равенств «с окошком» (+3 = 5; 3 + = 5). Подбирая число, которое можно вставить в окошко, дети убеждаются в том, что в одних случаях получаются верные, а в других неверные равенства. Следует заметить, что данные математические записи с одной стороны позволяют закрепить состав чисел или другой вычислительный материал по теме урока, с другой, формируют представление о переменной величине и являются подготовкой к усвоению понятия «уравнение».

Во всех программах наиболее часто используются два вида заданий, связанных с понятиями равенства и неравенства, верные и неверные равенства и неравенства:

· Даны числа или выражения, нужно между ними поставить знак так, чтобы запись была верной. Например, «Поставь знаки: «<», «>», «=» 7-5 … 7-3; 6+4 … 6+3».

· Даны записи со знаком сравнения, надо подставить вместо окошка такие числа, чтобы получилось верное равенство или неравенство. Например, «Подбери числа так, чтобы записи были верными: > ; или +2 < +3».

Если сравниваются два числа, то выбор знака дети обосновывают, опираясь на принцип построения ряда натуральных чисел, значность числа или его состав. Сравнивая два числовых выражения или выражение с числом, дети вычисляют значения выражений, а затем сравнивают их значения, т. е. сводят сравнение выражений к сравнению чисел. В образовательной системе «Школа России» этот способ дается в виде правила: «Сравнить два выражения – значит, сравнить их значения». Этот же набор действий дети выполняют для проверки правильности выполненного сравнения. «Проверь, верны ли неравенства:

42 + 6 > 47; 47 — 5 > 47 — 4».

Наибольший развивающий эффект имеют задания, требующие поставить знак сравнения (или проверить верно ли поставлен знак сравнения) не вычисляя значений выражений данных в левой и правой частях неравенства (равенства). В этом случае дети должны поставить знак сравнения, опираясь на выявленные математические закономерности.

Форма предъявления задания и способы оформления его выполнения варьируется как в рамках одной программы, так и в различных программах.

Традиционно при решении неравенств с переменной использовалось два способа: способ подбора и способ сведения к равенству.

Первый способ называют способом подбора, что вполне отражает действия производимые ребенком при его использовании. При этом способе значение неизвестного числа подбирается либо из произвольного множества чисел, либо из заданной их совокупности. После каждого выбора значения переменной (неизвестного числа) осуществляется проверка правильности выбора. Для этого в заданное неравенство вместо неизвестного числа подставляется найденное значение. Вычисляется значение левой и правой части неравенства (значение одной из частей может быть элементарным выражением, т.е. числом), а затем, сравнивается значение левой и правой части полученного неравенства. Все эти действия могут выполняться устно или с записью промежуточных вычислений.

Второй способ заключается в том, что в записи неравенства вместо знака «<» или «>» ставят знак равенства и решают равенство известным детям способом. Затем, проводятся рассуждения, при которых используются знания детей об изменении результата действия в зависимости от изменения одного из его компонентов и определяются допустимые значения переменной.

Например, «Определи, какие значения может принимать а в неравенстве 12 — а < 7». Решение и образец рассуждений:

· Найдем значение а , если 12 – а = 7

· Вычисляю, применяя правило нахождения неизвестного вычитаемого: а = 12 — 7, а = 5.

· Уточняю ответ: при а равном 5-ти («корень уравнения равен 5-ти» в системе Занкова и «Школа 2000…») значение выражения 12 — 5 равно 7, а нам нужно найти такие значения этого выражения, которые бы были меньше 7-ми, значит надо из 12 вычитать числа большие пяти. Это могут быть числа 6, 7, 8, 9, 10, 11, 12.(чем большее число мы вычитаем из одного и того же числа, тем меньше значение разности). Значит, а = 6, 7, 8, 9, 10, 11, 12. Значения большие 12-ти переменная а принимать не может, так как большее число из меньшего вычитать нельзя (мы не умеем, если не вводятся отрицательные числа).

Пример подобного задания из учебника 3 класса (1-4), авторы: И.И. Аргинская, Е.И. Ивановская :

№ 224. «Реши неравенства, используя решение соответствующих уравнений:

к — 37 < 29, 75 — с > 48, а + 44 < 91.

