Методы построения функций принадлежности нечетких множеств. Раздел Fuzzy Logic Toolbox

Универсум

Элементы нечеткого множества выбираются (черпаются) из универсального множества или короче универсума . Универсум включает в себя все элементы, которые можно использовать при рассмотрении множества. В частности в выше рассмотренном примере универсумом является множество

U = [ 1 2 3 4 5 6 7 8 ].

Можно сказать, что универсум является областью определения множества , следовательно, и его функции принадлежности. Тем не менее, универсум зависит от контекста, как показывает следующий пример.

Пример 1.3 (универсум) . а) множество «молодые люди» может иметь в качестве универсума всех людей, проживающих на земле. Как альтернативу универсумом можно считать людей, возраст которых лежит между 0 и 100 годами; эти люди будут представлять переменную возраст (рис. 1.3).

Множества «более или менее молодой», «очень молодой» и «не очень молодой» получены из множеств «молодой» и «старый» ;

б) множество x >>10 (x много больше 10 вольт ) может иметь как универсум все положительные результаты измерений напряжения.

Применение универсума позволяет исключить из рассмотрения ошибочные результаты измерений, например отрицательные значения для уровня воды в баке.

В том случае, когда мы имеем дело с нечисловыми переменными, например, с переменной вкус пищи , которые не могут быть измерены в отношении численного масштаба, мы не можем использовать в качестве универсума множество чисел. При этом элементы универсума должны быть взяты, как говорят, из психологического континуума(сплошной среды) ; для данного примера таким универсумом может быть {горький, соленый, кислый, сладк ий,…}.

Определение (нечеткое множество ). Если U есть набор элементов (другими словами, универсум), обозначаемых традиционно x , то нечеткое множество A в U определяется как упорядоченное множество пар:

где называется функцией принадлежности (ФП) x к A .

Каждый элемент в универсуме является членом (элементом) нечеткого множества A с некоторой степенью принадлежности, может быть и с нулевой.

ФП является просто степенью, с которой элемент x принадлежит к множеству A. ФП преобразует универсум U в интервал ,

: U ,

т.е. каждому элементу x универсума U ставит в соответствие определенное число из интервала . Если =0,8, то говорят, что элемент x i на 80% принадлежит нечеткому множеству A .

Нечеткое множество строго определяется с помощью функции принадлежности, другими словами, логика определения понятия нечеткого множества не содержит никакой нечеткости. Четкое множество является частным случаем нечеткого множества, т.е. понятие нечеткого множества является расширенным понятием, охватывающим понятие четкого множества.

Непрерывное и дискретное представления . Существуют два альтернативных представления функций принадлежности в компьютере: непрерывный и дискретный. В непрерывной форме функция принадлежности есть математическая функция, возможно программа. Функция принадлежности может быть колоколообразной (так называемая - кривая ), s- образной (называемая s-кривой ), обратная s- образной (называемая z-кривой ), треугольной или трапециидальной. На рис. 1.2 изображена как пример - кривая . В дискретной форме функция принадлежности и универсум представляют собой дискретные значения (точки) в списке (векторе). В ряде случаев удобно иметь дело с дискретными представлениями.

В соответствии с эмпирическим правилом непрерывная форма требует более быстродействующего, но с меньшей памятью АЦП, чем дискретная форма.

Пример 1.4 (непрерывная форма) . Функция косинуса может быть использована для построения различных функций принадлежности. Так s-кривая может быть описана как


, (1.3)

где a l - левая точка излома, а a r - правая точка излома кривой. z-кривая является зеркальным отражением s-кривой относительно точки (a r - a l)/2 :

. (1.4)

При этом - кривая может быть интерпретирована как комбинация s-кривой и z-кривой, тогда в интервале при условии значения функции принадлежности

одинаковы и максимальны.

На рис. 1.2 изображена - кривая, описываемая функцией

Пример 1.5 (дискретная форма) . Чтобы получить дискретное представление, эквивалентное кривой, изображенной на рис. 1.2, предположим, что универсум U = u представлен дискретными значениями, скажем такими

u = .

Занесем результаты вычислений по формулам (1.3), (1.4) и (1.5) в соответствующий список значений

или в кратком виде,

[ 0 0,04 0,31 0,69 0,96 1 ].

