Методы вариантов и экономико математического моделирования. Интегральный метод экономического анализа

Экономико-математические методы (ЭММ) - обобщающее название комплекса экономических и математических научных дисциплин, объединенных для изучения экономики. Введено академиком В.С.Немчи­но­вым в начале 60-х годов. Встречаются высказывания о том, что это название весьма условно и не отвечает современному уровню развития экономической науки, так как «они (ЭММ. - авт.) не имеют собственного предмета исследования, отличного от пред­мета исследования специфических экономических дисциплин» .

Однако, хотя тенденция подмечена верно, она, по-видимому, реализуется еще не скоро. ЭММ в действительности имеют общий объект исследования с другими экономическими дисциплинами - экономику (или шире: социально-эко­но­ми­чес­кую систему), но разный предмет науки: т.е. они изучают разные стороны этого объекта, подходят к нему с разных позиций. И главное, при этом используются особые методы исследования, развитые настолько, что сами они становятся отдельными научными дисциплинами особого методологического характера. В отличие от дисциплин, в которых преобладают онтологические аспекты, а методы исследования выступают лишь в большей или меньшей степени как вспомогательные средства, в «методологических» дисциплинах, составляющих значительную часть комплекса ЭММ, методы сами оказываются объектом исследования. Кроме того, действительный синтез экономики и математики еще впереди, потребуется немало времени, пока он осуществится в полной мере.

Общепринятая классификация экономико-математических дисциплин, явившихся сплавом экономики, математики и кибернетики, пока не выработана. С известной долей условности ее можно представить в виде следующей схемы .

0. Принципы экономико-математических методов:

теория экономико-математического моделирования , включая экономико-статистическое моделирование;

теория оптимизации экономических процессов.

1.Математическая статистика (ее экономические приложения):

выборочный метод;

дисперсионный анализ;

корреляционный анализ;

регрессионный анализ;

многомерный статистический анализ;

факторный анализ;

теория индексов и др.

2. Математическая экономия и эконометрия:

теория экономического роста (модели макроэкномической динамики);

теория производственных функций;

межотраслевые балансы (статические и динамические);

национальные счета, интегрированные материально-финансовые балансы;

анализ спроса и потребления;

региональный и пространственный анализ;

глобальное моделирование и др.

3. Методы принятия оптимальных решений, включая исследование операций:

оптимальное (математическое) программирование;

линейное программирование;

нелинейное программирование;

динамическое программирование;

дискретное (целочисленное) программирование;

блочное программирование;

дробно-линейное программирование;

параметрическое программирование;

сепарабельное программирование;

стохастическое программирование;

геометрическое программирование;

методы ветвей и границ;

сетевые методы планирования и управления;

программно-целевые методы планирования и управления;

теория и методы управления запасами;

теория массового обслуживания;

теория игр;

теория решений;

теория расписаний.

4. ЭММ и дисциплины, специфичные для централизованно планируемой экономики:

теория оптимального функционирования социалистической экономики (СОФЭ);

оптимальное планирование:

народнохозяйственное;

перспективное и текущее;

отраслевое и региональное;

теория оптимального ценообразования;

5. ЭММ, специфичные для конкурентной экономики:

модели рынка и свободной конкуренции;

модели делового цикла;

модели монополии, дуополии, олигополии;

модели индикативного планирования;

модели международных экономических отношений;

модели теории фирмы.

6. Экономическая кибернетика:

системный анализ экономики;

теория экономической информации, включая экономическую семиотику;

теория управляющих систем, включая теорию автоматизированных систем управления.

7. Методы экспериментального изучения экономических явлений (экспериментальная экономика ):

математические методы планирования и анализа экономических экспериментов ;

методы машинной имитации и стендового экспериментирования;

«деловые игры».

В ЭММ применяются различные разделы математики, математической статистики и математической логики ; большую роль в машинном решении экономико-математических задач играют вычислительная математика, теория алгоритмов и другие смежные дисциплины.

Практическое применение ЭММ в некоторых странах приобрело массовый, в каком-то смысле рутинный характер. В тысячах компаний решаются задачи планирования производства , распределения ресурсов с помощью отработанного и часто стандартизированного программного обеспечения , установленного на компьютерах. Ведется изучение этой практики на местах- опросы, обследования.. В США даже издается специальный журнал “Interfaces”, регулярно публикующий сведения о практическом использовании ЭММ в разных отраслях экономики. Для примера, приведем резюме одной из статей этого журнала: «В 2005 и 2006 годах, компания Coca-Cola Enterprises (CCE), крупнейший производитель и дистрибьютор напитка Кока-Кола, внедрила программное обеспечение ORTEC для маршрутизации транспорта. В настоящее время свыше трехсот диспетчеров используют этот софтвер , ежедневно планируя маршруты примерно 10 000 фур. В дополнение к преодолению некоторых нестандартных ограничений, использование этой технологии примечательно прогрессивным (бесперебойным) переходом от прежней хозяйственной практики. ССЕ сумела сократить годовые издержки на 45 млн долларов и улучшить обслуживание клиентов. Этот опыт оказался настолько удачным, что (головная транснациональная компания) Кока Кола расширила его за пределы ССЕ, на другие компании по производству и распространению этого напитка, а также пива».

Введение

Глава 1. Моделирование как метод научного познания

1.2 Процесс моделирования

Глава 2. Экономико-математическое моделирование

2.1 Классификация экономико-математических моделей

2.2 Этапы экономико-математического моделирования

Заключение

Список литературы

Введение

Экономико-математическое моделирование является неотъемлемой частью любого исследования в области экономики. Бурное развитие математического анализа, исследования операций, теории вероятностей и математической статистики способствовало формированию различного рода моделей экономики.

