Методы дистантной психологической диагностики. Кафедра географии и картографии

Бесспорно, важнейшие качества данных, используемых в про­цессе принятия решения, - актуальность, полнота и объектив­ность. Всеми этими качествами обладают данные дистанционного зондирования (ДЦЗ) Земли. Они служат эффективным инстру­ментом, позволяющим оперативно и детально исследовать состоя­ние окружающей среды, использование природных ресурсов и по­лучать объективную картину мира.

Дистанционное зондирование - получение информации о зем­ной поверхности (включая расположенные на ней объекты) без непосредственного контакта с ней путем регистрации приходя­щего от нее электромагнитного излучения .

Методы дистанционного зондирования основаны на том, что любой объект излучает и отражает электромагнитную энергию в соответствии с особенностями его природы. Различия в длинах волн и интенсивности излучения могут быть использованы для изучения свойств удаленного объекта без непосредственного кон­такта с ним .

Дистанционное зондирование сегодня - это огромное разно­образие методов получения изображений практически во всех диапазонах длин волн электромагнитного спектра (от ультрафиоле­товой до дальней инфракрасной) и радиодиапазона, самая раз­личная обзорность изображений - от снимков с метеорологиче­ских геостационарных спутников, охватывающих практически це­лое полушарие, до детальных аэросъемок участка в несколько сот квадратных метров .

Основные достоинства дистанционного мониторинга следующие:

Наблюдаются и регистрируются сведения об обширных пространствах вплоть до всей видимой в момент съемки части Земного шара;

Благодаря большой обзорности можно прослеживать глобальные и крупные региональные особенности природы Земли;

Космические снимки дают однотипную информацию о труднодоступных районах с такой же точностью, как и для хорошо
изученных участков, что позволяет эффективно применять метод
экстраполяции дешифровочных признаков на основе выделения
ландшафтов-аналогов;

Мгновенность изображения обширных площадей сводит к минимуму влияние переменных факторов;

Возможность регулярного проведения повторных съемок позволяет выбрать лучшие изображения;

По материалам повторных съемок изучается динамика при­
родных процессов;

Комплексный характер информации, содержащейся на космоснимках, обусловливает использование их для изучения сложных
процессов взаимодействия компонентов природы: атмосферы и
океана, гидрологических процессов с литогенной основой, жи­вотных и растений со всем многообразием условий их обитания;

Благодаря естественной генерализации изображения на кос­мических снимках отображаются наиболее крупные и существенные элементы ландшафтной структуры географической оболочки
и следы антропогенного воздействия .

История использования данных аэрокосмического мониторинга. Дистанционные методы исследования окружающей среды ведут свою историю с древнейших времен. Например, еще в Древнем Риме существовали изображения различных географических объек­тов в виде планов на стенах зданий.

В XVIII в. определение размеров и пространственного положения предметов происходило по его рисованным изображениям в цент­ральной проекции, которые получали с помощью камеры-обскуры с возвышенных мест и судов. Исследователь получал снимки-ри­сунки, графически фиксируя оптическое изображение. Уже при съемке производился отбор и обобщение деталей изображения.

Следующими этапами в развитии дистанционных методов стали открытие фотографии, изобретение фотообъектива и стереоскопа. Фотографическая регистрация оптического изображения позво­лила получать практически моментальные снимки, которые отличались объективностью, детальностью и точностью. Француз­ский геолог и альпинист Э. Цивиаль выполнил фотографирова­ние в Пиренеях и Альпах.

Фотографии местности, сделанные с высоты птичьего полета с воздушных шаров и воздушных змеев, сразу же получили высо­кую картографическую оценку. Для различных военных и граж­данских целей использовались снимки с привязных аэростатов и аэропланов .

Первые самолетные съемки совершили революцию в дистан­ционном зондировании, но они не позволяли получать необходи­мые мелкомасштабные изображения. Однако в 1920 -1930-е гг. фо­тосъемка местности с самолетов широко применялась для созда­ния лесных, топографических, геологических карт, для изыска­тельских работ.

Следующим этапом стало использование баллистических ракет. Первый снимок земной поверхности был получен при помощи фотоаппарата, установленного на баллистической ракете Fau-2 немецкого производства, запущенной в 1945 г. с американского ракетного полигона White Sands. Ракета достигла высоты 120 км, после чего фотоаппарат с отснятой пленкой был возвращен на Землю в специальной капсуле. До конца 1950-х гг. космическая съемка поверхности Земли осуществлялась с высот до 200 км ис­ключительно с использованием аппаратуры, устанавливаемой на баллистических ракетах и зондах . Несмотря на несовершен­ство методики получения снимков при фотографировании с бал­листических ракет, они широко применялись благодаря их отно­сительной дешевизне для изучения растительности, типов исполь­зования земель, для нужд гидрометеорологии и геологии и при исследованиях природной среды .

Началом систематического обзора поверхности Земли из кос­моса можно считать запуск 1 апреля 1960 г. американского метео­рологического спутника TIROS-1 {Television and Infrared Observation Satellite). Первый отечественный ИСЗ аналогичного назначения, «Космос-122», был выведен на орбиту 25 июня 1966 г. Работа спут­ников серии «Космос» («Космос-144» и «Космос-156») позволила создать метеорологическую систему, впоследствии разросшуюся в специальную службу погоды (система «Метеор»).

Уже со времени второго пилотируемого полета Г.С.Титова на корабле «Восток-2» (1961) производилась съемка Земли. В каче­стве съемочной аппаратуры использовались ручные фотокамеры.

Со второй половины 1970-х гг. космические съемки стали про­водиться в массовом порядке с автоматических спутников. Первым спутником, нацеленным на исследование природных ресурсов Зем­ли, стал американский космический аппарат (КА) ERTS {Earth Resources Technological Satellite), впоследствии переименованный в Landsat, дававший разрешение на местности в 50 - 100 м.

По-настоящему широкие перспективы открылись перед дис­танционным зондированием с развитием компьютерных техноло­гий, переносом всех основных операций по обработке и использо­ванию данных съемок на компьютеры, особенно в связи с появ­лением и широким распространением ГИС .

Сейчас задачи оперативного спутникового контроля природ­ных ресурсов, исследования динамики протекания природных процессов и явлений, анализа причин, прогнозирования воз­можных последствий и выбора способов предупреждения чрез­вычайных ситуаций считаются неотъемлемым атрибутом мето­дологии сбора информации о состоянии интересующей терри­тории (страны, края, города), необходимой для принятия пра­вильных и своевременных управленческих решений. Особая роль отводится спутниковой информации в геоинформационных си­стемах, где результаты дистанционного зондирования поверх­ности Земли (ДЗЗ) из космоса являются регулярно обновляе­мым источником данных, необходимых для формирования при-родоресурсных кадастров и других приложений, охватывая весьма широкий спектр масштабов (от 1:10 000 до 1:10 000 000). При этом информация ДЗЗ позволяет оперативно оценивать достоверность и в случае необходимости проводить обновление использующихся графических слоев (карт дорожной сети, комму­никаций и т.п.), а также может быть использована в качестве растровой «подложки» в целом ряде ГИС-приложений, без кото­рых сегодня уже немыслима современная хозяйственная деятель­ность .

Принципы современного подхода к использованию данных дис­танционного зондирования Земли. 1. Вся обработка и практически все использование ДДЗ производится в цифровом виде с помо­щью компьютеров.

2. Все материалы дешифрирования ДДЗ и другие получаемые
из них данные готовятся для использования в составе пространственных баз данных геоинформационных систем.

3. В процессе использования ДДЗ дополнительно привлекаются
самые различные данные другого типа, организованные в виде
баз данных ГИС. Это могут быть данные полевых обследований,
различные карты, другие данные дистанционного зондирования,
геофизические и геохимические поля, характеризующие те или
иные природные среды, и т.д. Эти данные используются непосредственно в процессе дешифрирования ДДЗ или вовлекаются в
совместную обработку с ними. Дешифрирование и процесс ис­пользования ДДЗ сегодня следует рассматривать не как отдельный
изолированный процесс, а как часть процесса комплексной интерпретации и использования данных.

4. Как правило, работа с ДДЗ производится не с отдельными
снимками, а с виртуальной мозаикой многих кадров.

5. Улучшающая обработка изображения - не отдельный про­
цесс, оторванный от процесса тематической обработки и дешифрирования ДДЗ, а обработка прямо в процессе дешифрирования
или другого использования.

6. В основном тематическая обработка и дешифрирование ДДЗ
ведется или с трансформированными и привязанными снимками
в реальных координатных системах, или при установленной та­
кой связи с реальными координатами с возможностью выполнения отложенного трансформирования.

7. Картографические проекции и системы координат более не
трактуются как нечто навсегда заданное для изображения; они
преобразуются по мере необходимости как для отдельных точек
или объектов, так и для целого изображения ДДЗ.

8. Широко применяются методы автоматизации тематической
обработки, автоматизации дешифрирования, которые, однако,
не рассматриваются обычно как методы получения окончательного результата, а как подручные, многократно применяемые ме­тоды получения чернового результата, как метод исследования
данных. Главные и окончательные решения чаще всего принимает
человек.

9. Для комплексного анализа данных, включающих ДДЗ, часто
применяются технологии экспертных систем и им подобные, объединяющие неформальные знания экспертов и формальные методы анализа.

10. Из процесса использования ДДЗ исключен как самостоя­тельная стадия процесс сбора результатов дешифрирования от­
дельных снимков и перенос их на единую топооснову.

11. Значительная часть обработки, особенно улучшающих пре­
образований, проводится без внесения изменений в файлы данных на диске (в оперативной памяти или временных файлах),
поэтому не происходит накопления промежуточных результатов
обработки и возможна отмена выполненных преобразований.

12. Поскольку трансформирование и привязка снимков могут
занимать различное положение в цепи обработки и использова­ния снимков, их нельзя более считать поставщиком данных или
специальной группой подготовки (предварительной обработки)
снимков. В ряде ситуаций она выполняется конечным пользователем ДДЗ, занятым их тематическим использованием.

13.Фотограмметрические методики, обеспечивающие выпол­нение точных геометрических измерений на снимках, ранее мало­доступные из-за необходимости использования очень дорогого, сложного в эксплуатации и немобильного оптико-механического оборудования и высококвалифицированного персонала, сегодня, с внедрением методов цифровой фотограмметрии и, особенно, в связи с ее переходом на использование персональных компьюте­ров, стали доступны даже конечному пользователю ДДЗ .

Далее мы подробно остановимся на космическом мониторинге окружающей среды как наиболее объективном и современном методе отражения процессов и явлений, происходящих в окружаю­щей среде. Космические методы удачно дополняют традиционные наземные и аэрометоды. Их совместное использование обеспе­чивает исследования одновременно на локальном, региональном и глобальном уровнях.

Основной продукт космического мониторинга - снимок. Сни­мок - двумерное изображение, полученное в результате дистан­ционной регистрации техническими средствами собственного или отраженного излучения и предназначаемое для обнаружения, каче­ственного и количественного изучения объектов, явлений и про­цессов путем дешифрирования, измерения и картографирования.

Космические снимки имеют большую познавательную цен­ность, усиленную их особыми свойствами, такими как большая обзорность, генерализованность изображения, комплексное отоб­ражение всех компонентов геосферы, регулярная повторяемость через определенные интервалы времени, оперативность поступ­ления информации, возможность ее получения для объектов, не­доступных изучению другими средствами.

Генерализация изображения на космических снимках включает геометрическое и тоновое обобщение рисунка изображения и за­висит от ряда факторов - технических (масштаба и разрешения снимков, метода и спектрального диапазона съемки) и природ­ных (влияния атмосферы, особенностей территории). В результате такой генерализации изображение многих черт земной поверхно­сти на снимках освобождается от частностей, в то же время раз­розненные детали объединяются в единое целое, поэтому более четко выступают объекты высших таксономических уровней, круп­ные региональные и глобальные структуры, зональные и плане­тарные закономерности.

Влияние генерализации изображения на дешифрируемость кос­мических снимков - двойственное. Сильно обобщенное изобра­жение уменьшает возможность высокоточного и детального картографирования по космическим снимкам, в частности влечет ошибки дешифрирования. Недаром стремятся к использованию снимков высокого разрешения. Однако обобщенность изображе­ния космического снимка относится к его достоинствам. Это свой­ство позволяет также использовать космические снимки для непосредственного составления тематических карт в средних и мелких масштабах без трудоемкого детального многоступенчатого перехода от крупных масштабов карт к мелким, что обеспечивает экономию времени и средств. Во-вторых, оно дает преимущества смыслового, содержательного, плана: на космических снимках выявляются важные объекты, скрытые на снимках более крупных масштабов .

Классификация космических снимков. Космические снимки мож­но классифицировать по разным признакам: в зависимости от выбора регистрируемых излучательных и отражательных характе­ристик, что определяется спектральным диапазоном съемки; от тех­нологии получения изображений и передачи их на Землю, во мно­гом обусловливающей качество снимков; от параметров орбиты космического носителя и съемочной аппаратуры, определяющих масштаб съемки, обзорность, разрешение снимков и т.п.