Кстати, символически принято нечеткое множество на универсуме записывать как множество упорядоченных пар,

для непрерывных и дискретных универсумов соответственно. Здесь символы ине имеют никакого отношения к операциям интегрирования и суммирования. Так нечеткое множество, представленное ФП на рис. 1.2, можно записать в виде

Из приведенных примеров мы видим, что конструкция нечеткого множества зависит от двух вещей: выбора подходящего универсума и выбора соответствующей функции принадлежности . Еще раз отметим, что выбор функции принадлежности является в сущности субъективным делом, из чего следует, что выбранные разными людьми функции принадлежности для одного и того же понятия (скажем, «холодный») могут значительно отличаться. Эта субъективность проистекает из неопределенной природы абстрактных понятий и не имеет ничего общего с вероятностью. Поэтому субъективность и неслучайность нечетких множеств являются главным отличием изучения нечетких множеств и теории вероятности. Последняя имеет дело с объективной трактовкой случайных событий (явлений).

Нормализация . Нечеткое множество называется нормализованным , если самое большое значение функции принадлежности, так называемая высота нечеткого множества, равно 1, Вы нормализуете нечеткое множество путем деления каждого элемента его функции принадлежности на упомянутое самое большое значение, a/max(a) . При использовании функций принадлежности различают другие параметры, в частности ядро или сердцевину (см. рисунок ниже).

Ядро или сердцевина нормализованного нечеткого множества A включает все элементы x , для которых =1. Четкое подмножество элементов, имеющих отличную от нуля степень принадлежности, называют основным (опорным) для нечеткого множества или носителем нечеткого множества. Опора или основа нечеткого множества A включает все элементы x , для которых 0.

Нечеткое множество - ключевое понятие нечеткой логики. Пусть Е универсальное множество, х — элемент Е, a R — некоторое свойство. Обычное (четкое) подмножество А универ-сального множества Е, элементы которого удовлетворяют свойству R, определяется как множество упорядоченных пар

А = { μ A (x ) / x },

где μ А (х) характеристическая функция, принимающая значе-ние 1, если х удовлетворяет свойству R, и 0 - в противном случае.

Нечеткое подмножество отличается от обычного тем, что для элементов х из Е нет однозначного ответа «да-нет» относительно свойства R. В связи с этим нечеткое подмножество А универсаль-ного множества Е определяется как множество упорядоченных пар

А = { μ A (x ) / x },

где μ А (х) характеристическая функция принадлежности (или просто функция принадлежности) , принимающая значения в некотором вполне упорядоченном множестве М (например, М = ).

Функция принадлежности указывает степень (или уровень) принадлежности элемента х подмножеству А. Множество М назы-вают множеством принадлежностей. Если М = {0, 1}, то нечеткое подмножество А может рассматриваться как обычное или четкое множество.

Примеры записи нечеткого множества

Пусть Е = {x 1 , x 2 , х з, x 4 , x 5 }, М = ; А — нечеткое множество, для которого μ A (x 1 )= 0,3; μ A (х 2 )= 0; μ A (х 3) = 1; μ A (x 4) = 0,5; μ A (х 5 )= 0,9.

Тогда А можно представить в виде

А = {0,3/x 1 ; 0/х 2 ; 1/х 3 ; 0,5/х 4 ; 0,9/х 5 },

или

А ={0,3/x 1 +0/х 2 +1/х 3 +0,5/х 4 +0,9/х 5 },

или

Замечание . Здесь знак «+» не является обозначением операции сложения, а имеет смысл объединения.

Основные характеристики нечетких множеств

Пусть М = и А — нечеткое множество с элементами из универсаль-ного множества Е и множеством принадлежностей М.

Величина называется высотой нечеткого множества А. Нечеткое множество А нормально, если его высота рав-на 1,т.е. верхняя граница его функции принадлежности равна 1 (= 1). При < 1нечеткое множество называется субнормальным.

Нечеткое множество пусто, если ∀x ϵ E μ A (x ) = 0. Непу-стое субнормальное множество можно нормализовать по формуле

Нечеткое множество унимодально, если μ A (x ) = 1 только на одном х из Е.

. Носителем нечеткого множества А является обычное под-множество со свойством μ A (x )>0, т.е. носитель А = {x /x ϵ E, μ A (x )>0}.