Проверь свои решения: подставь в каждое неравенство несколько чисел, больших и меньших корня соответствующего уравнения.

Составь свои неравенства с неизвестными числами, реши их и проверь найденные решения.

Предложи свое продолжение задания».

Надо отметить, что ряд технологий и программ обучения, усиливая логическую составляющую и значительно превышая стандартные требования к содержанию математического образования в начальных классах, вводят понятия:

Ø переменная величина, значение переменной;

Ø понятие «высказывание» (верные и неверные утверждения называют высказыванием (М3П) ), «истинные и ложные высказывания»;

Ø рассматривают системы уравнений (И.И. Аргинская, Е.И. Ивановская).

7.3. Изучение уравнений в курсе математики

начальных классов

Равенство, содержащее переменную величину, называют уравнением. Решить уравнение — значит, найти такое значение переменной величины (неизвестного числа), при котором уравнение преобразуется в верное числовое равенство. Значение переменной, при котором уравнение преобразуется в верное равенство, называют корнем уравнения.

В некоторых образовательных системах («Школа России» и «Гармония») введение понятия «переменной» не предусматривается. В них уравнение трактуется как равенство, содержащее неизвестное число. И далее, решить уравнение, значит, найти такое число, при подстановке которого вместо неизвестного получается верное равенство. Это число называют значением неизвестного или решением уравнения. Таким образом, термин «решение уравнения» используется в двух смыслах: как число (корень), при подстановке которого вместо неизвестного числа уравнение обращается в верное равенство, и как сам процесс решения уравнения.

В большинстве программ и систем обучения в начальной школе рассматривают два способа решения уравнений.

Первый способ называют способом подбора, что вполне отражает действия производимые ребенком при его использовании. При этом способе значение неизвестного числа подбирается либо из произвольного множества чисел, либо из заданной их совокупности. После каждого выбора значения осуществляется проверка правильности решения. Сущность проверки вытекает из определения уравнения и сводится к выполнению четырех взаимосвязанных действий:

1. В заданное уравнение вместо неизвестного числа подставляется найденное значение.

2. Вычисляется значение левой и правой части уравнения (значение одной из частей может быть элементарным выражением, т.е. числом).

3. Сравнивается значение левой и правой части полученного равенства.

4. Делается вывод о верности или неверности полученного равенства и далее, является ли найденное число решением (корнем) уравнения.

На первых порах выполняется только первое действие, а остальные проговариваются. Этот алгоритм проверки сохраняется для каждого способа решения уравнения.

Ряд систем обучения («Школа 2000», система обучения Д.Б. Эльконина – В.В. Давыдова) для решения простых уравнений используют зависимость между частью и целым.

8 + х =10; 8 и х — части; 10 – целое. Чтобы найти часть можно из целого вычесть известную часть: х = 10 — 8; х = 2.

В этих системах обучения, еще на этапе решения уравнений способом подбора в речевую практику вводится понятие «корень уравнения» и сам способ решения называют решением уравнения с помощью «подбора корней».

Второй способ решения уравнения опирается на зависимость между результатом и компонентами действия. Из этой зависимости вытекает правило нахождения одного из компонентов. Например, зависимость между значением суммы и одним из слагаемых звучит так: «если из значения суммы двух слагаемых вычесть одно из них, то получится другое слагаемое». Из этой зависимости вытекает правило нахождения одного из слагаемых: «чтобы найти неизвестное слагаемое, надо из значения суммы вычесть известное слагаемое». Решая уравнение, дети рассуждают так:

Задание: Реши уравнение 8 + х = 11.

В данном уравнении неизвестно второе слагаемое. Мы знаем, чтобы найти второе слагаемое нужно из значения суммы вычесть первое слагаемое. Значит, надо из 11 вычесть 8. Записываю: х = 11 – 8. Вычисляю, 11 минус 8 равно 3, пишу х = 3.

Полная запись решения с проверкой будет иметь следующий вид:

8 + х = 11

х = 11 — 8

х = 3

Названным выше способом решаются уравнения с двумя и более действиями со скобками и без них. В этом случае нужно определить порядок действий в составном выражении и, называя компоненты в составном выражении по последнему действию, следует выделить неизвестное, которое в свою очередь может быть выражением на сложение, вычитание, умножение или деление (выражено суммой, разностью, произведением или частным). Затем применяют правило для нахождения неизвестного компонента, выраженного суммой, разностью, произведением или частным, учитывая названия компонентов по последнему действию в составном выражении. Выполнив вычисления в соответствии с этим правилом, получают простое уравнение (или снова составное, если первоначально в выражении было три или более знаков действий). Его решение проводится по уже описанному выше алгоритму. Рассмотрим следующее задание.