Почему можно говорить об эффективности применения методов моделирования в этой области? Во-первых, экономические объекты различного уровня (начиная с уровня простого предприятия и кончая макроуровнем - экономикой страны или даже мировой экономикой) можно рассматривать с позиций системного подхода. Во-вторых, такие характеристики поведения экономических систем:

Изменчивость (динамичность)

Противоречивость поведения

Тенденция к ухудшению характеристик

Подверженность воздействию окружающей среды

Предопределяют выбор метода их исследования.

За последние 30-40 лет методы моделирования экономики разрабатывались очень интенсивно. Они строились для теоретических целей экономического анализа и для практических целей планирования, управления и прогноза. Содержательно модели экономики объединяют такие основные процессы: производство, планирование, управление, финансы и т.д. Однако в соответствующих моделях всегда упор делается на какой-нибудь один процесс (например, процесс планирования), тогда как все остальные представляются в упрощенном виде.

В литературе, посвященной вопросам экономико-математического моделирования, в зависимости от учета различных факторов (времени, способов его представления в моделях; случайных факторов и т.п.) выделяют, например, такие классы моделей:

1.статистические и динамические

2. дискретные и непрерывные

3. детерминированные и стохастические.

Если же рассматривать характер метода, на основе которого строится экономико-математическая модель, то можно выделить два основных типа моделей:

Математические

Имитационные.

Проникновение математики в экономическую науку связано с преодолением значительных трудностей. В этом отчасти была "повинна" математика, развивающаяся на протяжении нескольких веков в основном в связи с потребностями физики и техники. Но главные причины лежат все же в природе экономических процессов, в специфике экономической науки.

Большинство объектов, изучаемых экономической наукой, может быть охарактеризовано кибернетическим понятием сложная система.

Наиболее распространено понимание системы как совокупности элементов, находящихся во взаимодействии и образующих некоторую целостность, единство. Важным качеством любой системы является эмерджентность - наличие таких свойств, которые не присущи ни одному из элементов, входящих в систему. Поэтому при изучении систем недостаточно пользоваться методом их расчленения на элементы с последующим изучением этих элементов в отдельности. Одна из трудностей экономических исследований - в том, что почти не существует экономических объектов, которые можно было бы рассматривать как отдельные (внесистемные) элементы.

Сложность системы определяется количеством входящих в нее элементов, связями между этими элементами, а также взаимоотношениями между системой и средой. Экономика страны обладает всеми признаками очень сложной системы. Она объединяет огромное число элементов, отличается многообразием внутренних связей и связей с другими системами (природная среда, экономика других стран и т.д.). В народном хозяйстве взаимодействуют природные, технологические, социальные процессы, объективные и субъективные факторы.

Сложность экономики иногда рассматривалась как обоснование невозможности ее моделирования, изучения средствами математики. Но такая точка зрения в принципе неверна. Моделировать можно объект любой природы и любой сложности. И как раз сложные объекты представляют наибольший интерес для моделирования; именно здесь моделирование может дать результаты, которые нельзя получить другими способами исследования.

Потенциальная возможность математического моделирования любых экономических объектов и процессов не означает, разумеется, ее успешной осуществимости при данном уровне экономических и математических знаний, имеющейся конкретной информации и вычислительной технике. И хотя нельзя указать абсолютные границы математической формализуемости экономических проблем, всегда будут существовать еще неформализованные проблемы, а также ситуации, где математическое моделирование недостаточно эффективно.

Все названные вопросы требуют дальнейшего рассмотрения и изучения, что является целью данной работы, в задачи которой входит систематизация, накопление и закрепление знаний об экономико-математических моделях.

Глава 1. Моделирование как метод научного познания

1.1 Моделирование в научных исследованиях

Моделирование в научных исследованиях стало применяться еще в глубокой древности и постепенно захватывало все новые области научных знаний: техническое конструирование, строительство и архитектуру, астрономию, физику, химию, биологию и, наконец, общественные науки. Большие успехи и признание практически во всех отраслях современной науки принес методу моделирования ХХ в. Однако, методология моделирования долгое время развивалась независимо отдельными науками. Отсутствовала единая система понятий, единая терминология. Лишь постепенно стала осознаваться роль моделирования как универсального метода научного познания.

Термин "модель" широко используется в различных сферах человеческой деятельности и имеет множество смысловых значений. Рассмотрим только такие "модели", которые являются инструментами получения знаний.

Модель - это такой материальный или мысленно представляемый объект, который в процессе исследования замещает объект - оригинал так, что его непосредственное изучение дает новые знания об объекте - оригинале.

Под моделирование понимается процесс построения, изучения и применения моделей. Оно тесно связано с такими категориями, как абстракция, аналогия, гипотеза и др. Процесс моделирования обязательно включает и построение абстракций, и умозаключения по аналогии, и конструирование научных гипотез.

Главная особенность моделирования в том, что это метод опосредованного познания с помощью объектов-заместителей. Модель выступает как своеобразный инструмент познания, который исследователь ставит между собой и объектом и с помощью которого изучает интересующий его объект. Именно эта особенность метода моделирования определяет специфические формы использования абстракций, аналогий, гипотез, других категорий и методов познания.

Необходимость использования метода моделирования определяется тем, что многие объекты (или проблемы, относящиеся к этим объектам) непосредственно исследовать или вовсе невозможно, или же это исследование требует много времени и средств.

1.2 Процесс моделирования

Процесс моделирования включает три элемента:

Субъект (исследователь),

Объект исследования,

Модель, опосредствующую отношения познающего субъекта и познаваемого объекта.