По спектральному диапазону (рис. 4.6) космические снимки де­лятся на три основные группы :

В видимом и ближнем инфракрасном (световом) диапазоне;

В тепловом инфракрасном диапазоне;

Снимки в радиодиапазоне.

По технологии получения изображения, способам получения сним­ков и передачи на Землю снимки в видимом и ближнем инфра­красном (световом) диапазоне подразделяют на:

Фотографические;

Телевизионные и сканерные;

Многоэлементные ПЗС-снимки на основе приборов с зарядовой связью;

Фототелевизионные.

Снимки в тепловом инфракрасном диапазоне представляют собой тепловые инфракрасные радиометрические снимки. Снимки в радиодиапазоне делятся в зависимости от использования актив­ного или пассивного принципа съемки на микроволновые радио­метрические, получаемые при пассивной регистрации излучения, и радиолокационные, получаемые при активной локации.

По масштабу космические снимки делятся на три группы:

1) мелкомасштабные (1:10 000 000 -1:100 000 000);

2) среднемасштабные (1:1 000000- 1:10 000 000);

3) крупномасштабные (крупнее 1:1 000 000).

По обзорности (площадному охвату территории одним снимком) снимки подразделяются на:

Глобальные (охватывающие всю планету, точнее, освещенную
часть одного полушария);

Региональные, на которых изображаются части материков или
крупные регионы;

Локальные, на которых изображаются части регионов.

По разрешению (минимальной линейной величине на местности изображающихся объектов) снимки различаются на снимки:

Очень низкого разрешения, измеряющееся десятками кило­
метров;

Низкого разрешения, измеряющегося километрами;

Среднего разрешения, измеряющегося сотнями метров;

Снимки высокого разрешения, измеряющегося десятками мет­ров (которые, в свою очередь, делят на снимки относительно высо кое качество снимков, получаемых в видимом и ближнем ин­фракрасном диапазоне, их геометрические и фотометрические свой­ства зависят от технологии получения снимков и передачи их на Землю.

Фотографические снимки в этом диапазоне получают с пилоти­руемых кораблей и орбитальных станций или с автоматических спутников. Известные недостатки фотографического метода свя­заны с необходимостью возвращения пленки на Землю и ограни­ченным ее запасом на борту. Однако этот метод дает снимки наи­более высокого качества, с хорошими геометрическими и фото­метрическими характеристиками. Разрешение фотографических снимков с околоземных орбит высотой 100 - 400 км может быть доведено до десятков сантиметров, но такие снимки не обладают большой обзорностью. Фотографические снимки, сделанные первыми советскими космонавтами с корабля «Восток», представ­лены в альбоме «Наша планета из космоса» (1964). На них разли­чались береговые линии морей, реки, леса. Однако возможности их использования были весьма ограниченны. Затем в нашей стране фотографическая съемка производилась с космических кораблей серии «Союз», с орбитальных станций «Салют» и сменивших их в 1986 г. станций «Мир». Основной объем фотографической ин­формации поступает в нашей стране со специальных автомати­ческих спутников серии «Космос». Система этих спутников получи­ла теперь наименование «Ресурс-Ф» (как фотографическая под­система общегосударственной космической системы исследования природных ресурсов) (подробнее о спутниках и установленной на них аппаратуре см. раздел 4.8).

Телевизионная и сканерная съемка в этом диапазоне дает воз­можность систематического получения изображения всей поверх­ности Земли с искусственных спутников в течение длительного времени при быстрой передаче его на приемные станции. При выполнении съемки этим методом используются кадровые и ска­нирующие системы. В первом случае на борту спутника имеется миниатюрная телевизионная камера (видикон), в которой опти­ческое изображение, построенное объективом на экране при считывании электронным лучом, переводится в форму электро­сигналов и по радиоканалам передается на Землю. Во втором слу­чае качающееся зеркало сканера на борту носителя улавливает отраженный от Земли световой поток, поступающий на фотоум­ножитель. Преобразованные сигналы сканера также по радиока­налам передаются на Землю, где на приемных станциях они при­нимаются и записываются в виде изображений. При этом каждый сигнал относится к определенной площадке - элементу изображе­ния, - для которой передается интегральная яркость. Колебание зеркала реализует строки изображения, а благодаря движению носителя происходит накопление строк и формируется снимок, что обусловливает строчно-сетчатую поэлементную структуру изоб­ражения.

Телевизионные и сканерные снимки могут передаваться на Землю в реальном масштабе прохождения спутника над объектом съемки. Оперативность получения снимков составляет отличитель­ную черту этого метода. Телевизионная и сканирующая аппарату­ра устанавливается на полярно-орбитальных спутниках Земли.

Важной особенностью сканерной съемки является поступле­ние информации со спутника в цифровой форме, что облегчает ее обработку.

Получение многоэлементных ПЗС-снимков связано с примене­нием электронных камер (иногда их называют электронными ска­нерами). В них используются многоэлементные линейные и мат­ричные приемники излучения, состоящие из нескольких тысяч миниатюрных (размером 10 - 20 мкм) светочувствительных эле­ментов-детекторов - так называемых приборов с зарядовой свя­зью (ПЗС). Их малые размеры обеспечивают высокое разрешение подобных снимков. Линейный ряд детекторов (так называемая линейка ПЗС) реализует сразу целую строку снимка, а накопле­ние строк обеспечивается за счет движения носителя аппаратуры. Эта аппаратура не имеет колеблющихся или вращающихся эле­ментов конструкции, что вместе с высоким разрешением обус­ловливает лучшие геометрические свойства снимков.

Снимки этого типа впервые были получены в 1980 г. с помощью экспериментальной системы МСУ-Э на спутнике «Метеор-30». На спутнике «Ресурс-01» с 1988 г. аппаратура МСУ-Э дает снимки в 3 спектральных зонах с разрешением 45 м при охвате 45 км; для расширения полосы охвата используются 2 сканера. Информация с этих спутников поступает в цифровой форме и предназначена для автоматизированной обработки.

Фототелевизионные снимки получают с помощью фотокамеры, обеспечивающей хорошее качество изображения. Передача экс­понированного и проявленного на борту изображения на Землю идет по телевизионным каналам связи. Фототелевизионный метод съемки сыграл важную роль при съемке планет.

Применение фототелевизионных снимков относится к первым годам космических исследований, когда качество телевизионных изображений заставляло обращаться к фотографированию с бор­та космических носителей даже при невозможности доставки от­снятой пленки на Землю, используя телевизионный метод для передачи снимков. Использование этих снимков было особенно Важно при исследованиях Луны и Марса.

Снимки в тепловом инфракрасном диапазоне. Тепловой инфра­красный диапазон охватывает длины волн от 3 до 1000 мкм, одна­ко большая часть его лучей не пропускается атмосферой. Имеются только три окна прозрачности с длинами волн 3 - 5, 8 -14 и 30 - 80 мкм, первые два из которых используются для съемки. Интен­сивность излучения Солнца в этом диапазоне незначительна, но зато на волны длиной 10 - 12 мкм приходится максимум собствен­ного теплового излучения Земли. Поскольку у различных объек­тов земной поверхности (суши, воды, по-разному увлажненных почв и т.п.) оно неодинаково, появляется возможность по дан­ным регистрации этого излучения судить о характере излучаю­щих объектов. Регистрирующие приборы, работающие в этом ди­апазоне (тепловые инфракрасные радиометры), дают сигналы разной силы для объектов с различной температурой. При по­строении по этим сигналам изображения - теплового инфракрас­ного снимка - получают пространственно зафиксированные тем­пературные различия объектов съемки. Обычно на таких снимках наиболее холодные объекты выглядят светлыми, теплые - темны­ми со всей гаммой температурных переходов. Съемку можно вести ночью - на затененной стороне Земли, а также в условиях по­лярной ночи. Съемке мешает облачность, так как в этом случае регистрируются температуры не земной поверхности, а верхней кромки облаков.

Помимо прямого определения температурных режимов види­мых объектов и явлений (как природных, так и искусственных) тепловые снимки позволяют косвенно выявлять то, что скрыто под землей - подземные реки, трубопроводы и т. п. Снимки по­зволяют отслеживать динамику лесных пожаров, нефтяные и га­зовые факелы, процессы подземной эрозии .

Дистанционное зондирование в тепловой инфракрасной обла­сти спектра - более сложная задача, чем в видимой и ближней инфракрасной областях. Это обусловлено тем, что в тепловой об­ласти измерения чувствительны к температуре, которая характе­ризуется следующими свойствами для соответствующих природ­ных объектов:

Эти объекты могут запасать и через какое-то время высвобождать сохраненное тепло, т.е. фактическая температура определяется не только текущими условиями измерений, но и предысто­рией нагревания того или иного объекта;

На земной поверхности тепловая энергия зависит не только
от солнечной радиации, но и от турбулентного теплообмена поверхности и испарения влаги .

Тем самым при определении температуры земной поверхности по данным дистанционного зондирования с точки зрения иден­тификации тепловых свойств объектов исследования необходимо учитывать обмен и изменения энергетических потоков и эволю­цию температуры поверхности во времени. Обычно поверхность суши и океаны поглощают солнечную энергию в дневное время суток и переизлучают часть запасенной энергии в тепловой обла­сти спектра в ночное время. Вместе с тем атмосфера имеет собственное тепловое излучение, что определяет сложный характер баланса радиационных и тепловых потоков. В ночное время суток эта «усложненная» тепловая энергия переизлучается до следую­щего цикла солнечного нагревания неодинаково для разных гор­ных пород, почвенно-растительного покрова и водных поверхно­стей вследствие их разной теплоинерционной способности .

Снимки в радиодиапазоне. Для дистанционного изучения Земли используется ультракоротковолновый диапазон радиоволн с дли­нами 1 мм - 10 м, точнее, его наиболее коротковолновая часть (1 мм - 1 м), называемая сверхвысокочастотным (СВЧ) диапазо­ном (в зарубежной литературе его называют микроволновым). Он в значительной мере свободен от влияния атмосферы: окно про­зрачности охватывает длины волн от 1 см до 10 м. При съемке в ультракоротковолновом диапазоне фиксируется либо собственное излучение Земли этого диапазона (пассивная радиометрия), либо отраженное искусственное излучение (активная радиолокация).

При пассивной съемке получают микроволновые радиометри­ческие снимки. С помощью микроволновых радиометров регистри­руется микроволновое излучение различных объектов - так на­зываемые радиояркостные температуры. Такая съемка называется радиотепловой или микроволновой радиометрической. По сигна­лам излучения строится пространственное изображение - мик­роволновый радиометрический снимок, на котором по-разному изображаются объекты, обладающие неодинаковыми излучатель-ными свойствами. Излучательные характеристики различных при­родных и искусственных объектов в этом диапазоне неодинаковы. Так, излучение металлов минимально, практически равно 0; излу­чение растительности и сухой почвы определяется коэффициен­том 0,9, а воды - 0,3. Это позволяет разделять на снимках объекты с различными излучательными свойствами, в частности разные по влажности почвы, воды с разной степенью солености, объекты с разной кристаллической структурой, промерзание грунтов. На таких снимках по-разному выглядят морские льды различного воз­раста - однолетние и многолетние, - которые могут не разли­чаться на обычных снимках в оптическом диапазоне.

При активной радиолокационной съемке получают собственно радиолокационные снимки. На носителе устанавливается активный источник радиоизлучения с антенной, действующий по принципу просмотра местности поперек линии маршрута. Посылаемый к Земле узконаправленный сигнал по-разному отражается поверхностью и улавливается регистрирующей аппаратурой. Из таких построчных сигналов формируются радиолокационные снимки, на которых отображаются шероховатость поверхности, ее микрорельеф, осо­бенности структуры и состав пород, слагающих поверхность.

При размерах неровностей поверхности меньше полудлины волны поверхность объекта для радиоволн как бы гладкая (зеркалит) и изображается на радиолокационных снимках наиболее тем­ным тоном (песчаные пляжи, солончаки, такыры, гладкая вод­ная поверхность). При размере неровностей больше полудлины волны происходит рассеивание и диффузное отражение энергии, зависящее от величины неровностей, их формы, ориентировки по отношению к радиолучу. Они изображаются серым тоном раз­ной плотности. Растительность увеличивает поглощение радиоволн и изображается светлым тоном. Такое радиолокационное поверх­ностное зондирование ведут, используя волны сантиметрового диапазона. Генерируя излучение различных длин волн, можно получать информацию об объектах на некоторой глубине. Радио­локаторы подповерхностного зондирования работают в децимет­ровом и метровом диапазоне (1-30 м). Они обнаруживают под­поверхностные неоднородности грунтов, позволяя определять глу­бину их залегания и мощность. Например, в диапазоне 0,5 - 1 м фиксируются пресные грунтовые воды в песках на глубине до 20 м.

Радиолокационные снимки могут применяться для изучения волнения и приповерхностных ветров, исследования поверхност­ных и подповерхностных структур, поисков линз подземных вод, изучения растительности, картографирования использования зе­мель, изучения городов и решения других задач.

Пассивная и активная съемка в радиодиапазоне отличается от остальных видов съемки своей всепогодностью, обусловленной абсолютной прозрачностью атмосферы для волн этого диапазона спектра. Она может производиться ночью, при сплошной облач­ности, тумане, дожде. Именно поэтому важно применение дан­ного диапазона для космических съемок, в особенности для опе­ративных целей.