Реши уравнение (х + 2) : 3 = 8.

В данном уравнении неизвестно делимое, выраженное суммой чисел х и 2. (В соответствии с правилами порядка действий в выражении, действие деления выполняют последним).

Чтобы найти неизвестное делимое, можно значение частного умножить на делитель: х + 2 = 8 × 3

Вычисляем значение выражения справа от знака равенства, получаем: х + 2 = 24.

Полная запись имеет вид: (х + 2) : 3 = 8

х + 2 = 8 × 3

х + 2 = 24

х = 24 — 2

Проверка: (22 + 2) : 3 = 8

В образовательной системе «Школа 2000…» в связи с широким использованием алгоритмов и их видов дается алгоритм (блок – схема) решения таких уравнений (см. схему 3).

Второй способ решения уравнений достаточно громоздкий, особенно для составных уравнений, где правило взаимосвязи между компонентами и результатом действия применяется многократно. В связи с этим, многие авторы программ (системы «Школа России», «Гармония») совсем не включают в программу начальных классов знакомство с уравнениями сложной структуры либо вводят их в конце четвертого класса.

В данных системах в основном ограничиваются изучением уравнений следующих видов:

х + 2 = 6; 5 + х = 8 — уравнения на нахождение неизвестного слагаемого;

х – 2 = 6; 5 – х = 3 — уравнения на нахождение неизвестного уменьшаемого и вычитаемого соответственно;

х × 5 = 20, 5 × х = 35 — уравнения на нахождение неизвестного множителя;

х : 3 = 8, 6: х = 2 — уравнения на нахождение неизвестного делимого и делителя соответственно.

х × 3 = 45 — 21; х × (63 — 58) = 20; (58 — 40) : х = (2 × 3) — уравнения, где одно или два числа, входящих в уравнение, представлено числовым выражением. Способ решения этих уравнений сводится к вычислению значений этих выражений, после чего уравнение принимает вид одного из простых уравнений выше указанных видов.

Ряд программ обучения математике в начальных классах (образовательная система Л.В. Занкова и «Школа 2000…») практикуют знакомство детей с более сложными уравнениями, где правило взаимосвязи между компонентами и результатом действия приходится применять многократно и, нередко, требуют выполнения действий по преобразованию одной из частей уравнения на основе свойств математических действий. Например, в этих программах учащимся в третьем классе для решения предлагаются такие уравнения:

х — (20 + х ) = 70 или 2 × х – 8 + 5 × х = 97.

В математике существует и третий способ решения уравнений, который опирается на теоремы о равносильности уравнений и следствия из них. Например, одна из теорем о равносильности уравнений в упрощенной формулировке читается так: «Если к обеим частям уравнения с областью определения х прибавить одно и то же выражение с переменной, определенное на том же множестве, то получим новое уравнение, равносильное данному».

Из данной теоремы вытекают следствия, которые и используются при решении уравнений.

Следствие 1. Если к обеим частям уравнения прибавить одно и то же число, то получим новое уравнение равносильное данному.

Следствие 2. Если в уравнении одно из слагаемых (числовое выражение или выражение с переменной) перенести из одной части в другую, поменяв знак слагаемого на противоположный, то получим уравнение равносильное данному.

Таким образом, процесс решения уравнения сводится к замене данного уравнения, равносильным, причем эта замена (преобразование) может осуществляться только с учетом теорем о равносильности уравнений или следствий из них.

Этот способ решения уравнений является универсальным, с ним детей знакомят в системе обучения Л.В. Занкова и в старших классах.

В методике работы над уравнениями накоплено большое число творческих заданий :

· на выбор уравнений по заданному признаку из ряда предложенных;

· на сравнение уравнений и способов их решений;

· на составление уравнений по заданным числам;

· на изменение в уравнении одного из известных чисел так, чтобы значение переменной стало больше (меньше), чем первоначально найденное значение;

· на подбор известного числа в уравнении;

· на составление алгоритмов решения с опорой на блок-схемы решения уравнений или без них;

· составление уравнений по текстам задач.