Пусть имеется или необходимо создать некоторый объект А. Мы конструируем (материально или мысленно) или находим в реальном мире другой объект В - модель объекта А. Этап построения модели предполагает наличие некоторых знаний об объекте - оригинале. Познавательные возможности модели обуславливаются тем, что модель отражает какие-либо существенные черты объекта - оригинала. Вопрос о необходимости и достаточной мере сходства оригинала и модели требует конкретного анализа. Очевидно, модель утрачивает свой смысл как в случае тождества с оригиналом (тогда она перестает быть оригиналом), так и в случае чрезмерного во всех существенных отношениях отличия от оригинала.

Таким образом, изучение одних сторон моделируемого объекта осуществляется ценой отказа от отражения других сторон. Поэтому любая модель замещает оригинал лишь в строго ограниченном смысле. Из этого следует, что для одного объекта может быть построено несколько "специализированных" моделей, концентрирующих внимание на определенных сторонах исследуемого объекта или же характеризующих объект с разной степенью детализации.

На втором этапе процесса моделирования модель выступает как самостоятельный объект исследования. Одной из форм такого исследования является проведение "модельных" экспериментов, при которых сознательно изменяются условия функционирования модели и систематизируются данные о ее "поведении". Конечным результатом этого этапа является множество знаний о модели R.

На третьем этапе осуществляется перенос знаний с модели на оригинал - формирование множества знаний S об объекте. Этот процесс переноса знаний проводится по определенным правилам. Знания о модели должны быть скорректированы с учетом тех свойств объекта-оригинала, которые не нашли отражения или были изменены при построении модели. Мы можем с достаточным основанием переносить какой-либо результат с модели на оригинал, если этот результат необходимо связан с признаками сходства оригинала и модели. Если же определенный результат модельного исследования связан с отличием модели от оригинала, то этот результат переносить неправомерно.

Четвертый этап - практическая проверка получаемых с помощью моделей знаний и их использование для построения обобщающей теории объекта, его преобразования или управления им.

Для понимания сущности моделирования важно не упускать из виду, что моделирование - не единственный источник знаний об объекте. Процесс моделирования "погружен" в более общий процесс познания. Это обстоятельство учитывается не только на этапе построения модели, но и на завершающей стадии, когда происходит объединение и обобщение результатов исследования, получаемых на основе многообразных средств познания.

Моделирование - циклический процесс. Это означает, что за первым четырехэтапным циклом может последовать второй, третий и т.д. При этом знания об исследуемом объекте расширяются и уточняются, а исходная модель постепенно совершенствуется. Недостатки, обнаруженные после первого цикла моделирования, обусловленные малым знанием объекта и ошибками в построении модели, можно исправить в последующих циклах. В методологии моделирования, таким образом, заложены большие возможности саморазвития.

Глава 2. Экономико-математическое моделирование

2.1 Классификация экономико-математических моделей

Математические модели экономических процессов и явлений более кратко можно назвать экономико-математическими моделями. Для классификации этих моделей используются разные основания.

По целевому назначению экономико-математические модели делятся на теоретико-аналитические, используемые в исследованиях общих свойств и закономерностей экономических процессов, и прикладные, применяемые в решении конкретных экономических задач (модели экономического анализа, прогнозирования, управления).

Экономико-математические модели могут предназначаться для исследования разных сторон народного хозяйства (в частности, его производственно-технологической, социальной, территориальной структур) и его отдельных частей. При классификации моделей по исследуемым экономическим процессам и содержательной проблематике можно выделить модели народного хозяйства в целом и его подсистем - отраслей, регионов и т.д., комплексы моделей производства, потребления, формирования и распределения доходов, трудовых ресурсов, ценообразования, финансовых связей и т.п.

Остановимся более подробно на характеристике таких классов экономико-математических моделей, с которыми связаны наибольшие особенности методологии и техники моделирования.

В соответствии с общей классификацией математических моделей они подразделяются на функциональные и структурные, а также включают промежуточные формы (структурно-функциональные). В исследованиях на народнохозяйственном уровне чаще применяются структурные модели, поскольку для планирования и управления большое значение имеют взаимосвязи подсистем.

Типичными структурными моделями являются модели межотраслевых связей. Функциональные модели широко применяются в экономическом регулировании, когда на поведение объекта ("выход") воздействуют путем изменения "входа". Примером может служить модель поведения потребителей в условиях товарно-денежных отношений.

Один и тот же объект может описываться одновременно и структурой, и функциональной моделью. Так, например, для планирования отдельной отраслевой системы используется структурная модель, а на народнохозяйственном уровне каждая отрасль может быть представлена функциональной моделью.

Выше уже показывались различия между моделями дескриптивными и нормативными. Дескриптивные модели отвечают на вопрос: как это происходит? или как это вероятнее всего может дальше развиваться? т.е. они только объясняют наблюдаемые факты или дают вероятный прогноз. Нормативные модели отвечают на вопрос: как это должно быть? т.е. предполагают целенаправленную деятельность. Типичным примером нормативных моделей являются модели оптимального планирования, формализующие тем или иным способом цели экономического развития, возможности и средства их достижения.

Применение дескриптивного подхода в моделировании экономики объясняется необходимостью эмпирического выявления различных зависимостей в экономике, установления статистических закономерностей экономического поведения социальных групп, изучения вероятных путей развития каких-либо процессов при неизменяющихся условиях или протекающих без внешних воздействий.

Примерами дескриптивных моделей являются производственные функции и функции покупательского спроса, построенные на основе обработки статистических данных.