Элементы x ϵ E , для которых μ A (x ) = 0,5 , называются точками перехода множества А.

Примеры нечетких множеств

1. Пусть Е = {0, 1, 2, . . ., 10}, М = . Нечеткое множество «Несколько» можно определить следующим образом:

«Несколько» = 0,5/3 + 0,8/4 + 1/5 + 1/6 + 0,8/7 + 0,5/8; его характеристики: высота = 1, носитель = {3, 4, 5, 6, 7, 8}, точки перехода — {3, 8}.

2. Пусть Е = {0, 1, 2, 3,…, n ,}. Нечеткое множество «Малый» можно определить:

3. Пусть Е = {1, 2, 3, . . ., 100} и соответствует понятию «Возраст», тогда нечеткое множество «Молодой» может быть определено с помощью


Нечеткое множество «Молодой» на универсальном множестве Е" = {ИВАНОВ, ПЕТРОВ, СИДОРОВ,...} задается с помощью функции при-надлежности μ Молодой (x ) на Е = {1, 2, 3, . . ., 100} (возраст), называемой по отношению к Е" функцией совместимости, при этом:

где х — возраст СИДОРОВА.

4. Пусть Е = {ЗАПОРОЖЕЦ, ЖИГУЛИ, МЕРСЕДЕС,… } - множе-ство марок автомобилей, а Е" = — универсальное множество «Сто-имость», тогда на Е" мы можем определить нечеткие множества типа:


Рис. 1.1. Примеры функций принадлежности

«Для бедных», «Для среднего класса», «Престижные», с функциями при-надлежности вида рис. 1.1.

Имея эти функции и зная стоимости автомобилей из Е в данный момент времени, мы тем самым определим на Е" нечеткие множества с этими же названиями.

Так, например, нечеткое множество «Для бедных», заданное на уни-версальном множестве Е = { ЗАПОРОЖЕЦ, ЖИГУЛИ, МЕРСЕДЕС,...}, выглядит так, как показано на рис. 1.2.


Рис. 1.2. Пример задания нечеткого множества

Аналогично можно определить нечеткое множество «Скоростные», «Средние», «Тихоходные» и т. д.

5. Пусть Е — множество целых чисел:

Е = {-8, -5, -3, 0, 1, 2, 4, 6, 9}.

Тогда нечеткое подмножество чисел, по абсолютной величине близких к нулю, можно определить, например, так:

А = {0/-8 + 0,5/-5 + 0,6/-3 +1/0 + 0,9/1 + 0,8/2 + 0,6/4 + 0,3/6 + 0/9}.

О методах построения функций принадлежности нечет-ких множеств

В приведенных выше примерах использованы пря-мые методы, когда эксперт либо просто задает для каждого х ϵ Е значение μ А (х), либо определяет функцию совместимости. Как правило, прямые методы задания функции принадлежности ис-пользуются для измеримых понятий, таких как скорость, время, расстояние, давление, температура и т.д., или когда выделяются полярные значения.

Во многих задачах при характеристике объекта можно выде-лить набор признаков и для каждого из них определить полярные значения, соответствующие значениям функции принадлежности, 0 или 1.

Например, в задаче распознавания лиц можно выделить шкалы, приведенные в табл. 1.1.

Таблица 1.1. Шкалы в задаче распознавания лиц

x 1

высота лба

x 2

профиль носа

курносый

горбатый

длина носа

короткий

x 4

разрез глаз

цвет глаз

форма подбородка

остроконечный

квадратный

x 7

толщина губ

цвет лица

очертание лица

овальное

квадратное

Для конкретного лица А эксперт, исходя из приведенной шка-лы, задает μ A (х) ϵ , формируя векторную функцию принад-лежности { μ A (х 1 ) , μ A (х 2 ),…, μ A (х 9) }.

При прямых методах используются также групповые прямые методы, когда, например, группе экспертов предъявляют конкрет-ное лицо и каждый должен дать один из двух ответов: «этот че-ловек лысый» или «этот человек не лысый», тогда количество утвердительных ответов, деленное на общее число экспертов, дает значение μ лысый (данного лица). (В этом примере можно действо-вать через функцию совместимости, но тогда придется считать число волосинок на голове у каждого из предъявленных эксперту лиц.)