26. Дистанционные методы исследований в современной географии

Данные дистанционного зондирования

Материалы дистанционного зондирования получают в резуль­тате неконтактной съемки с летательных воздушных и космичес­ких аппаратов, судов и подводных лодок, наземных станций. Не­которые виды дистанционного зондирования схематически изоб­ражены на рис. 10.1. Получаемые документы очень разнообразны по масштабу, разрешению, геометрическим, спектральным и иным свойствам. Все зависит от вида и высоты съемки, применяемой аппаратуры, а также от природных особенностей местности, ат­мосферных условий и т.п.

Главные качества дистанционных изображений, особенно по­лезные для составления карт, - это их высокая детальность, од­новременный охват обширных пространств, возможность получе­ния повторных снимков и изучения труднодоступных территорий. Благодаря этому данные дистанционного зондирования нашли в

картографии разнообразное применение: их используют для составления и оперативного обновления топографических и тема­тических карт, картографирования малоизученных и труднодос­тупных районов (например, высокогорий). Наконец, аэро- и кос­мические снимки служат источниками для создания общегеогра­фических и тематических фотокарт (см. разд. 11.5).

Съемки ведут в видимой, ближней инфракрасной, тепловой инфракрасной, радиоволновой и ультрафиолетовой зонах спектра. При этом снимки могут быть черно-белыми зональными и пан­хроматическими, цветными, цветными спектрозональными и даже - для лучшей различимости некоторых объектов - ложно-цветными, т.е. выполненными в условных цветах. Следует отметить особые достоинства съемки в радиодиапазоне. Радиоволны, почти не поглощаясь, свободно проходят через облачность и туман. Ноч­ная темнота тоже не помеха для съемки, она ведется при любой погоде и в любое время суток.

Фотографические снимки - это результат покадровой регист­рации собственного или отраженного излучения земных объектов на светочувствительную пленку. Аэрофотоснимки получают с са­молетов, вертолетов, воздушных шаров, космические снимки --со спутников и космических кораблей, подводные - с подводных судов и барокамер, опускающихся на глубину, а наземные - с по­мощью фототеодолитов.

Кроме одиночных плановых снимков в качестве источников используют стереопары, монтажи, фотосхемы и фотопланы, па­норамные снимки и фотопанорамы, фронтальные (вертикальные) фотоснимки и др.

В отличие от фотографических, телевизионные снимки и теле­панорамы получают путем регистрации изображения на светочув­ствительных экранах передающих телевизионных камер (видико-нов). Съемка с борта самолета или со спутника захватывает до­вольно большую полосу местности - шириной от 1 до 2 тыс. км в зависимости от высоты полета и технических характеристик съе­мочной системы. Высокоорбитальные спутники позволяют полу­чать изображение всей планеты в целом и в режиме реального времени передавать его на наземные пункты приема дистанцион­ной информации. Поэтому телевизионная съемка удобна для опе­ративного картографирования и слежения (мониторинга) за зем­ными объектами и процессами. Однако по своему разрешению и величине геометрических искажений телевизионные изображения уступают фотоснимкам.

Телевизионные снимки бывают узко- и широкополосными, они охватывают разные зоны спектра, могут иметь разную развертку и т.п. Особый вид источников - фототелевизионные снимки, в которых детальность фотографий сочетается с оперативностью пе­редачи изображений по телевизионным каналам.

Наиболее широко в картографировании используют сканерные снимки, полосы, «сцены», получаемые путем поэлементной и по­строчной регистрации излучения объектов земной поверхности. Само слово «сканирование» означает управляемое перемещение луча или пучка (светового, лазерного и др.) с целью последова­тельного обзора (осмотра) какого-либо участка.

В ходе съемки с самолета или спутника сканирующее устрой­ство (качающееся зеркало или призма) последовательно, полоса за полосой, просматривает местность поперек направления дви­жения носителя. Отраженный сигнал поступает на точечный фотоприемник, и в результате получаются снимки с полосчатой или строчной структурой, причем строки состоят из небольших эле­ментов - пикселов. Каждый из них отражает суммарную усред­ненную яркость небольшого участка местности, так что детали внутри пиксела неразличимы. Пиксел - это элементарная ячейка сканерного изображения.

При полете съемка ведется постоянно, и поэтому сканирова­ние охватывает широкую непрерывную полосу (или ленту) мест­ности. Отдельные участки полосы называют сценами. В целом ска­нерные изображения уступают по качеству кадровым фотографи­ческим снимкам, однако оперативное получение изображений в цифровой форме имеет громадное преимущество перед другими видами съемки.

Существует ряд модификаций сканерной съемки, дающих изоб­ражения с иными геометрическими и радиометрическими свойствами. Так, сканирующие устройства с линейками полупроводниковых приемников обеспечивают съемку сразу целой строки, причем она получается в проекции, близкой к центральной, что существенно уменьшает геометрические искажения. На этом принципе основана съемка с помощью многоэлементных линейных и матричных при­емников излучения (приборов с зарядовой связью - ПЗС). Они дают возможность получать по каналам радиосвязи снимки очень высоко­го разрешения на местности - до нескольких метров.

Для картографирования обширных территорий используют монтажи сканерных снимков и даже особые сканерные «фотопор­треты», которые передают облик крупных участков планеты, ма­териков и стран так, как они видны из космоса.

Радиолокационные снимки получают со спутников и самолетов, а гидролокационные снимки - при подводной съемке дна озер, морей и океанов. Бортовые радиолокаторы бокового обзора, установлен­ные на аэро-, космических и подводных носителях, ведут съемку по правому и левому бортам перпендикулярно к направлению дви­жения носителя.

Благодаря боковому обзору на снимках прекрасно проявляется рельеф местности, отчетливо читаются детали его расчленения, характер шероховатости. При съемке океанов хорошо видно вол­нение водной поверхности. Радиолокация позволила впервые под­робно картографировать рельеф далеких планет.

Среди новых видов локационных изображений отметим сним­ки, получаемые в ультрафиолетовом и видимом диапазонах с по-мощью лазерных локаторов - лидаров. Непрерывное техническое совершенствование сканерных и локационных систем, множествен­ность съемочных диапазонов, возможности их широкого комби­нирования - все это создает поистине неисчерпаемое разнообра­зие источников для тематического картографирования.

Особое значение для картографирования имеет многозональ­ная съемка. Суть ее в том, что одна и та же территория (или аква­тория) одновременно фотографируется или сканируется в несколь­ких сравнительно узких зонах спектра. Комбинируя зональные сним­ки, можно получать так называемые синтезированные изображения, на которых наилучшим образом проявлены те или иные объекты. Например, подбирая разные сочетания, можно добиться наилуч­шего изображения водных объектов, геологических отложений определенного минералогического состава, разных пород леса, сельскохозяйственных угодий под теми или иными культурами и т.п. Поэтому материалы многозональной съемки - ценнейший источ­ник, в особенности для составления тематических карт.

Дистанционные методы - методы изучения Земли и других космических тел с воздушных или космических летательных аппаратов. В состав дистанционных методов входят аэросъемка, космическая съемка, дешифрование снимков, а также визуальные наблюдения: осмотр территории наблюдателем с борта летательного аппарата.

Аэросъемка - съемка земной поверхности с летательных аппаратов с использованием съемочных систем (приемников информации), работающих в различных участках спектра электромагнитных волн. Различают: -фотографическую аэросъемку (аэрофотосъемку); - телевизионную аэросъемку; - тепловую аэросъемку; - радиолокационную аэросъемку; и - многозональную аэросъемку.

Получаемые в результате аэроснимки (аэрофотоснимки) могут быть: - плановыми, если ось снимающего аппарата располагалась отвесно; или - перспективными, если ось снимающего аппарата располагалась наклонно.

В зависимости от высоты съемки и применяемой аппаратуры снимки имеют разные масштаб, подробность и обзорность.

Дешифрование снимков - исследование аэро- и космических снимков, определение объектов, которые на них изображены, установление между ними взаимосвязей. Дешифрование снимков - важнейший дистанционный метод изучения Земли.

Начало формы

Космическая съемка - фотографическая, телевизионная и т.п. съемка Земли, небесных тел и космических явлений аппаратурой, находящейся за пределами атмосферы Земли (на искусственных спутниках Земли, космических кораблях и т.п.) и дающей изображения в различных областях электромагнитного спектра.

Получаемые в результате космической съемки космические снимки отличаются от аэроснимков гораздо большей обзорностью, огромным охватом территории: на снимке среднего масштаба 3-4 тыс.кв.км, на снимке мелкого масштаба - десятки тысяч кв.км. Средний масштаб космических снимков Земли 1:1000000, 1:10000000.

В зависимости от положения оси снимающего аппарата различают плановую и перспективную космические съемки.

Для наблюдения Земли из космоса используют дистанционные методы: исследователь имеет возможность на расстоянии получать информацию об изучаемом объекте.

Дистанционные методы, как правило, являются косвенными, т.е. с их помощью измеряют не интересующие нас параметры объектов, а некоторые связанные с ними величины. Например, нам необходимо оценить состояние сельскохозяйственных посевов. Но аппаратура спутника регистрирует лишь интенсивность светового потока от этих объектов в нескольких участках оптического диапазона. Чтобы "расшифровать" такие данные, требуются предварительные исследования, включающие в себя различные эксперименты по изучению состояния растений контактными методами; по изучению отражательной способности листьев в различных участках спектра и при различном взаимном расположении источника света (Солнца), листьев и измерительного прибора. Далее необходимо определить, как выглядят те же объекты с самолета, и лишь после этого судить о состоянии посевов по спутниковым данным.

Дистанционные методы делят на активные и пассивные. При использовании активных методов спутник посылает на Землю сигнал собственного источника энергии (лазера, радиолокационного передатчика), регистрирует его отражение. Радиолокация позволяет "видеть" Землю сквозь облака. Чаще используются пассивные методы, когда регистрируется отраженная поверхностью энергия Солнца либо тепловое излучение Земли. Главными достоинствами космических средств, при использовании их для изучения природных ресурсов и контроля окружающей среды являются: оперативность, быстрота получения информации, возможно доставки её потребителю непосредственно в ходе приёма с КА, разнообразие форм наглядность результатов, экономичность.

Таблица №1 Диапазоны волн электромагнитных излучений.

Методы изучения Земли из космоса не случайно относят к высоким технологиям. Это связано не только с использованием ракетной техники, сложных оптико-электронных приборов, компьютеров, но и с новым подходом к получению интерпретации результатов измерений. И хотя трудоемкие подспутниковые исследования проводятся на небольшой площади, они дают возможность обобщать данные на огромные пространства и даже на весь земной шар. Широта охвата является характерной чертой спутниковых методов исследования Земли. К тому же эти методы, как правило, позволяют получать результат за сравнительно короткий интервал времени.Конец формы

Начало формы

Фотографическую съемку поверхности Земли с высот более 150 - 200 км принято называть космической. Отличительной чертой КС является высокая степень обзорности, охват одним снимком больших площадей поверхности. В зависимости от типа применяемой аппаратуры и фотопленок, фотографирование может производиться во всем видимом диапазоне электромагнитного спектра, в отдельных его зонах, а также в ближнем ИК (инфракрасном) диапазоне.

Масштабы съемки зависят от двух важнейших параметров: высоты съемки и фокусного расстояния объектива. Космические фотоаппараты в зависимости от наклона оптической оси позволяют получать плановые и перспективные снимки земной поверхности. В настоящее время для съемок из космоса наиболее часто используются многоспектральные оптико-механические системы - сканеры, установленные на ИСЗ различного, назначения. При помощи сканеров формируются изображения, состоящие из множества отдельных, последовательно получаемых элементов. Термин "сканирование" обозначает развертку изображения при помощи сканирующего элемента (качающегося или вращающегося зеркала), поэлементно просматривающего местность поперек движения носителя и посылающего лучистый поток в объектив и далее на точечный датчик, преобразующий световой сигнал в электрический. Этот электрический сигнал поступает на приемные станции по каналам связи. Изображение местности получают непрерывно на ленте, составленной из полос - сканов, сложенных отдельными элементами - пикселями. Сканерные изображения можно получить во всех спектральных диапазонах, но особенно эффективным является видимый и ИК-диапазоны.

Радиолокационная (РЛ) или радарная съемка - важнейший вид дистанционных исследований. Используется в условиях, когда непосредственное наблюдение поверхности планет затруднено различными природными условиями: плотной облачностью, туманом и т. п. Она может проводиться в темное время суток, поскольку является активной. Для радарной съемки обычно используются радиолокаторы бокового обзора (ЛБО), установленные на самолетах и ИСЗ.

С помощью ЛБО радиолокационная съемка осуществляется в радиодиапазоне электромагнитного спектра. Сущность съемки заключается в посылке радиосигнала, отражающегося по нормали от изучаемого объекта и фиксируемого на приемнике, установленном на борту носителя. Радиосигнал вырабатывается специальным генератором. Время возвращения его в приемник зависит от расстояния до изучаемого объекта. Этот принцип работы радиолокатора, фиксирующего различное время прохождения зондирующего импульса до объекта и обратно, используется для получения РЛ-снимков. Изображение формируется бегущим по строке световым пятном. Чем дальше объект, тем больше времени надо на прохождение отражаемого сигнала до его фиксации электронно-лучевой трубкой, совмещенной со специальной кинокамерой.