Является ли экономико-математическая модель дескриптивной или нормативной, зависит не только от ее математической структуры, но от характера использования этой модели. Например, модель межотраслевого баланса дескриптивна, если она используется для анализа пропорций прошлого периода. Но эта же математическая модель становится нормативной, когда она применяется для расчетов сбалансированных вариантов развития народного хозяйства, удовлетворяющих конечные потребности общества при плановых нормативах производственных затрат.

Многие экономико-математические модели сочетают признаки дескриптивных и нормативных моделей. Типична ситуация, когда нормативная модель сложной структуры объединяет отдельные блоки, которые являются частными дескриптивными моделями. Например, межотраслевая модель может включать функции покупательского спроса, описывающие поведение потребителей при изменении доходов. Подобные примеры характеризуют тенденцию эффективного сочетания дескриптивного и нормативного подходов к моделированию экономических процессов. Дескриптивный подход широко применяется в имитационном моделировании.

По характеру отражения причинно-следственных связей различают модели жестко детерминистские и модели, учитывающие случайность и неопределенность. Необходимо различать неопределенность, описываемую вероятностными законами, и неопределенность, для описания которой законы теории вероятностей неприменимы. Второй тип неопределенности гораздо более сложен для моделирования.

По способам отражения фактора времени экономико-математические модели делятся на статические и динамические. В статических моделях все зависимости относятся к одному моменту или периоду времени. Динамические модели характеризуют изменения экономических процессов во времени. По длительности рассматриваемого периода времени различаются модели краткосрочного (до года), среднесрочного (до 5 лет), долгосрочного (10-15 и более лет) прогнозирования и планирования. Само время в экономико-математических моделях может изменяться либо непрерывно, либо дискретно.

Модели экономических процессов чрезвычайно разнообразны по форме математических зависимостей. Особенно важно выделить класс линейных моделей, наиболее удобных для анализа и вычислений и получивших вследствие этого большое распространение.

Различия между линейными и нелинейными моделями существенны не только с математической точки зрения, но и в теоретико-экономическом отношении, поскольку многие зависимости в экономике носят принципиально нелинейный характер: эффективность использования ресурсов при увеличении производства, изменение спроса и потребления населения при увеличении производства, изменение спроса и потребления населения при росте доходов и т.п. Теория "линейной экономики" существенно отличается от теории "нелинейной экономики". От того, предполагаются ли множества производственных возможностей подсистем (отраслей, предприятий) выпуклыми или же невыпуклыми, существенно зависят выводы о возможности сочетания централизованного планирования и хозяйственной самостоятельности экономических подсистем.

По соотношению экзогенных и эндогенных переменных, включаемых в модель, они могут разделяться на открытые и закрытые. Полностью открытых моделей не существует; модель должна содержать хотя бы одну эндогенную переменную. Полностью закрытые экономико-математические модели, т.е. не включающие экзогенных переменных, исключительно редки; их построение требует полного абстрагирования от "среды", т.е. серьезного огрубления реальных экономических систем, всегда имеющих внешние связи. Подавляющее большинство экономико-математических моделей занимает промежуточное положение и различаются по степени открытости (закрытости).

Для моделей народнохозяйственного уровня важно деление на агрегированные и детализированные.

В зависимости от того, включают ли народнохозяйственные модели пространственные факторы и условия или не включают, различают модели пространственные и точечные.

Таким образом, общая классификация экономико-математических моделей включает более десяти основных признаков. С развитием экономико-математических исследований проблема классификации применяемых моделей усложняется. Наряду с появлением новых типов моделей (особенно смешанных типов) и новых признаков их классификации осуществляется процесс интеграции моделей разных типов в более сложные модельные конструкции.

2.2 Этапы экономико-математического моделирования

Основные этапы процесса моделирования уже рассматривались выше. В различных отраслях знаний, в том числе и в экономике, они приобретают свои специфические черты. Проанализируем последовательность и содержание этапов одного цикла экономико-математического моделирования.

1. Постановка экономической проблемы и ее качественный анализ. Главное здесь - четко сформулировать сущность проблемы, принимаемые допущения и те вопросы, на которые требуется получить ответы. Этот этап включает выделение важнейших черт и свойств моделируемого объекта и абстрагирование от второстепенных; изучение структуры объекта и основных зависимостей, связывающих его элементы; формулирование гипотез (хотя бы предварительных), объясняющих поведение и развитие объекта.

2. Построение математической модели. Это - этап формализации экономической проблемы, выражения ее в виде конкретных математических зависимостей и отношений (функций, уравнений, неравенств и т.д.). Обычно сначала определяется основная конструкция (тип) математической модели, а затем уточняются детали этой конструкции (конкретный перечень переменных и параметров, форма связей). Таким образом, построение модели подразделяется в свою очередь на несколько стадий.

Неправильно полагать, что чем больше фактов учитывает модель, тем она лучше "работает" и дает лучшие результаты. То же можно сказать о таких характеристиках сложности модели, как используемые формы математических зависимостей (линейные и нелинейные), учет факторов случайности и неопределенности и т.д.

Излишняя сложность и громоздкость модели затрудняют процесс исследования. Нужно учитывать не только реальные возможности информационного и математического обеспечения, но и сопоставлять затраты на моделирование с получаемым эффектом (при возрастании сложности модели прирост затрат может превысить прирост эффекта).

Одна из важных особенностей математических моделей - потенциальная возможность их использования для решения разнокачественных проблем. Поэтому, даже сталкиваясь с новой экономической задачей, не нужно стремиться "изобретать" модель; вначале необходимо попытаться применить для решения этой задачи уже известные модели.