Следует заметить, что в современных учебниках наблюдается тенденция к введению материала на понятийном уровне. Например, каждому из выше названных понятий дается развернутое определение, отражающее его существенные признаки. Однако не все встречающиеся определения отвечают требованиям принципа научности. Например, понятие «выражение» в одном из учебников математики для начальных классов трактуется так: «Математическая запись из арифметических действий, не содержащая знаков больше, меньше или равно называется выражением» (образовательная система «Школа 2000»). Заметим, что в данном случае определение составлено неверно, так как в нем описано то, чего в записи нет, но неизвестно, что там есть. Это довольно типичная неточность, которую допускают в определении.

Заметим, что определения понятиям даются не сразу, т.е. не при первичном знакомстве, а в отсроченном времени, после того как дети познакомились с соответствующей математической записью и научились ею оперировать. Определения даются чаще всего в неявном виде, описательно.

Для справки : В математике встречаются как явные, так и неявные определения понятий. Среди явных определений наиболее распространены определения через ближайший род и видовое отличие . (Уравнение – это равенство, содержащее переменную величину.). Неявные определения можно разделить на два вида: контекстуальные и остенсивные . В контекстуальных определениях содержание нового понятия раскрывается через отрывок текста, через анализ конкретной ситуации.

Например: 3 + х = 9. х — неизвестное число, которое надо найти.

Остенсивные определения используются для введения терминов путем демонстрации объектов, которые этими терминами обозначаются. Поэтому эти определения еще называют определениями путем показа. Например, таким способом определяются в начальных классах понятия равенства и неравенства.

2 + 7 > 2 + 6 9 + 3 = 12

78 — 9 < 78 6 × 4 = 4 × 6

неравенства равенства

7.4. Порядок выполнения действий в выражениях

Наши наблюдения и анализ ученических работ показывает, что изучение данной содержательной линии сопровождается следующими видами ошибок школьников:

· Не могут правильно применить правило порядка действий;

· Неверно отбирают числа для выполнения действия.

Например, в выражении 62 + 30: (18 — 3) выполняют действия в следующем порядке:

62 + 30 = 92 или так: 18 – 3 = 15

18 — 3 = 15 30: 15 = 2

30: 15 = 2 62 + 30 = 92

Опираясь на данные о типичных ошибках, возникающих у школьников можно выделить два основных действия, которые следует формировать в процессе изучения данной содержательной линии:

1) действие по определению порядка выполнения арифметических действий в числовом выражении;

2) действие по отбору чисел для вычисления значений промежуточных математических действий.

В курсе математики начальных классов традиционно правила порядка действий формулируются в следующем виде.

Правило 1 . В выражениях без скобок, содержащих только сложение и вычитание или умножение и деление, действия выполняются в том порядке, как они записаны: слева направо.

Правило 2. В выражениях без скобок сначала выполняются по порядку слева направо умножение или деление, а потом сложение или вычитание.

Правило 3 . В выражениях со скобками сначала вычисляют значение выражений в скобках. Затем по порядку слева направо выполняются умножение или деление, а потом сложение или вычитание.

Каждое из данных правил ориентировано на определенный вид выражений:

1) выражения без скобок, содержащие только действия одной ступени;

2) выражения без скобок, содержащие действия первой и второй ступени;

3) выражения со скобками, содержащие действия, как первой, так и второй ступени.

При такой логике введения правил и последовательности их изучения выше названные действия будут состоять из ниже перечисленных операций, овладение которыми и обеспечивает усвоение данного материала:

§ распознать структуру выражения и назвать, к какому типу оно относится;

§ соотнести данное выражение с правилом, которым надо руководствоваться при вычислении его значения;

§ установить порядок действий в соответствии с правилом;

§ правильно отобрать числа для выполнения очередного действия;

§ выполнить вычисления.