Инфракрасная (ИК), или тепловая, съемка основана на выявлении тепловых аномалий путем фиксации теплового излучения объектов Земли, обусловленного эндогенным теплом или солнечным излучением. 0на. широко применяется в геологии. Температурные неоднородности поверхности Земли возникают в результате неодинакового нагрева различных ее участков.

Спектрометрическая (СМ) съемка проводится с целью измерения отражательной способности горных пород. Знание значений коэффициента спектральной яркости горных пород расширяет возможности реологического дешифрирования, придает ему большую достоверность. Горные породы имеют различную отражательную способность, поэтому отличаются величиной коэффициента спектральной яркости.

Лидарная съемка является активной и основана на непрерывном получении отклика от отражающей поверхности, подсвечиваемой лазерным монохроматическим излучением с фиксированной длиной волны. Частота излучателя настраивается на резонансные частоты поглощения сканируемого компонента (например, приповерхностного метана), так что в случае его заметных концентраций соотношение откликов в точках концентрирования и в вне их будут резко повышенными. Фактически - лидарная спектрометрия это геохимическая съемка приповерхностных слоев атмосферы, ориентированная на обнаружение микроэлементов или их соединений, концентрирующихся над современно активными геоэкологическими объектами.

Введение

Аналитическая химия- это наука об определение химического состава вещества и отчасти их химического строения. Методы аналитической химии позволяют отвечать на вопросы о том, из чего состоит вещество, какие компоненты входят в его состав. Еще важнее: каково количество этих компонентов или какова их концентрация. Эти методы часто дают возможность узнать, в какой форме данный компонент присутствует в веществе.

В задачу аналитической химии входит разработка теоретических основ методов, установление границ их применимости, оценка метрологических и других характеристик, создание методик анализа различных объектов

Можно выделить три функции аналитической химии как области знания:

1) Решение общих вопросов анализа

2) Разработка аналитических методов

3) Решение конкретных задач анализа

Химический анализ может быть различным. Качественный и количественный, валовый и локальный, диструктивный и недиструктивный, контактный и дистанционный.

Целью данного реферата является более подробное изучение дистанционного анализа, его механизма.


Дистанционное зондирование.

Дистанционное зондирование – это сбор информации об объекте или явлении с помощью регистрирующего прибора, не находящегося в непосредственном контакте с данным объектом или явлением. Термин "дистанционное зондирование" обычно включает в себя регистрацию (запись) электромагнитных излучений посредством различных камер, сканеров, микроволновых приемников, радиолокаторов и других приборов такого рода. Дистанционное зондирование используется для сбора и записи информации о морском дне, об атмосфере Земли, о Солнечной системе. Оно осуществляется с применением морских судов, самолетов, космических летательных аппаратов и наземных телескопов. Науки, ориентированные на полевые работы, к числу которых относятся такие, как геология, лесоводство и география, также обычно используют дистанционное зондирование для сбора данных в целях проведения своих исследований.



Дистанционное зондирование охватывает теоретические исследования, лабораторные работы, полевые наблюдения и сбор данных с борта самолетов и искусственных спутников Земли. Теоретические, лабораторные и полевые методы важны также для получения информации о Солнечной системе, и когда-нибудь их начнут использовать для изучения других планетных систем Галактики. Некоторые наиболее развитые страны регулярно запускают искусственные спутники для сканирования поверхности Земли и межпланетные космические станции для исследований дальнего космоса.

В системе такого типа имеются три основных компонента: устройство для формирования изображения, среда для регистрации данных и база для проведения зондирования. В качестве простого примера такой системы можно привести фотографа-любителя (база), использующего для съемки реки 35-мм фотоаппарат (прибор-визуализатор, формирующий изображение), который заряжен высокочувствительной фотопленкой (регистрирующая среда). Фотограф находится на некотором расстоянии от реки, однако регистрирует информацию о ней и затем сохраняет ее на фотопленке.
Приборы, формирующие изображения, делятся на четыре основные категории: фото- и кинокамеры, многоспектральные сканеры, радиометры и активные радиолокаторы. Современные однообъективные зеркальные фотокамеры создают изображение, фокусируя ультрафиолетовое, видимое или инфракрасное излучение, приходящее от объекта, на фотопленке. После проявления пленки получается постоянное (способное сохраняться длительное время) изображение. Видеокамера позволяет получать изображение на экране; постоянной записью в этом случае будет соответствующая запись на видеоленте или фотоснимок, сделанный с экрана. Во всех других системах визуализации изображений используются детекторы или приемники, обладающие чувствительностью на определенных длинах волн спектра. Фотоэлектронные умножители и полупроводниковые фотоприемники, используемые в сочетании с оптико-механическими сканерами, позволяют регистрировать энергию ультрафиолетового, видимого, а также ближнего, среднего и дальнего ИК-участков спектра и преобразовывать ее в сигналы, которые могут давать изображения на пленке. Энергия микроволн (диапазон сверхвысоких частот, СВЧ) подобным же образом трансформируется радиометрами или радиолокаторами. В сонарах для получения изображений на фотопленке используется энергия звуковых волн.
Приборы, используемые для визуализации изображений, размещают на различных базах, в том числе на земле, судах, самолетах, воздушных шарах и космических летательных аппаратах. Специальные камеры и телевизионные системы повседневно используются для съемки представляющих интерес физических и биологических объектов на земле, на море, в атмосфере и космосе. Специальные камеры замедленной киносъемки применяются для регистрации таких изменений земной поверхности, как эрозия морских берегов, движение ледников и эволюция растительности.
Фотоснимки и изображения, сделанные в рамках программ аэрокосмической съемки, надлежащим образом обрабатываются и сохраняются. В США и России архивы для таких информационных данных создаются правительствами. Один из основных архивов такого рода в США, EROS (Earth Resources Obsevation Systems) Data Center, подчиненный Министерству внутренних дел, хранит ок. 5 млн. аэрофотоснимков и ок. 2 млн. изображений, полученных со спутников "Лендсат", а также копии всех аэрофотоснимков и космических снимков поверхности Земли, хранящихся в Национальном управлении по аэронавтике и исследованию космического пространства (НАСА). К этой информации имеется открытый доступ. Обширные фотоархивы и архивы других изоматериалов имеются у различных военных и разведывательных организаций.
Самая важная часть дистанционного зондирования - анализ изображений. Такой анализ может выполняться визуально, визуальными методами, усиленными применением компьютера, и целиком и полностью компьютером; последние два включают в себя анализ данных в цифровой форме. Первоначально большинство работ по анализу данных, полученных дистанционным зондированием, выполнялось визуальным исследованием индивидуальных аэрофотоснимков или путем использования стереоскопа и наложения фотоснимков с целью создания стереомодели. Фотоснимки были обычно черно-белыми и цветными, иногда черно-белыми и цветными в ИК-лучах или - в редких случаях - многозональными. Основные пользователи данных, получаемых при аэрофотосъемке, - это геологи, географы, лесоводы, агрономы и, конечно, картографы. Исследователь анализирует аэрофотоснимок в лаборатории, чтобы непосредственно извлечь из него полезную информацию, нанести ее затем на одну из базовых карт и определить области, в которых надо будет побывать во время полевых работ. После проведения полевых работ исследователь еще раз оценивает аэрофотоснимки и использует полученные из них и в результате полевых съемок данные для окончательного варианта карты. Такими методами подготавливают к выпуску множество разных тематических карт: геологических, карт землепользования и топографических, карт лесов, почв и посевов. Геологи и другие ученые ведут лабораторные и полевые исследования спектральных характеристик различных природных и цивилизационных изменений, происходящих на Земле. Идеи таких исследований нашли применение в конструкции многоспектральных сканеров MSS, которые используются на самолетах и КЛА. Искусственные спутники Земли "Лендсат" 1, 2 и 4 имели на борту MSS с четырьмя спектральными полосами: от 0,5 до 0,6 мкм (зеленая); от 0,6 до 0,7 мкм (красная); от 0,7 до 0,8 мкм (ближняя ИК); от 0,8 до 1,1 мкм (ИК). На спутнике "Лендсат 3" используется, кроме того, полоса от 10,4 до 12,5 мкм. Стандартные составные изображения с применением метода искусственного окрашивания получаются при комбинированном использовании MSS с первой, второй и четвертой полосами в сочетании с синим, зеленым и красным фильтрами соответственно. На спутнике "Лендсат 4" c усовершенствованным сканером MSS тематический картопостроитель позволяет получать изображения в семи спектральных полосах: трех - в области видимого излучения, одной - в ближней ИК-области, двух - в средней ИК-области и одной - в тепловой ИК-области. Благодаря этому прибору пространственное разрешение было улучшено почти втрое (до 30 м) по сравнению с тем, что давал спутник "Лендсат", на котором использовался только сканер MSS. Поскольку чувствительные датчики спутников не предназначались для стереоскопической съемки, дифференцировать те или иные особенности и явления в пределах одного конкретного изображения пришлось, используя спектральные различия. Сканеры MSS позволяют различать пять широких категорий земных поверхностей: вода, снег и лед, растительность, обнаженная порода и почва, а также объекты, связанные с деятельностью человека. Научный работник, хорошо знакомый с исследуемой областью, может выполнить анализ изображения, полученного в одной широкой полосе спектра, каким, например, является черно-белый аэрофотоснимок, который в типичном случае получается при регистрации излучений с длинами волн от 0,5 до 0,7 мкм (зеленая и красная области спектра). Однако с увеличением числа новых спектральных полос глазам человека становится все труднее проводить различия между важными особенностями похожих тонов в различных участках спектра. Так, например, только один съемочный план, снятый со спутника "Лендсат" с помощью MSS в полосе 0,5-0,6 мкм, содержит ок. 7,5 млн. пикселов (элементов изображения), у каждого из которых может быть до 128 оттенков серого в пределах от 0 (черный цвет) до 128 (белый цвет). При сравнении двух изображений одной и той же области, сделанных со спутника "Лендсат", приходится иметь дело с 60 млн. пикселов; одно изображение, полученное с "Лендсат 4" и обработанное картопостроителем, содержит около 227 млн. пикселов. Отсюда с очевидностью следует, что для анализа таких изображений необходимо использовать компьютеры.
При анализе изображений компьютеры используются для сравнения значений шкалы серого (диапазона дискретных чисел) каждого пиксела снимков, сделанных в один и тот же день либо в несколько разных дней. Системы анализа изображений выполняют классификацию специфических особенностей съемочного плана в целях составления тематической карты местности. Современные системы воспроизведения изображений позволяют воспроизводить на цветном телевизионном мониторе одну или несколько спектральных полос, отработанных спутником со сканером MSS. Подвижный курсор устанавливают при этом на один из пикселов или на матрицу пикселов, находящихся в пределах некоторой конкретной особенности, например водоема. Компьютер выполняет корреляцию всех четырех MSS-полос и классифицирует все другие части изображения, полученного со спутника, которые характеризуются аналогичными наборами цифровых чисел. Исследователь может затем пометить цветным кодом участки "воды" на цветном мониторе, чтобы составить "карту", показывающую все водоемы на спутниковом снимке. Эта процедура, известная под названием регулируемой классификации, позволяет систематически классифицировать все части анализируемого снимка. Имеется возможность идентификации всех основных типов земной поверхности. Описанные схемы классификации с помощью компьютера довольно просты, однако окружающий нас мир сложен. Вода, например, совсем не обязательно имеет единственную спектральную характеристику. В пределах одного съемочного плана водоемы могут быть чистыми или грязными, глубокими или мелкими, частично покрытыми водорослями или замерзшими, и каждый из них обладает собственной спектральной отражательной способностью (а значит, и своей цифровой характеристикой). В системе интерактивного анализа цифрового изображения IDIMS используется схема нерегулируемой классификации. IDIMS автоматически помещает каждый пиксел в один из нескольких десятков классов. После компьютерной классификации сходные классы (например, пять или шесть водных классов) могут быть собраны в один. Однако многие участки земной поверхности имеют довольно сложные спектры, что затрудняет однозначное установление различий между ними. Дубовая роща, например, может оказаться на изображениях, полученных со спутника, спектрально неотличимой от кленовой рощи, хотя на земле эта задача решается очень просто. По спектральным же характеристикам дуб и клен относятся к широколиственным породам. Компьютерная обработка алгоритмами идентификации содержания изображения позволяет заметно улучшить MSS-изображение по сравнению со стандартным.
Данные дистанционного зондирования служат основным источником информации при подготовке карт землепользования и топографических карт. Метеорологические и геодезические спутники NOAA и GOES используются для наблюдения за изменением облачности и развитием циклонов, в том числе таких, как ураганы и тайфуны. Изображения, получаемые со спутников NOAA, используются также для картирования сезонных изменений снегового покрова в северном полушарии в целях климатических исследований и изучения изменений морских течений, знание которых позволяет сократить продолжительность морских перевозок. Микроволновые приборы на спутниках "Нимбус" используются для картирования сезонных изменений в состоянии ледового покрова в морях Арктики и Антарктики.
Данные дистанционного зондирования с самолетов и искусственных спутников во все более широких масштабах используются для наблюдения за природными пастбищами. Аэрофотоснимки очень эффективны в лесоводстве благодаря достигаемому на них высокому разрешению, а также точному измерению растительного покрова и его изменения со временем.