В процессе построения модели осуществляется взаимосопоставление двух систем научных знаний - экономических и математических. Естественно стремиться к тому, чтобы получить модель, принадлежащую хорошо изученному классу математических задач. Часто это удается сделать путем некоторого упрощения исходных предпосылок модели, не искажающих существенных черт моделируемого объекта. Однако возможна и такая ситуация, когда формализация экономической проблемы приводит к неизвестной ранее математической структуре. Потребности экономической науки и практики в середине ХХ в. способствовали развитию математического программирования, теории игр, функционального анализа, вычислительной математики. Вполне вероятно, что в будущем развитие экономической науки станет важным стимулом для создания новых разделов математики.

3. Математический анализ модели. Целью этого этапа является выяснение общих свойств модели. Здесь применяются чисто математические приемы исследования. Наиболее важный момент - доказательство существования решений в сформулированной модели (теорема существования). Если удастся доказать, что математическая задача не имеет решения, то необходимость в последующей работе по первоначальному варианту модели отпадает и следует скорректировать либо постановку экономической задачи, либо способы ее математической формализации. При аналитическом исследовании модели выясняются такие вопросы, как, например, единственно ли решение, какие переменные (неизвестные) могут входить в решение, каковы будут соотношения между ними, в каких пределах и в зависимости от каких исходных условий они изменяются, каковы тенденции их изменения и т.д. Аналитической исследование модели по сравнению с эмпирическим (численным) имеет то преимущество, что получаемые выводы сохраняют свою силу при различных конкретных значениях внешних и внутренних параметров модели.

Знание общих свойств модели имеет столь важное значение, часто ради доказательства подобных свойств исследователи сознательно идут на идеализацию первоначальной модели. И все же модели сложных экономических объектов с большим трудом поддаются аналитическому исследованию. В тех случаях, когда аналитическими методами не удается выяснить общих свойств модели, а упрощения модели приводят к недопустимым результатам, переходят к численным методам исследования.

4. Подготовка исходной информации. Моделирование предъявляет жесткие требования к системе информации. В то же время реальные возможности получения информации ограничивают выбор моделей, предназначаемых для практического использования. При этом принимается во внимание не только принципиальная возможность подготовки информации (за определенные сроки), но и затраты на подготовку соответствующих информационных массивов.

Эти затраты не должны превышать эффект от использования дополнительной информации.

В процессе подготовки информации широко используются методы теории вероятностей, теоретической и математической статистики. При системном экономико-математическом моделировании исходная информация, используемая в одних моделях, является результатом функционирования других моделей.

5. Численное решение. Этот этап включает разработку алгоритмов для численного решения задачи, составления программ на ЭВМ и непосредственное проведение расчетов. Трудности этого этапа обусловлены, прежде всего, большой размерностью экономических задач, необходимостью обработки значительных массивов информации.

Обычно расчеты по экономико-математической модели носят многовариантный характер. Благодаря высокому быстродействию современных ЭВМ удается проводить многочисленные "модельные" эксперименты, изучая "поведение" модели при различных изменениях некоторых условий. Исследование, проводимое численными методами, может существенно дополнить результаты аналитического исследования, а для многих моделей оно является единственно осуществимым. Класс экономических задач, которые можно решать численными методами, значительно шире, чем класс задач, доступных аналитическому исследованию.

6. Анализ численных результатов и их применение. На этом заключительном этапе цикла встает вопрос о правильности и полноте результатов моделирования, о степени практической применимости последних.

Математические методы проверки могут выявлять некорректные построения модели и тем самым сужать класс потенциально правильных моделей. Неформальный анализ теоретических выводов и численных результатов, получаемых посредством модели, сопоставление их с имеющимися знаниями и фактами действительности также позволяют обнаруживать недостатки постановки экономической задачи, сконструированной математической модели, ее информационного и математического обеспечения.

Заключение

Можно выделить, по крайней мере, четыре аспекта применения математических методов в решении практических проблем.

1. Совершенствование системы экономической информации. Математические методы позволяют упорядочить систему экономической информации, выявлять недостатки в имеющейся информации и вырабатывать требования для подготовки новой информации или ее корректировки. Разработка и применение экономико-математических моделей указывают пути совершенствования экономической информации, ориентированной на решение определенной системы задач планирования и управления. Прогресс в информационном обеспечении планирования и управления опирается на бурно развивающиеся технические и программные средства информатики.

2. Интенсификация и повышение точности экономических расчетов. Формализация экономических задач и применение ЭВМ многократно ускоряют типовые, массовые расчеты, повышают точность и сокращают трудоемкость, позволяют проводить многовариантные экономические обоснования сложных мероприятий, недоступные при господстве "ручной" технологии.

3. Углубление количественного анализа экономических проблем. Благодаря применению метода моделирования значительно усиливаются возможности конкретного количественного анализа, изучение многих факторов, оказывающих влияние на экономические процессы, количественная оценка последствий изменения условий развития экономических объектов и т.п.

4. Решение принципиально новых экономических задач. Посредством математического моделирования удается решать такие экономические задачи, которые иными средствами решить практически невозможно, например: нахождение оптимального варианта народнохозяйственного плана, имитация народнохозяйственных мероприятий, автоматизация контроля за функционированием сложных экономических объектов.

Сфера практического применения метода моделирования ограничивается возможностями и эффективностью формализации экономических проблем и ситуаций, а также состоянием информационного, математического, технического обеспечения используемых моделей. Стремление во что бы то ни стало применить математическую модель может не дать хороших результатов из-за отсутствия хотя бы некоторых необходимых условий.

В соответствии с современными научными представлениями системы разработки и принятия хозяйственных решений должны сочетать формальные и неформальные методы, взаимоусиливающие и взаимодополняющие друг друга. Формальные методы являются, прежде всего, средством научно обоснованной подготовки материала для действий человека в процессах управления. Это позволяет продуктивно использовать опыт и интуицию человека, его способности решать плохо формализуемые задачи.