Косвенные методы определения значений функции принад-лежности используются в случаях, когда нет элементарных из-меримых свойств, через которые определяется интересующее нас нечеткое множество. Как правило, это методы попарных сравне-ний. Если бы значения функций принадлежности были нам из-вестны, например, μ A (х- i ) = ω i , i = 1, 2, ..., n ,то попарные срав-нения можно представить матрицей отношений А = { a ij }, где a ij = ω i / ω j (операция деления).

На практике эксперт сам формирует матрицу А , при этом пред-полагается, что диагональные элементы равны 1, а для элемен-тов симметричных относительно диагонали a ij = 1/a ij , т.е. если один элемент оценивается в α раз сильнее, чем другой, то этот по-следний должен быть в 1/α раз сильнее, чем первый. В общем случае задача сводится к поиску вектора ω, удовлетворяющего уравнению вида Aw = λ max w , где λ max — наибольшее собствен-ное значение матрицы А . Поскольку матрица А положительна по построению, решение данной задачи существует и является поло-жительным.

Можно отметить еще два подхода:

  • использование типовых форм кривых для задания функций принадлежности (в форме (L-R)-Типа - см. ниже) с уточнением их параметров в соответствии с данными эксперимента;
  • использование относительных частот по данным экспе-римента в качестве значений принадлежности.

Классификация функций принадлежности нормальных нечеткихмножеств

Нечеткое множество называется нормальным, если для его функции принадлежности справедливоутверждение, что существует такой , при котором .

s

Функция принадлежности класса s определяется как:

Функция принадлежности класса π

Функция принадлежности класса π определяется через функцию класса s :

Функция принадлежности класса γ

Функция принадлежности класса γ определяется как:

Функция принадлежности класса t

Функция принадлежности класса t определяется как:

Функция принадлежности класса L

Функция принадлежности класса L определяется как:

Определим лингвистическую переменную (ЛП) как переменную, значение которой определяется набором словесных характеристик некоторого свойства. Например, ЛП "возраст" может иметь значения

ЛП = МлВ, ДВ, ОВ, ЮВ, МВ, ЗВ, ПВ, СВ,

обозначающие возраст младенческий, детский, отроческий, юношеский, молодой, зрелый, преклонный и старый, соответственно. Множество M - это шкала прожитых человеком лет . Функция принадлежности определяет, насколько мы уверены, что данное количество прожитых лет можно отнести к данному значению ЛП. Допустим, что неким экспертом к молодому возрасту отнесены люди в возрасте 20 лет со степенью уверенности 0,8, в возрасте 25 лет со степенью уверенности 0,95, в возрасте 30 лет со степенью уверенности 0,95 и в возрасте 35 лет со степенью уверенности 0,7. Итак:

μ(X 1)=0,8; μ(X 2)=0,95; μ(X 3)=0,95; μ(X 4)=0,7;

Значение ЛП=МВ можно записать:

МВ = μ(X 1) / X 1 + μ(X 2) / X 2 + μ(X 3) / X 3 + μ(X 4) / X 4 = = 0,8 / X 1 + 0,95 / X 2 + 0,95 / X 3 + 0,7 / X 4 .

Таким образом, нечеткие множества позволяют учитывать субъективные мнения отдельных экспертов. Для большей наглядности покажем множество МВ графически при помощи функции принадлежности (рис. 2.7).

Рис. 2.7. График функции принадлежности

Для операций с нечеткими множествами существуют различные операции, например, операция "нечеткое ИЛИ" (иначе) задается в логике Заде , :

μ(x)=max(μ 1 (x), μ 2 (x))

и при вероятностном подходе так:

μ(x)=μ 1 (x)+μ 2 (x)-μ 1 (x) · μ 2 (x).

Рассмотрим эти операции в виде диаграмм. В ранней статье о нечетких множествах Заде предложил оператор минимума для пересечения и оператор максимума для объединения двух нечетких множеств. Легко видеть, что эти операторы совпадают с четким объединением, и пересечением, если мы рассматриваем только принадлежность к 0 и 1.