Данные, полученные дистанционным зондированием, составляют важную часть исследований в гляциологии (имеющих отношение к характеристикам ледников и снегового покрова), в геоморфологии (формы и характеристики рельефа), в морской геологии (морфология дна морей и океанов), в геоботанике (ввиду зависимости растительности от лежащих под ней месторождений полезных ископаемых) и в археологической геологии. В астрогеологии данные дистанционного зондирования имеют первостепенное значение для изучения других планет и лун Солнечной системы, а также в сравнительной планетологии для изучения истории Земли. Однако наиболее захватывающий аспект дистанционного зондирования состоит в том, что спутники, выведенные на околоземные орбиты, впервые предоставили ученым возможность наблюдать, отслеживать и изучать нашу планету как целостную систему, включая ее динамичную атмосферу и облик суши, изменяющийся под влиянием природных факторов и деятельности человека. Изображения, получаемые со спутников, возможно, помогут найти ключ к предсказанию изменений климата, вызванных в том числе естественными и техногенными факторами. Хотя США и Россия с 1960-х годов ведут дистанционное зондирование, другие страны также вносят свой вклад. Японское и Европейское космические агентства планируют вывести на околоземные орбиты большое число спутников, предназначенных для исследования суши, морей и атмосферы Земли.


Дистанционные методы исследования почвенного покрова.

Применение аэрокосмических методов в почвоведении дало ощутимый толчок развитию почвенного картографирования и мониторинга почвенного покрова. Еще в 30-е годы ХХ века, на заре применения аэрометодов для изучения природных ресурсов, отмечались значительные возможности использования дистанционных снимков при составлении детальных почвенных карт и для оценки состояния посевов.

Дистанционные методы изучения почвенного покрова основаны на том, что разные по происхождению и степени вторичных изменений почвы по-разному отражают, поглощают и излучают электромагнитные волны различных зон спектра. Как следствие, каждый почвенный объект имеет свой спектрально-яркостный образ, запечатленный на аэро- и космических материалах. Применяя различные методы обработки аэрокосмических снимков, можно идентифицировать различные почвы и их отдельные характеристики.

Многолетние исследования ученых показывают, что почвы в зависимости от содержания гумуса, влажности, механического состава, карбонатности, наличия солей, эродированности и других особенностей изображаются на снимках широкой гаммой тонов. Спектральная отражательная способность достаточно полно изучена, в этой связи следует сослаться на фундаментальные исследования И. И. Карманова, который измерил при помощи спектрофотометра СФ-10 коэффициенты спектрального отражения в диапазоне 400–750 нм 4 тыс. почвенных образцов.

На черно-белых снимках почвы имеют серый, темно-серый тон, тогда как растительность – светлый, светло-серый. Исключение составляют солончаковые, эродированные и песчаные почвы. В ближней инфракрасной зоне (0,75–1,3 мкм) для почв отмечается плавный подъем кривых. Характер и уровень спектральных кривых позволяют довольно надежно определять генетические разности почв. Для изучения почв при многозональной съемке используют различия коэффициента спектральной яркости почв в разных диапазонах спектра.

При проведении дистанционных почвенных исследований очень часто отмечается возможность идентификации засоленных и солонцеватых почв. Во многих случаях это касается участков естественного засоления, а также локального засоления, обусловленного ирригационными мероприятиями. Практически отсутствуют работы по дистанционной оценке техногенного засоления в связи с разработкой месторождений нефти и газа.

Техногенное засоление почв на нефтяных месторождениях явление довольно частое, оно вызвано изливающимися на поверхность техногенными потоками, отличающимися высокой минерализацией вод с преобладанием в солевом комплексе хлорида натрия. Засоление обусловливает резкое изменение свойств почв и вызывает обеднение или перерождение растительного покрова. В первую очередь, это касается солонцеватых почв. Почвенные коллоиды, насыщенные натрием, подвергаются пептизации, почвенные агрегаты распадаются, и физические свойства почвы меняются. Наиболее очевидны изменения плотности, агрегатного и механического состава почв. Не менее существенны и трансформации органической составляющей почв. Прежде всего, это выражается в перераспределении исходных запасов почвенного органического углерода по генетическим горизонтам из-за усиления потечности гумуса при образовании гуматов и фульватов натрия.

Из сказанного следует, что техногенное засоление резко меняет различные характеристики почв и, как следствие, спектрально-яркостный образ засоленных и солонцеватых почв на нефтепромыслах характеризуется ощутимым своеобразием. В то же время для их идентификации и картирования может быть использован довольно богатый опыт изучения природных засоленных территорий и почвенных массивов, подвергшихся засолению в результате ирригационных мероприятий.

Идея о возможности оценки засоления орошаемых почв по дистанционным данным зародилась в 60-е годы ХХ ст., но первые данные оказались весьма скудными. В дальнейшем на основании исследований аридных, в основном хлопкосеющих, областей были получены более детальные результаты, появились представления о том, какую информацию о засолении почв можно получить по снимкам и каковы дешифровочные признаки почв разного типа засоления.

С необходимостью выявлять засоленные и солонцеватые почвенные разности приходится сталкиваться при крупномасштабном почвенном картировании. Отмечается, что такие разности хорошо фиксируются на аэро- и космических снимках благодаря изменению тона (цвета) и рисунка изображения. По данным Ю. П. Киенко и Ю. Г. Кельнера космические снимки с разрешением более 10 м передают 100% информации о формах элементарных почвенных структур, для фотоснимков с более низким разрешением (20–30 м) изображаются не более 80% почвенных ареалов.

Прикладное дешифрирование космических снимков предполагает работу с сериями снимков. Рекомендуется использовать снимки одной и той же местности, различающиеся яркостью изображения идентичных точек в зависимости от свойств и состояния объектов или условий и параметров съемки. Наиболее часто применяемые из них: снимки в разных спектральных диапазонах, многозональные снимки с расчленением по длинам волн, разновременные снимки, снимки при разных условиях освещения, разном направлении съемки, снимки разных масштабов, разрешения. Одним из эффективных методических приемов является последовательное дешифрирование, которое применяется в тех случаях, когда на разных зональных снимках отображаются различные объекты. Например, солончаки и степень засоления хорошо фиксируются на снимках в голубой зоне, заболоченные участки и степень увлажнения – на снимках в ближней инфракрасной зоне. Последовательное дешифрирование предусматривает анализ отдельных временных срезов с составлением разновременных схем дешифрирования.

На методике «поточечного» или «попиксельного» сравнения дистанционного сигнала для аэрокосмического мониторинга динамики почвенного покрова останавливается Б. В. Виноградов. Эта методика состоит в сравнении дистанционного сигнала, измеренного в фотометрических или радиометрических единицах, одних и тех же участков в разные годы и интерпретации соответствующих им почвенных показателей. Способ поточечного сравнения фотометрических и радиометрических измерений разных лет достаточно корректен, но сложен. Он требует стандартизации природных и технических условий съемки, которые бы позволили правильную идентификацию одних и тех же точек на последовательных снимках. Кроме того, при фотометрическом и радиометрическом поточечном сравнении необходим учет пространственно-временной неоднородности исследуемого участка местности. Временные неоднородности исключаются путем сравнения снимков, полученных в одни и те же агрофенологические фазы. Для учета пространственной неоднородности вычисляются средневзвешенные характеристики из элементов, составляющую каждую последующую «мишень» . Для сравнения используются опознанные на последовательных снимках точки, расположенные на распаханных полях и посевах культур с покрытием растительности до 30%. Так при сравнении раннелетних панхроматических снимков крупного масштаба была выявлена динамика содержания гумуса в почвах Казахстана. Для стандартизации были использованы два оптических «реперных» участка, коэффициент отражения почв которых заведомо стабилен: это сурчины с выбросами лессов на поверхность, где содержание гумуса ничтожно мало, а коэффициент отражения в спектральном интервале 0,3–0,32; и потяжины с лугово-каштановыми почвами, где содержание гумуса более 5%, а коэффициент отражения самый низкий – 0,08–0,12.

Задача выявления засоляющихся почв является одной из наиболее важных в процессе дистанционных почвенно-мелиоративных исследованиях. При наблюдении за солевым режимом орошаемых почв оценивают степень и тип засоления почв, направленность изменения засоленности пород, запасы солей, причины засоления. Засоление почв обнаруживается дистанционными методами как при непосредственном появлении солей на поверхности почв, так и изменении отражательной способности сельскохозяйственных культур вследствие выпадения отдельных растений, их угнетения и появления галофитных сорняков. За счет указанных явлений изменяются тон и рисунок изображения засоленных почв. Подобные исследования широко проводились на орошаемых массивах в бассейнах Амударьи и Сырдарьи [

Большой опыт дистанционной оценки почвенных свойств получен при составлении государственной почвенной карты СССР с использованием космической информации . При этом применялись многозональные снимки, составители пользовались преимущественно двумя каналами: 0,6–0,7 (красная зона) и 0,8–1,1 мкм (инфракрасная зона).

Выявление засоленных почв производилось при составлении мелкомасштабной почвенной карты Узбекистана Во время работы над картой использовались черно-белые космические снимки разных масштабов. Для солончаков установлены пятнистая и мелкопятнистая структура фотоизображения и от светло-серого до темно-серого тон.

Специализированная карта «Засоления почв» составлена для Памиро-Алая Как указывают авторы, на космических снимках солончаки и сильнозасоленные почвы дешифрировались довольно уверенно по фототону и структуре фотоизображения. На космических снимках также дешифрируются небольшие пятна слабо- и среднезасоленных почв, развитых среди незасоленных сероземно-луговых почв, эти почвы на снимках имеют пятнистое изображение с расплывчатыми границами светло-серого и серого фототонов.

Процессы засоления оценивались дистанционными средствами в Южном Ставрополье. Природное засоление в этом регионе проявляется преимущественно в почвах, формирующихся на майкопских глинах в условиях повышенного гидроморфизма. Преобладающие слабо- и среднесолончаковатые почвы имеют на аэрофотоснимках серый тон, фоновый для подобных территорий. На этом фоне хорошо выделяются мелкие очень светлые пятна сильнозасоленных почв.

Дешифрирование засоления орошаемых почв аридных территорий проводится по состоянию хлопчатника. Дешифрирование по открытой поверхности почвы в этих условиях невозможно, поскольку коэффициенты спектральной яркости незасоленных аридных почв и засоленных почв очень близки. Основными дешифровочными признаками засоления являются тон и рисунок фотоизображения. За основу взяты две контрастные градации тона: темный – для участков с хорошим состоянием хлопчатника и светлый – для поверхности, лишенной растительности. Процент светлых пятен в пределах поля или контура и их размер позволили установить и на основе наземных данных статистически обосновать связь фотоизображения со степенью засоления в метровом слое почв. Этот принцип позволил выделить при визуальном дешифрировании на снимках крупного масштаба четыре градации почв по засолению, на снимках среднего масштаба – три, на космических снимках – две.

Изучение явлений вторичного засоления в зоне влияния инфильтрационных вод проводилось по материалам аэрофотосъемки на Право-Егорлыкской оросительной системе в Ставропольском крае (Россия).
В 80–90 годы ХХ ст. дешифрирование почвенных комплексов на космических снимках осуществлялось преимущественно средствами структурно-зонального анализа. Последний состоит в оптическом преобразовании фотоснимков и получении количественной оценки пространственно-частотного спектра путем оптической фильтрации наиболее информативных признаков, характеризующих пространственную структуру изображении. В настоящее время спутники оснащены оптической сканирующей аппаратурой высокого разрешения, позволяющей получать изображение в цифровом виде. В связи с этим вместо оптического когерентного спектрального анализа применяются другие приемы обработки цифровых исходных данных.

Суть методики слияния данных состоит в использовании комплексного подхода при получении, обработке и интерпретации аэрокосмической информации. К методике слияния данных обращаются тогда, когда изучаемая методами дистанционного зондирования система является слабоструктурированной и достаточно изменчивой во времени. Безусловно, информация о почвенном засолении относится к этой категории, поэтому наиболее интересные работы по засолению почв, опубликованы в последнее время.

В 2003 г. опубликован довольно объемный обзор, посвященный современному состоянию методов дистанционного зондирования как инструмента для оценки солености почв. В этой статье рассматриваются различные датчики (в т.ч. аэрофотографические, спутниковые и самолетные мультиспектральные, микроволновые, видео, аэрогеофизические, гиперспектральные, электромагнитные индуктометры) и подходы, использованные для дистанционной индикации и картирования засоленных площадей. Отмечается важная роль обработки исходных данных дистанционного зондирования, среди наиболее эффективных для оценки засоленных почв обсуждаются такие методики, как спектральное разделение, классификация по максимальному правдоподобию, классификация на основе нечетких множеств, совмещение диапазонов, анализ главных компонент, корреляционные уравнения. Наконец, статья показывает моделирование временной и пространственной изменчивости солености с использованием комбинированных подходов с привлечением методик слияния и разделения данных.