Список литературы

1. Ашманов С.А. Введение в математическую экономику. М.: Наука, 1984.

2. Курс экономики: Учебник / Под ред. Б.А. Райзберга. - ИНФРА-М, 1997.

3. Лотов А.В. Введение в экономико-математическое моделирование. М.: Наука, 1984.

4. Янч Э. Прогнозирование научно-технического прогресса. / Пер. с англ. - М.: Прогресс, 1974.

Современная экономическая теория включает в качестве необходимого инструмента математические модели и методы. Использование математики в экономике позволяет решить комплекс взаимосвязанных проблем.

Во-первых, выделить и формально описать наиболее важные, существенные связи экономических переменных и объектов. Это положение имеет принципиальный характер, поскольку изучение любого явления или процесса ввиду определенной степени сложности предполагает высокую степень абстракции.

Во-вторых, из сформулированных исходных данных и соотношений методами дедукции можно получать выводы, адекватные изучаемому объекту в той же мере, что и сделанные предпосылки.

В-третьих, методы математики и статистики позволяют путем индукции получать новые знания об объекте, например, оценивать форму и параметры зависимостей его переменных в наибольшей степени соответствующие имеющимся наблюдениям.

В-четвертых, использование математической терминологии позволяет точно и компактно излагать положения экономической теории, формулировать ее понятия и выводы.

Развитие макроэкономического планирования в современных условиях связано с ростом уровня его формализации. Основу для этого процесса заложил прогресс в области прикладной математики, а именно: теории игр, математического программирования, математической статистики и других научных дисциплин. Большой вклад в математическое моделирование экономики бывшего СССР внесли известные советские ученые В.С. Немчинов, В.В. Новожилов, Л.В. Канторович, Н.П. Федоренко. С. С. Шаталин и др. Развитие экономико-математического направления было связано в основном с попытками формально описать так называемую «систему оптимального функционирования социалистической экономики» (СОФЭ), в соответствии с которой строились многоуровневые системы моделей народнохозяйственного планирования, оптимизационные модели отраслей и предприятий.

Экономико-математические методы имеют следующие направления:

Экономико-статистические методы , включают методы экономической и математической статистики. Экономическая статистика занимается статистическим изучением народного хозяйства в целом и отдельных его отраслей на основе периодической отчетности. Инструментарием математической статистики, используемым для экономических исследований, являются дисперсионный и факторный анализ корреляции и регрессии.

Моделирование экономических процессов заключается в построении экономико-математических моделей и алгоритмов, проведении расчетов по ним с целью получения новой информацию о моделируемом объекте. С помощью экономико-математического моделирования могут решаться задачи анализа экономических объектов и процессов, прогнозирования возможных путей их развития (проигрывание различных сценариев), подготовки информации для принятия решений специалистами.



При моделировании экономических процессов широкое распространение получили: производственные функции, модели экономического роста, межотраслевой баланс, методы имитационного моделирования и др.

Исследование операций – научное направление, связанное с разработкой методов анализа целенаправленных действий и количественного обоснования решений. Типовые задачи исследования операций включают: задачи массового обслуживания, управления запасами, ремонта и замены оборудования, календарного планирования, распределительные задачи и др. Для их решения используются методы математического программирования (линейного, дискретного, динамического и стохастического), методы теории массового обслуживания, теории игр, теории управления запасами, теории расписаний и др., а также программно-целевые методы и методы сетевого планирования и управления.

Экономическая кибернетика – научное направление, занимающееся исследованием и совершенствованием экономических систем на основе общей теории кибернетики. Основные ее направления: теория экономических систем, теория экономической информации, теория систем управления в экономике. Рассматривая управление народным хозяйством как информационный процесс, экономическая кибернетика служит научной основой разработки автоматизированных систем управления.

В основе экономико-математических методов лежит описание наблюдаемых экономических процессов и явлений посредством моделей.

Математическая модель экономического объекта - его гомоморфное отображение в виде совокупности уравнений, неравенств, логических отношений, графиков, объединяющее группы отношений элементов изучаемого объекта в аналогичные отношения элементов модели. Модель – это условный образ экономического объекта, построенная для упрощения исследования последнего. Предполагается, что изучение модели имеет двоякий смысл: с одной стороны, оно дает новые знания об объекте, с другой - позволяет определить наилучшее решение применительно к различным ситуациям.

Математические модели, используемые в экономике, можно подразделить на классы по ряду признаков, относящихся к особенностям моделируемого объекта, цели моделирования и используемого инструментария. Это модели макро- и микроэкономические, теоретические и прикладные, равновесные и оптимизационные, описательные, матричные, статические и динамические, детерминированные и стохастические, имитационные и др.

Группа экономико-математических методов делится на две подгруппы:

· Методы математической экстраполяции;

· Методы математического моделирования.

Математическая экстраполяция представляет собой распространение закона изменения функции из области ее наблюдения на область, лежащую вне отрезка наблюдения.

Методы экстраполяции основываются на предположении о неизменности факторов, определяющих развитие изучаемого объекта, и заключается в распространении закономерностей развития объекта в прошлом на его будущее.

Суть состоит в том, что траектория развития объекта до момента, с которого начинается прогнозирование ею будущего развития, может быть выражена после соответствующей обработки фактических данных какой либо математической функцией, адекватно описывающей закономерности предшествующего развития объекта

В зависимости от особенностей изменения уровней в ряду динамики приемы экстраполяции могут быть простыми и сложными.