Данные правила вводятся в третьем классе как обобщение для определения порядка действий в выражениях различной структуры. Нужно заметить, что до знакомства с этими правилами дети уже встречались с выражениями со скобками. В первом и втором классах при изучении свойств арифметических действий (сочетательное свойство сложения, распределительное свойство умножения и деления), умеют вычислять значения выражений, содержащих действия одной ступени, т.е. им знакомо правило № 1. Поскольку вводится три правила, отражающие порядок действий в выражениях трех видов, то необходимо, прежде всего, научить детей выделять различные выражения с точки зрения тех признаков, на которые ориентировано каждое правило.

В образовательной системе «Гармония » основную роль в изучении этой темы играет система целесообразно подобранных упражнений, через выполнение которых дети усваивают общий способ определения порядка действий в выражениях разной структуры. Нужно заметить, что автор программы по математике в данной системе очень логично выстраивает методику введения правил порядка действий, последовательно предлагает детям упражнения для отработки операций, входящих в состав выше названных действий. Чаще всего встречаются задания:

ü на сравнение выражений и последующее выявление в них признаков сходства и различия (признак сходства отражает тип выражения, с точки зрения его ориентации на правило);

ü на классификацию выражений по заданному признаку;

ü на выбор выражений с заданными характеристиками;

ü на конструирование выражений по заданному правилу (условию);

ü на применение правила в различных моделях выражений (символической, схематической, графической);

ü на составление плана или блок-схемы порядка выполнения действий;

ü на постановку скобок в выражении при заданном его значении;

ü на определение порядка действий в выражении при вычисленном его значении.

В системах «Школа 2000…» и «Начальная школа ХХI века» предлагается несколько другой подход к изучению порядка действий в составных выражениях. При этом подходе основное внимание уделяется пониманию учащимися структуры выражения. Важнейшим учебным действием при этом является выделение в составном выражении нескольких частей (разбиение выражения на части). В процессе вычисления значений составных выражений учащиеся пользуются рабочими правилами :

1. Если выражение содержит скобки, то его разбивают на части так, чтобы одна часть с другой были соединены действиями первой ступени (знаками «плюс» и «минус»), не заключенными в скобки, находят значение каждой части, а затем действия первой ступени выполняют по порядку – слева направо.

2. Если в выражении нет действий первой ступени, не заключенных в скобки, но есть действия умножения и деления, не заключенные в скобки, то выражение разбивают на части, ориентируясь на эти знаки.

Эти правила позволяют производить вычисление значений выражений, содержащих большое число арифметических действий.

Рассмотрим пример.

Знаками плюс и минус, не заключенными в скобки, разобьем выражение на части: от начала до первого знака (минус), не заключенного в скобки, затем от этого знака до следующего (плюс) и от знака плюс до конца.

3 · 40 — 20 · (60 — 55) + 81: (36: 4)

Получилось три части:

1 часть — 3 40

2 часть — 20 · (60 — 55)

и 3 часть 81: (36: 4).

Находим значение каждой части:

1) 3 · 40 = 120 2) 60 — 55 = 5 3) 36: 4 = 9 4) 120 -100 = 20

20 · 5 = 100 81: 9 = 9 20 + 9 = 29

Ответ: значение выражения 29.

Цель семинаров по данной содержательной линии

· реферировать и рецензировать статьи (пособия) дидактического, педагогического и психологического содержания;

· составлять картотеку к докладу, для изучения конкретной темы;

· выполнять логико-дидактический анализ школьных учебников, учебных комплектов, а также анализ реализации в учебниках определенной математической идеи, линии;

· подбирать задания для обучения понятиям, обоснованию математических утверждений, формированию правила или построению алгоритма.

Задания для самоподготовки

Тема занятия . Характеристика понятий «выражение», «равенство», «неравенство», «уравнение» и методика их изучения в различных методических



Последние материалы раздела:

Изменение вида звездного неба в течение суток
Изменение вида звездного неба в течение суток

Тема урока «Изменение вида звездного неба в течение года». Цель урока: Изучить видимое годичное движение Солнца. Звёздное небо – великая книга...

Развитие критического мышления: технологии и методики
Развитие критического мышления: технологии и методики

Критическое мышление – это система суждений, способствующая анализу информации, ее собственной интерпретации, а также обоснованности...

Онлайн обучение профессии Программист 1С
Онлайн обучение профессии Программист 1С

В современном мире цифровых технологий профессия программиста остается одной из самых востребованных и перспективных. Особенно высок спрос на...