Масштабные экспериментальные работы по использованию дистанционного зондирования для картирования почвенного засоления проведены в 1998-99 г.г. в провинции Альберта (Канада). В рамках этих работ были изучены два ключевых участка, один с естественным засолением, второй – засоленный вследствие искусственного орошения. Почвенная соленость контролировалась с помощью наземного электромагнитного индуктометра солености в слое почвы от 0 до 60 см. Дистанционные исследования проводились с использованием мультиспектрального датчика, установленного на самолете. В первый год исследований были получены снимки с разрешением 3-4 м, во второй – 0,5 м. Использованы четыре диапазона электромагнитных волн: голубой (0,45–0,52 μм), зеленый (0,52–0,60 μм), красный, так или иначе, используют элементы Data Fusion Technology.

Процедуры «ERDAS Image 8.4» для анализа космических снимков и классификации земной поверхности Крымского п-ова использовали В. И. Придатко и Ю. М. Штепа. На основе дешифрирования четырех снимков «Landsat-7 ETM», полученных в 1999 и 2000 годах, разработаны классификации земной поверхности Крыма, в том числе выделены засоленные территории.

Применение метода нечетких множеств (fuzzy modelling) для повышения эффективности выделения типов засоленных почв по данным дистанционного зондирования рассматривает Д. А. Матернайт. Ею изучались снимки Landsat TM, полученные над засоленной площадью Боливии. Моделирование с использованием нечетких множеств позволило повысить точность результатов, отделение почв с хлорид-сульфатным типом засоления от сульфат-хлоридного достигнуто в 44% случаев. Более высокая точность получена при разделении сульфат-хлоридных солончаков и солонцеватых почв, наиболее информативными оказались данные в ближнем и тепловом инфракрасных диапазонах спектра.

Для картирования засоленных почв предложено использовать интегрированные разновременные классификации данных дистанционного зондирования, физические и химические свойства почв и атрибуты форм земли]. Три экспертные системы, использующие нечеткие множества и лингвистические правила нечетких множеств для формализации экспетных знаний об актуальной возможности изменений, обработаны и внесены в ГИС. Системы используют подход семантического импорта не нечетких множеств, что позволяет интегрировать разнородные данные в базы данных по правилам нечетких множеств. Выход системы – три карты, представляющие «правдоподобные изменения», «природу изменений» и «магнитуду (размеры) изменений». Эти карты затем комбинируются с ландшафтной информацией, представленной на различных слоях ГИС.

В другой работе Д. А. Матернайт показано, что растительность, толерантная к солям, как индикатор для отделения солончаков и солонцеватых почв от неизмененных почв не всегда применима в случае использования оптических датчиков Landstat TM или Spot. Более эффективны для этой цели радиолокационные материалы. Метод нечетких множеств применен для классификации радиолокационных спутниковых образов (JERS-1). Полученный опыт свидетельствует, что классификация радиолокационных данных обеспечивает надежное определение (общая точность равна 81%) площадей, деградированных из-за процессов засоления и осолонцевания. Основные проблемы появляются вследствие различной шероховатости почв, определенные классы поверхностей по шероховатости с засоленными и солонцеватыми почвами ошибочно относятся к неизмененным.

Методики дистанционного зондирования, использующие в качестве показателя степени засоления почв тип и состояние растительности, были применены для обеспечения широкой пространственной оценки солености и подтопления в Восточном и Западном графствах Укаро (Австралия). В бассейне рек Муррей и Дарлинг (Австралия) производились исследования спектральных особенностей засоленных почв на участках орошения.

Исследования с целью оценки влияния солености почв на урожай путем применения ГИС и технологий дистанционного зондирования предприняты в юго-восточной части долины Харран (Турция), где довольно широко распространены засоленные почвы.

Комплексная интерпретация аэрофотоматериалов использовалась для выделения в различной степени засоленных пахотных земель и пустошей в провинции Шаньси (Китай) по данным авторов была достигнута воспроизводимость 90% Для оценки степени засоления почв и урбанизации сельскохозяйственных территорий в дельте Нила и в прилежащей к ней районах обрабатывались снимки Landsat TM, датированные 1984-93 годами Результаты обработки разновременных снимков показали, что для 3,74% сельскохозяйственных земель в дельте продуктивность почв уменьшается.

Исследование возможности установления солености гипсоносных почв, используя данные Landsat TM, предпринято в провинции Исмаилия в Египте]. Используя классификацию контролируемых образов, отделены гипсоносные почвы от засоленных почв и от других почв. Наиболее эффективно для разделения гипсоносных и засоленных почв использование теплового диапазона.

Применение материалов космических съемок позволили развить новое направление в исследовании засоления почв. Как показывает обзор, исследования проводятся во многих странах, независимо от того, являются они владельцами космических аппаратов или нет. Наиболее широко для исследований применяются космические снимки спутников Landsat, достоинством которых является наличие многих каналов съемки, доступность, разрешающая способность, хорошая привязка и коррекция.

Проблема дистанционной индикации почвенного засоления стоит остро, особенно в странах с засушливым климатом (Австралия, Индия, Турция, юг России и др.). Почти всегда использование для оценки природного и ирригационного засоления почв дистанционных методов приносит хорошие плоды. Во многих случаях исследователи опираются не столько на изучение почвенных характеристик, сколько на степень деградации растительности на солончаках и солонцах. Для выявления и оценки техногенно засоленных почв также можно использовать изменение растительного покрова. Но для них характерны и такие отличительные черты, как своеобразная конфигурация ореолов и резкое отличие от неизмененных почв по многим характеристикам, в том числе и в верхнем приповерхностном слое. Современные приемы обработки исходных космических снимков с соответствующим разрешением позволяют достаточно уверенно идентифицировать такие эффекты. Поскольку техногенное засоление почв всегда связано с наличием технологического объекта, то зону поиска участков загрязнения можно существенно сократить, имея точную карту объектов – потенциальных загрязнителей почв. Такая карта создается с использованием ГИС-технологий, а наличие космических снимков среднего и высокого разрешения с космических аппаратов (КА) Landsat, SPOT, Ikonas, QuickBird в комплексе со средствами обработки, заложенными в современных программах, например ERDAS Imagine, позволяет решить задачу оценки техногенного засоления почв на нефтегазовых месторождениях.

Рабочая программа учебной
дисциплины

УТВЕРЖДАЮ

Проректор-директор ИПР

«_____» ________ 201 г.

РАБОЧАЯ ПРОГРАММА ДИСЦИПЛИНЫ

Дистанционные методы ИССЛЕДОВАНИЙ

НАПРАВЛЕНИЕ ООП: 022000 ЭКОЛОГИЯ И ПРИРОДОПОЛЬЗОВАНИЕ

ПРОФИЛЬ ПОДГОТОВКИ: Геоэкология

КВАЛИФИКАЦИЯ (СТЕПЕНЬ): бакалавр

БАЗОВЫЙ УЧЕБНЫЙ План ПРИЕМА 2010 г. (с изменениями 2012 г.)

КУРС 3; СЕМЕСТР 5;

КОЛИЧЕСТВО КРЕДИТОВ: 3

ПРЕРЕКВИЗИТЫ: Геология; География; Экология;

КОРЕКВИЗИТЫ: Геоинформационные системы в экологии; Ресурсы Земли; Охрана окружающей среды

ВИДЫ УЧЕБНОЙ ДЕЯТЕЛЬНОСТИ И ВРЕМЕННОЙ РЕСУРС:

часов (ауд.)

Лабораторные занятия

часов (ауд.)

Практические занятия

часов (ауд.)

АУДИТОРНЫЕ ЗАНЯТИЯ

5 1

САМОСТОЯТЕЛЬНАЯ РАБОТА

часа

ФОРМА ОБУЧЕНИЯ

ВИД ПРОМЕЖУТОЧНОЙ АТТЕСТАЦИИ: ЗАЧЕТ В 5 СЕМЕСТРЕ

Обеспечивающая кафедра: «Геоэкологии и геохимии »

ЗАВЕДУЮЩИЙ КАФЕДРОЙ: д. г.-м. н., профессор

РУКОВОДИТЕЛЬ ООП: д. г.-м. н., профессор

ПРЕПОДАВАТЕЛЬ: к. г.н., доцент

ФТПУ 7.1-21/01

Рабочая программа учебной
дисциплины

Предисловие

1. Рабочая программа составлена на основе Федерального государственного образовательного стандарта по направлению 022000 «Экология и природопользование », утвержденного 22 декабря 2009 г. № 000

РАССМОТРЕНА и ОДОБРЕНА на заседании обеспечивающей кафедры геоэкологии и геохимии 13.10.2011 г. протокол

2. Разработчики:

доцент кафедры ГЭГХ ____________

3. Зав. обеспечивающей кафедрой ГЭГХ ____________

4.Рабочая программа СОГЛАСОВАНА с институтом, выпускающими кафедрами направления; СООТВЕТСТВУЕТ действующему плану.

Зав. выпускающей кафедрой ___________

1. Цели освоения дисциплины

В результате освоения данной дисциплины студент приобретает знания, умения и навыки, обеспечивающие достижение целей основной образовательной программы «Экология и природопользование».

Студент, изучивший курс «Дистанционные методы исследования», должен знать:

Основные современные системы, методы и технологии дистанционных методов исследования окружающей среды и спектры решаемых геоэкологических задач;

Цели предмета «Дистанционные методы исследования» достигаются за счёт выполнения комплекса учебно-методических работ:

Овладение общетеоретическими знаниями о современных методах дистанционных исследований окружающей среды;

Умение на лабораторных занятиях применять современные методы дистанционного зондирования для решения широкого спектра геоэкологических задач;

Освоение общих принципов обработки данных ДМИ, возможности получения результатов ДМИ, доступа к информации.

2. Место дисциплины в структуре ООП

Дисциплина относится к дисциплинам математического и естественнонаучного цикла (Б.2). Она непосредственно связана с дисциплинами естественнонаучного и математического цикла («Геология», «География», «Экология» и др.) и частично опирается на освоенные при изучении данных дисциплин знания и умения.

Знания и умения, полученные при освоении данной дисциплины, являются основой для изучения ряда дисциплин математического и естественнонаучного (Б.2) и профессионального (Б.3) циклов: «Ресурсы Земли», «Охрана окружающей среды», «Оценка воздействия на окружающую среду», «Геоэкология», «Основы поисков и геолого-экономической оценки природных ресурсов», «Геоинформационные системы в экологии».

3. Результаты освоения дисциплины

Студент, изучивший дисциплину «Дистанционные методы исследования» должен уметь:

Четко формулировать задачи, комплексирование дистанционных методов при геоэкологических исследованиях разного масштаба и ориентации мониторинга окружающей среды;

Уметь на основе анализа литературных источников и комплекта космических снимков давать оценку состояния окружающей среды.

После изучения данной дисциплины студенты приобретают знания, умение и опыт, соответствующие результатам основной образовательной программы. Соответствие результатов освоения дисциплины «Дистанционные методы исследования» формируемым компетенциям ООП представлено в таблице.

Формируемые компетенции в соответствии с ООП*

Результаты освоения дисциплины

ОК-1, ОК-2, ОК-6, ОК - 13

В общекультурными компетенциями:

Владеть культурой мышления, способностью к обобщению, анализу, восприятию информации, постановке цели и выбору путей ее достижения;

Уметь логически верно, аргументировано и ясно строить устную и письменную речь;

Иметь базовые знания в области информатики и современных геоинформационных технологий , владеть навыками использования программных средств и работы в компьютерных сетях, умением создавать базы данных и использовать ресурсы Интернета, владеть ГИС-технологиями; уметь работать с информацией из различных источников для решения профессиональных и социальных задач;

Владеть основными методами, способами и средствами получения, хранения, переработки информации, иметь навыки работы с компьютером как средством управления информацией.

В результате освоения дисциплины бакалавр должен обладать следующими профессиональными компетенциями:

Компетенциями в области «Природопользование»:

Знать теоретические основы биогеографии , общего ресурсоведения и регионального природопользования, картографии.

*Расшифровка кодов результатов обучения и формируемых компетенций представлена в ФГОС ВПО по направлению подготовки бакалавров по направлению 022000 «Экология и природопользование».

4. Структура и содержание дисциплины

Раздел 1. Введение

Лекции. Определение и содержание понятий «дистанционные методы исследований» (ДМИ) и «дистанционное зондирование земли» (ДЗЗ). Взаимосвязь с основными дисциплинами учебного плана. Актуальность применения ДМИ. Основные группы методов. Исторические сведения об использовании ДМИ. Развитие ДМИ и ДЗЗ в Мире, России, г. Томске, ТПУ. Научная и учебная литература , периодические и информационно-справочные издания.

Раздел 2. Физические основы ДМИ. Электромагнитное излучение (ЭМИ) как основа ДМИ.

2.1. Общие сведения об ЭМИ

Лекции. Определение и основные характеристики (параметры) ЭМИ. Шкала длин волн, основные диапазоны (излучения): космическое, гамма, рентгеновское, оптическое (ультрафиолетовое, видимое, инфракрасное или тепловое), радиодиапазон (СВЧ, ВЧ, УКВ, КВ, средневолновое, длинноволновое), сверхнизкочастотное (пульсации звезд, катаклизмы типа землетрясений, извержений вулканов и т. п.). Спектральная (длина волны, энергия кванта, интенсивность…), временная и поляризационная характеристики ЭМИ. Особенности лазерного излучения. Основные диапазоны, используемые в ДМИ. Основные ДМИ по типу измеряемой энергии и их характеристика (пассивные, активные).