Первую группу составляют методы прогнозирования, основанные на предположении относительного постоянства в будущем абсолютных значений уровней, среднего уровня ряда, среднего абсолютного прироста, среднего темпа роста.

Вторая группа методов основана на выявлении основной тенденции, то есть применении статистических формул, описывающих тренд. Их можно разделить на два основных типа: на адаптивные и аналитические (кривые роста). Адаптивные методы прогнозирования основаны на том, что процесс реализации их заключается в вычислении последовательных во времени значений прогнозируемого показателя с учетом степени влияния предыдущих уровней. К ним относятся методы скользящей и экспоненциальной средних, метод гармонических весов, метод авторегрессионых преобразований.

В основе аналитических методов (кривых роста) прогнозирования положен принцип получения с помощью метода наименьших квадратов оценки детерминированной компоненты Ft, характеризующей основную тенденцию.

Суть метода состоит в том, что траектория развития объекта до момента, с которого начинается прогнозирование, может быть выражена после соответствующей обработки фактических данных какой-либо математической функцией адекватно описывающей закономерности предшествующего развития. Она осуществляется следующим образом:



1. необходимо получить достаточно продолжительный во времени ряд показателей;

2. необходимо построить эмпирическую кривую, графически отображающую динамику этого показателя во времени;

3. необходимо выровнять ряд с помощью граф анализа или статистического подбора функций, который максимизирует приближение к фактическим значениям динамического ряда;

4. исчисляем коэффициент или параметр этой функции (a,b,c…), в результате получится простейшая математическая модель, пригодная для прогноза во времени, при этом предполагают, что совокупный фактор, определяющий тенденции динамического ряда в прошлом в среднем сохранит свою силу.

В экономических исследованиях наиболее распространенным методом прогнозной экстраполяции является метод, основанный на сглаживании временных рядов.

Последовательность расположенных в хронологическом порядке статистических показателей, которые характеризуют изменение экономического явления во времени, представляет собой временной (динамический) ряд. Отдельные значения показателей (наблюдения) временного ряда называются уровнями этого ряда.

Временные ряды подразделяются на моментные и интервальные.

Целью анализа временных рядов экономических явлений за определенный интервал времени является установление тенденции их изменения за рассматриваемый период, которая покажет направление развития изучаемого явления.

Для того чтобы выявить общую тенденцию изменения экономических явлений в течение изучаемого периода времени, следует провести сглаживание временного ряда. Необходимость сглаживания временных рядов обусловлена тем, что помимо влияния на уровни ряда главных факторов, которые в конечном итоге формируют конкретное значение неслучайной компоненты (тренда), на них действуют случайные факторы, которые вызывают отклонения фактических (наблюдаемых) значений уровней ряда от тренда.

Под трендом понимается характеристика основной тенденции временного ряда значений определенного показателя, т.е. основная закономерность движения его во времени, свободная от случайных воздействий.

Таким образом, отдельные уровни временного ряда (y t ) представляют собой результат воздействия главных факторов, которые формируют конкретное значение неслучайной (детерминированной) компоненты (), а также случайной компоненты (е t), обусловленной воздействием случайных факторов, значение которой составляет отклонение фактических (наблюдаемых) значений уровней ряда от тренда. Для устранения случайных отклонений осуществляется сглаживание временного ряда.

Неслучайные компоненты уровней временного ряда могут быть выражены некоторой аппроксимирующей функцией, отражающей закономерности развития исследуемого явления.

Рассмотрим прогнозную экстраполяцию, основанную на сглаживании временных рядов по методу наименьших квадратов.

Суть метода наименьших квадратов состоит в определении параметров модели тренда, минимизирующих ее отклонение от точек исходного временного ряда, т.е. в минимизации суммы квадратических отклонений между наблюдаемыми и расчетными величинами.

Таким образом, суть сглаживания временного ряда наблюдаемых значений показателя состоит в том, что фактические (наблюдаемые) уровни ряда заменяются уровнями, рассчитанными на основе определенной функции, которая в наибольшей степени соответствует наблюдаемым значениям показателей динамического ряда.

Графиком линейной функции является прямая.

Для того чтобы определить параметры а и А уравнения прямой, следует решить систему уравнений:

Часто данные временного ряда имеют нелинейную зависимость, которая выражается в виде квадратичной функции: у = ах 2 + bх + с. Графиком квадратичной функции является парабола. Для того чтобы определить параметры а,b, с уравнения параболы, следует решить систему уравнений:

Экономико-математическое моделирование предполагает конструирование модели на основе предварительного изучения объекта или процесса, выделения его существенных характеристик или признаков.

Экономико-математическая модель - это система формализованных соотношений, которые описывают основные взаимосвязи элементов, образующих определенную экономическую систему.

В зависимости от уровня управления экономическими и социальными процессами различают макроэкономические, межотраслевые, отраслевые, региональные модели и модели макроуровня (отдельных предприятий, фирм).

Примером экономико-математической модели на макроуровне может служить модель производственной функции при прогнозировании объема валового внутреннего продукта (ВВП) страны, которая имеет следующий вид:

Следует отметить, что расчет экономико-математических моделей проводится по соответствующим компьютерным программам.

Экономико-математические модели используются для разработки межотраслевого баланса, моделирование капитальных вложений, трудовых ресурсов и т. д.

Методы планирования как составная часть методологии планирования представляют собой совокупность расчетов, которые необходимы для разработки отдельных разделов и показателей плана и их обоснования. При этом широко используются достижения отраслевых экономических наук: экономической статистики; экономики промышленности; экономики сельского хозяйства; экономики строительства и других. При планировании показателей важно не только рассчитать их значение в плановом периоде, но и выявить возможные резервы его улучшения и вовлечь их в хозяйственный оборот.