Чтобы разъяснять это, рассмотрим несколько примеров. Допустим А есть нечеткий интервал между 5 и 8, а B - нечеткое число, приблизительно 4. Следующая диаграмма показывает нечеткое множество между 5 и 8 И (AND - пересечение) приблизительно 4 (синия линия).

Нечеткое множество между 5 и 8 ИЛИ (OR-объединение) приблизительно 4 показывается в следующей диаграмме (снова, синей линией).

Следующая диаграмма явкяется примером отрицания. Синяя линия - ОТРИЦАНИЕ нечеткого множества A.

Существуют и другие операции над нечеткими числами, такие как расширенные бинарные арифметические операции (сложение, умножение и пр.) для нечетких чисел, определяемые через соответствующие операции для четких чисел с использованием принципа обобщения и т.д.

Baldwin J.F.. Fuzzy logic and fuzzy reasoning. - London, Academic Press, 1981.

Для задания нечеткой истинности Балдвин предложил такие функции принадлежности нечетких "истинно" и "ложно".

Fuzzy Logic Toolbox включает 11 встроенных функций принадлежностей, которые используют следующие основные функции:

  • кусочно-линейную;
  • гауссовское распределение;
  • сигмоидную кривую;
  • квадратическую и кубические кривые.

Для удобства имена всех встроенных функций принадлежности оканчиваютя на mf. Вызов функции принадлежности осуществляется следующим образом:

namemf(x, params),

где namemf – наименование функции принадлежности;
x – вектор, для координат которого необходимо рассчитать значения функции принадлежности;
params – вектор параметров функции принадлежности.

Простейшие функции принадлежности треугольная (trimf ) и трапециевидная (trapmf ) формируется с использованием кусочно-линейной аппроксимации. Трапециевидная функция принадлежности является обобщение треугольной, она позволяет задавать ядро нечеткого множества в виде интервала. В случае трапециевидной функции принадлежности возможна следующая удобная интерпретация: ядро нечеткого множества – оптимистическая оценка; носитель нечеткого множества – пессимистическая оценка.

Две функции принадлежности – симметричная гауссовская (gaussmf ) и двухстороняя гауссовская (gaussmf ) формируется с использованием гауссовского распределения. Функция gaussmf позволяет задавать ассиметричные функция принадлежности. Обобщенная колоколообразная функция принадлежности (gbellmf ) по своей форме похожа на гауссовские. Эти функции принадлежности часто используются в нечетких системах, так как на всей области определения они является гладкими и принимают ненулевые значения.

Функции принадлежности sigmf , dsigmf , psigmf основаны на использовании сигмоидной кривой. Эти функции позволяют формировать функции принадлежности, значения которых начиная с некоторого значения аргумента и до + (-) равны 1. Такие функции удобны для задания лингвистических термов типа “высокий” или “низкий”.

Полиномиальная аппроксимация применяется при формировании функций zmf, pimf и smf , графические изображения которых похожи на функции sigmf , dsigmf , psigmf , соответственно.

Основная информация о встроенных функциях принадлежности сведена в табл. 6.1. На рис. 6.1 приведены графические изображения функций принадлежности, полученные с помощью демонстрационной сценария mfdemo . Как видно из рисунка, встроенные функции принадлежности позволяют задавать разнообразные нечеткие множества.

В Fuzzy Logic Toolbox предусмотрена возможность для пользователя создания собственной функции принадлежности. Для этого необходимо создать m -функцию, содержащую два входных аргумента – вектор, для координат которого необходимо рассчитать значения функции принадлежности и вектор параметров функции принадлежности. Выходным аргументом функции должен быть вектор степеней принадлежности. Ниже приведена m -функция, реализующая колоколообразную функцию принадлежности :

function mu=bellmf(x, params)
%bellmf – bell membership function;
%x – input vector;
%params(1) – concentration coefficient (>0);
%params(2) – coordinate of maximuma.
a=params(1);
b=params(2);
mu=1./(1+ ((x-b)/a).^2);

Рисунок 6.1. Встроенные функции принадлежности

Таблица 6.1. Функции принадлежности

Наименование функции

Описание

Аналитическая формула

Порядок параметров

dsigmf функция принадлежности в виде разности между двумя сигмоидными функциями

gauss2mf двухсторонняя гауссовская функция принадлежности

если c1;

если c1>c2, то
.

gaussmf симметричная гауссовская функция принадлежности
gbellmf обобщенная колокообразная функция принадлежности

pimf пи-подобная функция принадлежности

произведение smf и zmf функций

– носитель нечеткого множества;

Функция принадлежности μ A (x) ∈ ставит в соответствие каждому числу

x ∈ X число из интервала , характеризующее степень принадлежности решения к подмножеству А.