Солнце как основной источник ЭМИ в природе. Характеристика спектра солнечной радиации.

Лабораторная работа 1-2. Занятие с учебно-методическими материалами (Альбомы космоснимков, образцы дешифрирования аэрофотоснимков, Дешифрирование многозональных аэрокосмических снимков).

2.2. Взаимодействие ЭМИ с атмосферой

Лекции Основные физические и химические параметры атмосферы, влияющие на ЭМИ. Взаимодействие ЭМИ с озоном. Зоны прозрачности атмосферы для теплового излучения. Взаимодействие атмосферы с ЭМИ микроволнового диапазона. Причины избирательного поглощения и рассеяния. ЭМИ в атмосфере (рассеяние Рэлея, Ми). Влияние положения участка земной поверхности по отношению к Солнцу на характеристику ЭМИ и особенности применения ДМИ для решения различных задач.

2.3. Взаимодействие ЭМИ с различными веществами и средами на поверхности Земли

Лекции. Характеристика главных процессов взаимодействия ЭМИ с веществами на поверхности Земли (отражение, рассеивание, абсорбция , трансмиссия, эмиссия) и их важнейшие константы (альбедо, коэффициент поглощения, экстинкция, чистое пропускание, эмиссия). Основные факторы взаимодействия, влияющие на эффективность применения ДМИ при решении геоэкологических задач.

Раздел 3. Основные характеристики природных сред и материалов для ДМИ

3.1. Характеристики горных пород

Лекции. Отражательная и поглощательная способности горных пород, их зависимость от минералогических и геохимических характеристик, генетической породы. Диагностика горных пород при ДМИ. Влияние вторичных процессов (гидротермальные изменения, выветривание) на первичные характеристики пород. Части спектра ЭМИ, в которых горные породы обладают высокими контрастными характеристиками.

Вторичное тепловое излучение (эмиссия) горных пород. Взаимосвязь вещественного состава, генетических особенностей горных пород с их физическими свойствами и эмиссией. Условия благоприятные для проведения инфракрасных съёмок.

Использование спектральных характеристик горных пород при ДМИ в целях геокартирования, решения геоэкологических задач, прогнозирования и поисков месторождений полезных ископаемых .

Лабораторная работа 3. Поиск данных по темам дистанционного зондирования в сети Internet

3.2. Характеристика почв

Лекции. Отражательная и поглотительная способности почв, их отличие от горных пород. Причины отличия. Различие основных типов почв по их спектральной яркости. Связь спектральной характеристики почв с их основными параметрами (минеральный и химический состав, содержание органики, влажность , структура и др.). Спектральные каналы для изучения основных характеристик почв.

Тепловое излучение почв. Основные свойства почв, определяющие её температурные характеристики.

Использование характеристик почв при ДМИ для их картирования и решения геоэкологических задач.

3.3. Характеристика растительности

Лекции. Отражательная и пропускная способность. Спектральные характеристики отраженного и прошедшего излучения при его взаимодействии с различными растительными сообществами, с больной и здоровой листвой. Влияние внешних факторов на характеристики растений (климат, тип почв, характер питательных и загрязняющих веществ и др.).

Характеристика теплового (температурного) излучения растений и его связь с внутренними и внешними факторами.

Смещение спектральных характеристик растительных сообществ как чуткий индикатор изменения различных факторов окружающей среды.

3.4. Характеристика вод озёр, рек, морей

Лекции. Процессы рассеяния и поглощения света, происходящие в толще воды. Зависимость спектральных характеристик воды от различных факторов (мутность, взвеси, планктон, солёность, температура и т. д.) и их проявленность в различных частях спектра ЭМИ. Актуальность исследования и мониторинга акваторий дистанционными методами.

Раздел 4. Техника и методика дистанционных исследований, характер решаемых задач. Основные группы ДМИ (космические, аэро-, наземные), уровень их развития и возможности прогресса, решаемые задачи, доступность потребителю.

4.1. Системы и приборы ДЗ из космоса

Лекции. Основные типы космических носителей, их характеристика и возможности решения задач ДЗЗ. Главные типы космических орбит (по форме, по наклонению, по отношению к Солнцу или Земле, по высоте) и их использование для ДЗЗ.

Методы измерений и наблюдений из космоса (фотографические, телевизионные, сканерные, радиолокационные и др.), решаемые задачи, преимущества и недостатки.

Отечественные и зарубежные современные космические системы и программы ДЗЗ, сравнительный анализ, решаемые задачи.

Доступ к информации ДЗ из космоса потребителей за рубежом, в России, в Западной Сибири, в Томске. Центры, лаборатории, пункты, станции приёма, хранения и тематической интерпретации данных. Возможность доступа к архивным данным, оперативность исполнения текущих заказов, стоимость основных услуг.

Региональные центры: - Западно-Сибирский региональный центр приёма и обработки спутниковых данных (ЗапСиб РЦ ПОД), Центр космического мониторинга природных ресурсов и процессов Сибири (ЦКПС); решаемые задачи, возможности создания и использования региональной ГИС.

Персональные станции приёма (ППС) информации ДЗЗ, основные характеристики, возможности. Требования к ППС.

Использование данных ДЗЗ из космоса при геоэкологических исследованиях и мониторинге окружающей среды.

Лабораторная работа 4-5. Определение последствий природных катастроф. Дешифрирование снимков.

Лабораторная работа 6-7. Дешифрирование космического снимка и оценка экологического состояния на заданной территории.

4.2. Аэрометоды дистанционных исследований

Лекции. История развития аэрометодов. Преимущества и недостатки. Характеристика различных методов (фотосъёмка, съёмка в ИК-диапазоне, радиолокация, магнитометрия, гравиметрия, гамма-спектрометрическая и радиометрическая съёмки, аэрозольные и газовые съёмки и др.). Основные решаемые задачи, методика, масштабы работ.

Лабораторная работа 8-9 . Определение границ водных поверхностей на космических снимках.

4.3. Наземные системы дистанционных исследований

Лекции. Основные виды наземных ДМИ и их характеристика (фотографические, геофизические, телевизионные, лидарные и др.). Решаемые задачи, методика, преимущества и недостатки. Нетрадиционные методы ДИ. Возможности различных фирм и научных центров г. Томска и ТПУ в организации и проведении наземных дистанционных исследований и мониторинга.

Лабораторная работа 10-11. Оценка антропогенного влияния на окружающую среду по данным дистанционного зондирования земли.

Раздел 5. Комплексирование ДМИ

Лекции. Рациональное комплексирование ДМИ на различных стадиях геоэкологических и геологичесих работ, при организации различных видов экологического мониторинга. Возможности и высокие перспективы использования ГИС-технологий при ДМИ. Примеры.

Лабораторная работа 12. Дешифрирование и сравнение космоснимков с районов экологических катастроф

Лабораторная работа 13. Защита рефератов

Закрепление теоретического материала при проведении практических работ с использованием картографического материала, атласов, специальной литературы, выполнение проблемно-ориентированных индивидуальных заданий.

6. Организация и учебно-методическое обеспечение самостоятельной работы студентов (CРC)

6.1 Текущая СРС направлена на углубление и закрепление знаний, а также на развитие практических умений.

Текущая СРС включает следующие виды работ:

Работа студентов с лекционным материалом, поиск и анализ литературы и электронных источников информации по заданной проблеме;

Изучение тем, вынесенных на самостоятельную проработку;

Изучение теоретического материала к лабораторным занятиям;

Подготовке к зачету.

6.2 Творческая проблемно-ориентированная самостоятельная работа (ТСР) направлена на развитие интеллектуальных умений, комплекса универсальных (общекультурных) и профессиональных компетенций, повышение творческого потенциала бакалавров и заключается в поиске, анализе и презентации материалов по заданным темам рефератов.

6.2.1. Перечень тем для самостоятельной работы (рефераты, КР):

1. Современные активные методы ДИ, их преимущества и недостатки.

2. Использование ДМИ при оценке состояния и мониторинге ОС урбанизированных территорий.

3. Электромагнитное излучение Солнца и его использование при ДМИ.

4. Современные ДМИ атмосферы (решаемые экологические задачи, технические характеристики, методика).

5. Характеристики космических носителей и орбит с позиции их использования для ДМИ ОС.

6. Комплексирование ДМИ в решении задач горно-геологического мониторинга.

7. Современные аэрометоды дистанционных исследований.

8. Важнейшие характеристики растительности, используемые при ДМИ.

9. Наземные системы дистанционных исследований ОС.

10. Методы гамма-спектрометрии в геоэкологии.

11. Доступ потребителей к космической информации ДЗ Земли.

12. Важнейшие характеристики почв, используемые при ДМИ.

13. История развития и современное состояние ДМИ.

14. Развитие и состояние ДМИ в Западно-Сибирском регионе и в г. Томске.

15. Взаимодействие ЭМИ с атмосферой.

16. Основные характеристики горных пород, изучаемые ДМИ.

17. Основные характеристики почв, изучаемые ДМИ.

18. Основные характеристики растительности, изучаемые ДМИ.

19. Основные характеристики вод озёр, рек, морских побережий, изучаемые ДМИ.

20. Методы съёмки при ДМИ.

21. Фотографические методы и их использование при геологических и экологических исследованиях.

22. Телевизионные методы ДЗ и их использование при геологических и экологических исследованиях.

23. Сканерные методы ДЗ и их использование при геологических и экологических исследованиях.

24. Гамма-спектрометрические методы ДЗ и их использование при геологических и экологических исследованиях.

25. Радиолокационные методы ДЗ и их использование при геологических и экологических исследованиях.

26. Лидарные методы ДЗ и их использование при геологических и экологических исследованиях.

27. Методы ИК-съёмки и их использование при геологических и экологических исследованиях.

28. Голографические методы ДЗЗ.

29. Современные космические системы ДЗЗ.

30. Аэрометоды ДЗЗ.

31. Наземные методы дистанционных исследований.

32. Нетрадиционные виды ДЗ.

33. ДМИ в решении геологических задач (картирование, прогнозирование и поиски МПИ по видам).

34. Обработка результатов ДЗЗ с применением современных технологий.

35. Получение данных ДЗЗ (в том, числе характеристика наземных станций приема).

36. ДМИ в нефтегазовой отрасли.

37. ДМИ в решении конкретных геоэкологических задач.

38. ДМИ в мониторинге ОС.

Кроме того, допускаются свободные темы по конкретным регионам и районам.

· Определение последствий природных катастроф (по данным ДЗ): последствия цунами, шторма, наводнения и т. д.

· Мониторинг изменения береговой линии Аральского моря по данным ДЗ.

· Использование данных ДЗ при проведении геоэкологических исследований в районе месторождения Самотлор.

· Дистанционное зондирование при мониторинге урбанизированных территорий (город…).

· Использование данных ДЗ при проведении мониторинга территории…., загрязненной в результате ….

По итогам работы представляется письменный отчёт в форме курсовой работы и презентация в электронном виде, делается устное сообщение перед студентами группы.

Основные разделы: введение, основная часть (с главами по теме работы), заключение, список литературы, включающий не менее трёх источников (20010 – 2012 года).

6.3 Контроль самостоятельной работы

Оценка результатов самостоятельной работы осуществляется в виде двух форм: самоконтроль и контроль со стороны преподавателя.

7. Средства текущей и итоговой оценки качества освоения дисциплины (фонд оценочных средств)

Контроль знаний студентов по дисциплине осуществляется по 2 видам: текущий и итоговый.

Текущий контроль приучает студентов к систематической работе по изучаемой дисциплине и позволяет определить уровень усвоения студентами теоретического материала. Он осуществляется в виде контрольных и проверочных работ, тестовых опросов. Оценка знаний при текущем контроле осуществляется в соответствии с рейтинг - планом по дисциплине.

Итоговый контроль – в соответствии с учебным планом:

5 семестр – зачет

1. Дайте определение понятия «Дистанционное зондирование»?

2. Что понимается под спектром ЭМИ?

3. Основные спектральные диапазоны ЭМИ, используемые в ДМИ.

4. Относятся ли геофизические методы к ДМИ?

5. Какие научные открытия и достижения лежат в основе ДМИ?

6. Главные этапы в развитии ДМИ.

7. В чём заключается роль в развитии ДМИ?

8. Когда и в каких целях в России началось использование аэросъёмки?

9. Когда и в каких целях в России началось широкое использование аэрогаммасъёмки?

10. В каких организациях г. Томска разрабатывают и применяют ДМИ?

11. Возможно ли, на обычной фотографии увидеть объект или явление не видимое «невооружённым» глазом?

12. Почему человеческий глаз видит в диапазоне 0,4 – 0,78 мкм?

13. Почему летучая мышь «видит» в другом диапазоне, нежели человек?

14. Что такое пассивные методы и какие ДМИ к ним относятся?

15. Что такое активные методы и какие ДМИ к ним относятся?

16. Какова роль Солнца в ДМИ?

17. Какие человеческие органы используются при ДМИ?

18. Чем обусловлено появление полос поглощения в спектре ЭМИ Солнца, поступающего на поверхность Земли?

19. Влияние атмосферного озона на ЭМИ Солнца?

20. Насколько атмосфера прозрачна для теплового излучения?

21. Что такое эмиттерная энергия и её значение для ДМИ?

22. Факторы, определяющие возникновение «теплового парника» в атмосфере?

23. В каких диапазонах спектра ЭМИ атмосфера Земли «прозрачна»?

24. Предпочтительная высота Солнца при аэрокосмических съёмках?

25. В каких случаях при ДМИ используется низкое стояние Солнца?

26. Почему использование светофильтров позволяет получить более качественный снимок?

27. Что такое эмиссия и её роль для ДМИ?

28. Что понимается под «независимыми» параметрами ДЗ?

29. Что понимается под «зависимыми» параметрами ДЗ?

30. Какие характеристики горных пород изучаются ДМИ?

31. Какие характеристики почв изучаются ДМИ?

32. Какие характеристики растительности изучаются ДМИ?

33. Какие характеристики вод озёр, рек, морей изучаются ДМИ?

34. При какой съёмке чётко видны границы воды и суши?

35. Основные типы космических носителей аппаратуры ДЗЗ?

36. Типы космических орбит и их использование для ДМИ?

37. Решаемые задачи ДМИ в зависимости от высоты космических орбит.

38. Виды измерений и наблюдений из космоса, решаемые задачи.

39. Техника и методика космофотосъёмки, решаемые задачи.

40. Техника и методика сканерной космосъёмки, решаемые задачи.

41. Техника и методика радиолокационной съёмки, решаемые задачи.

42. Техника и методика ИК-съёмки, решаемые задачи.

43. Техника и методика лидарной съёмки, решаемые задачи.

44. Современные виды космических систем исследования ОС.

45. Система изучения природных ресурсов на базе «Ресурс-О».

46. Как оперативно получить и (или) заказать данные ДЗЗ?

47. Опыт и перспективы использования ППС.

48. Требования, предъявляемые к ППС.

49. Основные виды аэрометодов и решаемые экологические задачи.

50. Основные положения методики аэрогаммасъёмки и решаемые задачи.

51. Виды наземных систем исследования ОС, решаемые задачи.

52. Современные ДМИ в прогнозно-поисковых геологических работах.

53. Современные ДМИ в изучении природных ресурсов.

54. Современные ДМИ в оценке состояния и мониторинге ОС.

55. Современные ДМИ в геоэкологическом картировании.

7.3. Примеры вопросов для экзамена

1. Развитие и состояние ДМИ в России. Основные факторы взаимодействия ЭМИ с веществами и средами на поверхности Земли.

2. Развитие и состояние ДМИ в Западно-Сибирском регионе и в г. Томске. Основные современные методы наблюдений и измерений при ДЗЗ из космоса.

3. Современные космические системы исследования ОС. Излучение солнца и его использование при ДМИ.

4. Современные фотографические методы исследования ОС и их использование для решения экологических задач.

Важнейшие характеристики вод, используемые при ДМИ.

5. Современные наземные мобильные методы и средства дистанционных исследований и мониторинга ОС. Активные и пассивные ДМИ, преимущества и недостатки.

8. Учебно-методическое и информационное обеспечение дисциплины

Основная литература

1. Антыпко дистанционного теплового мониторинга геологической среды городских агломераций . – М.: Недра, 1992. – 15 с.

2. , Шевченко картирование на основе космической информации. – М.: Недра, 1988. – 221 с.

3. , Гершензон системы дистанционного зондирования Земли. – М.: Изд-во А и Б, 1997. – 269 с.

4. Гонин съёмки Земли. – Л.: Недра, 1989. – 255 с.

5. Кабанов мониторинг атмосферы. Ч.1. Научно-методические основы: Монография / Под общей ред. . – Томск: Изд-во «Спектр» Института оптики и атмосферы СО РАН, 1997. – 211 с.

6. Киенко в космическое природоведение и картографирование: Учебник для Вузов. - М.: Картгеоцентр – Геоиздат, 1994. –212 с.

7. , Фридман гамма-спектрометрии природных сред. – 3 изд., перераб. и дол. – М.: Энергоатомиздат, 1991. – 232 с.

8. // Исследование Земли из космоса. 2004. №2. С.61-96.

9. Кронберг П. Дистанционное изучение Земли: основы и методы дистанционных исследований в геологии (перевод с немецкого). – М.: Мир, 1988. – 343 с.

10. , Корчуганова методы в геологии. – М.: Недра, 1993. – 224 с.

11. , Архангельский методы исследования окружающей среды: Учебное пособие для Вузов. – Томск: Изд-во STT, 200. – 184 с.

12. Поцелуев методы геологических исследований: история, современное состояние / , // Т. 1: Полезные ископаемые. - , 2008. - С. 513-518.

13. Протасевич методы обнаружения радиоактивных выбросов в атмосферу: Конспект лекций / ; Томский политехнический университет. - Томск: Изд-во ТПУ, 1997. - 36 с.

14. Региональный мониторинг атмосферы. Ч. II. Новые приборы и методики измерений: Коллективная монография / Под общей ред. . – Томск: Изд-во «Спектр» Института оптики и атмосферы СО РАН, 1997. – 295с.

15. Рис дистанционного зондирования: пер. с англ. / ; пер. , . - М.: Техносфера, 2006.

17. Региональный мониторинг атмосферы. Ч. III. Уникальные измерительные комплексы: Коллективная монография / Под общей ред. . – Томск: Изд-во «Спектр» Института оптики и атмосферы СО РАН, 1998. – 238с.

18. Чандра зондирование и географические информационные системы : пер. с англ. / , . - М.: Техносфера, 2008. - 312 с.

19. , Молодчинин состояния окружающей среды тепловой аэросъёмкой. – М.: Недра, 1992. – 64 с.

Дополнительная литература

1. Альбом - СССР из космоса. – М.: ГУК и К при СМ СССР, 1982.

2. Альбом – Дешифрирования многозональных аэрокосмических снимков (методики и результаты). – ГДР. – М.: Наука, 1982.

3. Аэрогеофизические методы прогнозирования месторождений урана/ Под. ред. . – М.: Атомиздат, 1980. – 129 с.

4. Виноградов мониторинг экосистем. – М.: Наука, 1984. – 152 с.

5. Гарбук системы дистанционного зондирования Земли: Монография / , . - М.: Изд-во А и Б, 1997. - 296 с.

6. , Дмитриевский -аэрокосмическое изучение нефтегазоносных территорий. – М.: Наука, 1994. – 288 с.

7. Дистанционные исследования при поисках полезных ископаемых. – Новосибирск: Наука, 1986. – 175 с.

8. Дистанционные исследования при нефтегазопоисковых работах. – М.: Наука, 1988. – 224 с.

9. , Красильникова природных условий и ресурсов. – М.: Недра, 1988. – 299 с.

10. , Полетаев космической геологии. – М.: Недра, 1988. – 235 с.

11. Космическая информация в геологии / Под ред. и др. – М.: Наука, 1983. – 536 с.

12. Мелух исследования с использованием космических средств / Под ред. . Серия: Охрана природы и воспроизводство природных ресурсов. – М.: ВИНИТИ, 1988. – Т. 21. – 184 с.

13. Михайлов аппаратура дистанционного зондирования Земли / , . - М.: Вузовская книга, 2008. - 340 с.

14. и др. Основы дистанционных методов мониторинга загрязнения природной среды. – Л.: Гидрометеоиздат, 19с.

15. , Архангельский методы исследования окружающей среды: Учебное пособие / Томский политехнический университет.-Томск: STT, 2001.-184 c.:

16. Природа Земли из космоса: изучение природных ресурсов Земли с помощью данных, передаваемых со спутников по радиолокации / Под ред. . – Л.: Гидрометеоиздат, 1984. – 152 с.

Интернет-ресурсы

http://www. *****/ru/index. html

http://www. *****/distzond. html

http://www. *****/

http://www. /photos/digitalglobe-imagery/

http://*****/index. php? r=18&id=6793

http://www. pryroda. /index. php? newsid=1000384

9. Материально-техническое обеспечение дисциплины

При изучении основных разделов дисциплины, выполнении практических работ студенты используют разнообразный картографический материал, включающий атласы России, Мира, комплект космо - и аэрофотоснимков, как в печатном издании, так и в электронном виде.

Программа составлена на основе ФГОС ВПО по направлению подготовки 022000 «Экология и природопользование».

Программа одобрена на заседании кафедры ГЭГХ ИПР

(протокол № ____ от «___» _______ 2011 г.).

Учебное издание

дистанционные методы исследований

Рабочая программа для студентов, обучающихся по направлению 022000 Экология и природопользование по профилю «геоэкология»

Разработчики

ДИСТАНЦИОННЫЕ МЕТОДЫ, дистанционного зондирования методы (а. remote sensing, distances methods; н. Fernerkundung; ф. teledetection; и. metodos а distancia), — общее название методов изучения наземных объектов и космических тел неконтактным путём на значительном расстоянии (например, с воздуха или из космоса) различными приборами в разных областях спектра.

Дистанционные методы позволяют оценивать региональные особенности изучаемых объектов, выявляемые на больших расстояниях. Термин получил распространение после запуска в 1957 первого в мире искусственного спутника Земли и съёмки обратной стороны Луны советской автоматической станцией "Зонд-3" (1959).

Различают активные дистанционные методы, основанные на использовании отражённого объектами излучения после облучения их искусственными источниками, и пассивные, которые изучают собственное излучение тел и отражённое ими солнечное. В зависимости от расположения приёмников дистанционные методы подразделяют на наземные (в том числе надводные), воздушные (атмосферные, или аэро-) и космические. По типу носителя аппаратуры дистанционные методы различают самолётные, вертолётные, аэростатные, ракетные, спутниковые дистанционные методы (в — аэрофотосъёмка, аэрогеофизическая съёмка и космическая съёмка). Отбор, сравнение и анализ спектральных характеристик в разных диапазонах электромагнитного излучения позволяют распознать объекты и получить информацию об их размере, плотности, химическом составе, физических свойствах и состоянии. Для поисков радиоактивных и источников используется g-диапазон, для установления химического состава и — ультрафиолетовая часть спектра; световой диапазон наиболее информативен при изучении почв и растительного покрова, инфракрасная (ИК) — даёт оценки температур поверхности тел, радиоволны — информацию о рельефе поверхности, минеральном составе, влажности и глубинных свойствах природных образований и об атмосферных слоях.

По типу приёмника излучения дистанционные методы подразделяют на визуальные, фотографические, фотоэлектрические, радиометрические и радиолокационные. В визуальном методе (описание, оценка и зарисовки) регистрирующим элементом является глаз наблюдателя. Фотографические приёмники (0,3-0,9 мкм) обладают эффектом накопления, однако они имеют различную чувствительность в разных областях спектра (селективны). Фотоэлектрические приёмники (энергия излучения преобразуется непосредственно в электрический сигнал при помощи фотоумножителей, фотоэлементов и других фотоэлектронных приборов) также селективны, но более чувствительны и менее инерционны. Для абсолютных энергетических измерений во всех областях спектра, и особенно в ИК, используют приёмники, преобразующие тепловую энергию в другие виды (чаще всего в электрические), для представления данных в аналоговой или цифровой форме на магнитных и других носителях информации для их анализа при помощи ЭВМ. Видеоинформация, полученная телевизионными, сканерными (рис.), панорамными камерами, тепловизионными, радиолокационными (бокового и кругового обзора) и другими системами, позволяет изучить пространственное положение объектов, их распространённость, привязать их непосредственно к карте.

Наиболее полные и достоверные сведения об изучаемых объектах даёт многоканальная съёмка — одновременные наблюдения в нескольких диапазонах спектра (например, в видимом, ИК и радиообласти) или радиолокация в сочетании с методом съёмки более высокого разрешения.

В дистанционные методы используются для изучения рельефа, строения , магнитных и , разработки теоретических принципов автоматизированных систем космофотогеологического картирования, поиска и прогнозирования месторождений полезных ископаемых; исследования глобальных особенностей геологических объектов и явлений, получения предварительных данных о поверхности Луны, Венеры, Марса и др. Развитие дистанционного метода связано с улучшением наблюдательной базы (спутники-лаборатории, балонные аэростанции и др.) и технической аппаратуры (внедрение криогенной техники, снижающей уровень помех), формализацией дешифровочного процесса и созданием на этой основе машинных методов обработки информации, дающих максимальную объективность оценок и корреляций.



Последние материалы раздела:

Развитие критического мышления: технологии и методики
Развитие критического мышления: технологии и методики

Критическое мышление – это система суждений, способствующая анализу информации, ее собственной интерпретации, а также обоснованности...

Онлайн обучение профессии Программист 1С
Онлайн обучение профессии Программист 1С

В современном мире цифровых технологий профессия программиста остается одной из самых востребованных и перспективных. Особенно высок спрос на...

Пробный ЕГЭ по русскому языку
Пробный ЕГЭ по русскому языку

Здравствуйте! Уточните, пожалуйста, как верно оформлять подобные предложения с оборотом «Как пишет...» (двоеточие/запятая, кавычки/без,...