Т.е. это некоторая не вероятностная субъективная мера нечеткости, определяемая в результате опроса экспертов о степени соответствия элемента x понятию, формализуемому нечетким множеством A. В отличие от вероятностной меры, которая является оценкой стохастической неопределенности, имеющей дело с неоднозначностью наступления некоторого события в различные моменты времени, нечеткая мера является численной оценкой лингвистической неопределенности, связанной с неоднозначностью и расплывчатостью категорий человеческого мышления. При построении функции принадлежности μ A (x) с каждым нечетким множеством A ассоциируется некоторое свойство, признак или атрибут, который характеризует некоторую совокупность объектов X. Чем в большей степени конкретный объект x ∈ X обладает этим свойством, тем более близко к 1 соответствующее значение μ A (x). Если элемент x ∈ X определенно обладает этим свойством, то μ A (x)=1, если же x ∈ X определенно не обладает этим свойством, то μ A (x)=0.

Основные виды функций принадлежности

На практике удобно использовать те функции принадлежности, которые допускают аналитическое представление в виде некоторой простой математической функции.

1. Кусочно-линейные,

использующиеся для задания неопределенностей типа: «приблизительно равно», «среднее значение», «расположен в интервале», «подобен объекту», «похож на предмет» и т.п.

Треугольная trimf

Трапецеидальная trapmf

2. S-образные,

использующиеся для задания неопределенностей типа: «большое количество», «большое значение», «значительная величина», «высокий уровень» и т.п.

Квадратичный S-сплайн smf

3. Z -образные,

использующиеся для задания неопределенностей типа «малое количество», «небольшое значении е», «незначительная величина», «низкий уровень» и т.п.

Квадратичный Z -сплайн z mf

4. П-образные,

использующиеся для задания неопределенностей типа: «приблизительно в пределах от и до», «примерно равно», «около» и т.п.

К данному типу функций принадлежности можно отнести целый класс кривых, которые по своей форме напоминают колокол, сглаженную трапецию или букву "П".

Колоколообразная gbellmf

a - коэффициент концентрации функции принадлежности; b – коэффициент крутизны функции принадлежности; c – координата максимума функции принадлежности.

Гауссовская gaussmf

a – координата максимума функции принадлежности; b – коэффициент концентрации функции принадлежности.

Методы построения функций принадлежности

Прямые и косвенные

В зависимости от числа привлеченных к опросу экспертов как прямые, так и косвенные методы делятся на одиночные и групповые .

Прямые

В прямых методах эксперт либо группа экспертов просто задают для каждого

x ∈ X значение функции принадлежности μ A (x).

Как правило, прямые методы построения функций принадлежности используются для таких свойств, которые могут быть измерены в некоторой количественной шкале. Например, такие физические величины, как скорость, время, расстояние, давление, температура и другие имеют соответствующие единицы и эталоны для своего измерения.

При прямом построении функций принадлежности следует учитывать, что теория нечетких множеств не требует абсолютно точного задания функций принадлежности. Зачастую бывает достаточно зафиксировать лишь наиболее характерные значения и вид функции принадлежности.

Так, например, если необходимо построить нечеткое множество, которое представляет свойство "скорость движения автомобиля примерно 50 км/ч", на начальном этапе может оказаться достаточным представить соответствующее нечеткое множество треугольной функцией принадлежности с параметрами а = 40 км/ч, b = 60 км/ч и с = 50 км/ч. В последующем функция принадлежности может быть уточнена опытным путем на основе анализа результатов решения конкретных задач.

Процесс построения или задания нечеткого множества на основе некоторого известного заранее количественного значения измеримого признака получил даже специальное название - фаззификация или приведение к нечеткости. Речь идет о том, что хотя иногда нам бывает известно некоторое значение измеримой величины, мы признаем тот факт, что это значение известно неточно, возможно с погрешностью или случайной ошибкой. При этом, чем меньше мы уверены в точности измерения признака, тем большим будет интервал носителя соответствующего нечеткого множества. Следует помнить, что в большинстве практических случаев абсолютная точность измерения является лишь удобной абстракцией для построения математических моделей. Именно по этой причине фаззификация позволяет более адекватно представить объективно присутствующую неточность результатов физических измерений.

Метод относительных частот (прямой групповой)

Пусть имеется m экспертов, n 1 из которых на вопрос о принадлежности элемента x ∈ X нечеткому множеству A отвечают положительно. Другая часть экспертов n 2 = m n 1 отвечает на этот вопрос отрицательно. Тогда принимается μ A (x) = n 1 / (n 1 + n 2) = n 1 / m.

Пример. Рассмотрим нечеткое множество A, соответствующее понятию «скорость изменения температуры положительная средняя». Объект x – скорость изменения температуры. Экспертам предъявляются различные значения скорости изменения температуры x, и каждому из них задается вопрос: считает ли эксперт, что данная скорость изменения температуры x положительная средняя. Результаты опроса сведены в табл.

В качестве непрерывного представления данной нечеткой переменной можно использовать гауссовскую ФП gaussmf с максимумом функции принадлежности а=5 и коэффициентом концентрации функции принадлежности b=1.7:

μ(x) = exp [ – (x–5) 2 / 2*1.7 2 ]

Косвенные

Используются при решении задач, для которых свойства физических величин не могут быть измерены. Наибольшее распространение среди косвенных методов получил метод парных сравнений.

Метод парных сравнений

Интенсивность принадлежности определяют, исходя из попарных сравнений рассматриваемых элементов.

Для каждой пары элементов универсального множества эксперт оценивает преимущество одного элемента над другим по отношению к свойству нечеткого множества. Парные сравнения удобно представлять следующей матрицей:

,

где - уровень преимущество элементанад(), определяемый по девятибальной шкале Саати:

1 - если отсутствует преимущество элемента над элементом;

3 - если имеется слабое преимущество над;

5 - если имеется существенное преимущество над;

7 - если имеется явное преимущество над;

9 - если имеется абсолютное преимущество над;

2, 4, 6, 8 - промежуточные сравнительные оценки.

Пример. Построить функцию принадлежности нечеткого множества "высокий мужчина" на универсальном множестве {170, 175, 180, 185, 190, 195}, если известны такие экспертные парные сравнения:

    абсолютное преимущество 195 над 170;

    явное преимущество 195 над 175;

    существенное преимущество 195 над 180;

    слабое преимущество 195 над 185;

    отсутствует преимущество 195 над 190.

Приведенным экспертным высказываниям соответствует такая матрица парных сравнений:

При согласованных мнениях эксперта матрица парных сравнений обладает следующими свойствами:

    она диагональная‚ т. е. a ii =1 ‚ i=1..n ;

    она обратно симметрична‚ т. е. элементы‚ симметричные относительно главной диагонали‚ связаны зависимостью a ij =1/a ji , i,j=1..n ;

    она транзитивна‚ т. е. a ik a kj =a ij , i,j,k=1..n .

Наличие этих свойств позволяет определить все элементы матрицы парных сравнений:

После определения всех элементов матрицы парных сравнений, степени принадлежности нечеткого множества вычисляются по формуле:

Для нормализации нечеткого множества разделим все степени принадлежности на максимальное значение, т.е. на 0.3588.

μ высокий мужчина (u i) (субнормальное нечеткое множество)

μ высокий мужчина (u i) ((нормальное нечеткое множество)



Последние материалы раздела:

Изменение вида звездного неба в течение суток
Изменение вида звездного неба в течение суток

Тема урока «Изменение вида звездного неба в течение года». Цель урока: Изучить видимое годичное движение Солнца. Звёздное небо – великая книга...

Развитие критического мышления: технологии и методики
Развитие критического мышления: технологии и методики

Критическое мышление – это система суждений, способствующая анализу информации, ее собственной интерпретации, а также обоснованности...

Онлайн обучение профессии Программист 1С
Онлайн обучение профессии Программист 1С

В современном мире цифровых технологий профессия программиста остается одной из самых востребованных и перспективных. Особенно высок спрос на...