К основным методам планирования, которые широко используются в экономической практике относятся следующие: балансовый метод; нормативный метод; программно-целевой метод; экономико-статистические методы; экономико-математические методы.

Балансовый метод - обеспечивает увязку потребностей и ресурсов как в масштабе всего общественного производства, так и на уровне отрасли и отдельного предприятия. В практике планирования применяются следующие виды балансов: 1) материальные балансы; 2) стоимостные балансы; 3) балансы трудовых ресурсов.

Принципиальная схема материального баланса в натуральных единицах измерения следующая:

К стоимостным балансам относятся: межотраслевой баланс производства и распределения продукции, работ и услуг; государственный бюджет и др. В качестве баланса трудовых ресурсов в одной из тем курса будет рассмотрен сводный баланс трудовых ресурсов.

Нормативный, метод планирования основан на разработке и использовании в планировании норм и нормативов. В качестве примера можно привести норму расхода различных материалов в натуральном измерении на единицу выпускаемой продукции. В качестве нормативов можно привести, как пример, норматив отчисления денежных средств из прибыли предприятия в виде налогов.

Программно-целевой метод планирования основан на разработке социально-экономических программ для решения отдельных социально-экономических проблем. Этот метод предусматривает определение комплекса взаимосвязанных организационно-правовых и финансово-экономических мероприятий, направленных на реализацию разработанных программ. Использование этого метода предусматривает концентрацию ресурсов на решение важнейших проблем.

Экономико-статистические методы планирования представляют собой совокупность отдельных методов, с помощью которых рассчитываются отдельные социально-экономические показатели на плановый период и их динамика. Определяется абсолютная и относительная динамика показателей, т.е. изменение их во времени.

Рассмотрим ряд основных понятий, связанных с системным анализом и
моделированием социально-экономических систем, чтобы с их помощью более
полно раскрыть суть такого ключевого понятия, как
экономико-математические методы. Термин экономико-математические методы
понимается в свою очередь как обобщающее название комплекса
экономических и математических научных дисциплин, объединенных для
изучения социально-экономических систем и процессов.

Под социально-экономической системой будем понимать сложную
вероятностную динамическую систему, охватывающую процессы производства,
обмена, распределения и потребления материальных и других благ. Она
относится к классу кибернетических систем, т. е. систем управляемых.
Рассмотрим прежде всего понятия, связанные с такими системами и методами
их исследования.

Центральным понятием кибернетики является понятие «система». Единого
определения этого понятия нет; возможна такая формулировка: системой
называется комплекс взаимосвязанных элементов вместе с отношениями между
элементами и между их атрибутами. Исследуемое множество элементов можно
рассматривать как систему, если выявлены следующие четыре признака:

Целостность системы, т. е. принципиальная несводимость свойств системы
к сумме свойств составляющих ее элементов;

Наличие цели и критерия исследования данного множества элементов,

Наличие более крупной, внешней по отношению к данной, системы,
называемой «средой»;

Возможность выделения в данной системе взаимосвязанных частей
(подсистем).

Основным методом исследования систем является метод моделирования, т. е.
способ теоретического анализа и практического действия, направленный на
разработку и использование моделей. При этом под моделью будем понимать
образ реального объекта (процесса) в материальной или идеальной форме
(т. е. описанный знаковыми средствами на каком-либо языке), отражающий
существенные свойства моделируемого объекта (процесса) и замещающий его
в ходе исследования и управления. Метод моделирования основывается на
принципе аналогии, т. е. возможности изучения реального объекта не
непосредственно, а через рассмотрение подобного ему и более доступного
объекта, его модели. В дальнейшем мы будем говорить только об
экономико-математическом моделировании, т. е. об описании знаковыми
математическими средствами социально-экономических систем.

Практическими задачами экономико-математического моделирования являются:

Анализ экономических объектов и процессов;

Экономическое прогнозирование, предвидение развития экономических
процессов;

Выработка управленческих решений на всех уровнях

Хозяйственной иерархии.

Следует, однако, иметь в виду, что далеко не во всех случаях данные,
полученные в результате экономико-математического моделирования, могут
использоваться непосредственно как готовые управленческие решения. Они
скорее могут быть рассмотрены как «консультирующие» средства. Принятие
управленческих решений остается за человеком. Таким образом,
экономико-математическое моделирование является лишь одним из
компонентов (пусть очень важным) в человеко-машинных системах
планирования и управления экономическими системами.

Важнейшим понятием при экономико-математическом моделировании, как и при
всяком моделировании, является понятие адекватности модели, т. е.
соответствия модели моделируемому объекту или процессу. Адекватность
модели - в какой-то мере условное понятие, так как полного соответствия
модели реальному объекту быть не может, что характерно и для
экономико-математического моделирования. При моделировании имеется в
виду не просто адекватность, но соответствие по тем свойствам, которые
считаются существенными для исследования. Проверка адекватности
экономико-математических моделей является весьма серьезной проблемой,
тем более, что ее осложняет трудность измерения экономических величин.
Однако без такой проверки применение результатов моделирования в
управленческих решениях может не только оказаться мало полезным, но и
принести существенный вред.

Социально-экономические системы относятся, как правило, к так называемым
сложным системам. Сложные системы в экономике обладают рядом свойств,
которые необходимо учитывать при их моделировании, иначе невозможно
говорить об адекватности построенной экономической модели. Важнейшие из
этих свойств:

Эмерджентность как проявление в наиболее яркой форме свойства
целостности системы, т.е. наличие у экономической системы таких свойств,
которые не присущи ни одному из составляющих систему элементов, взятому
в отдельности. вне системы. Эмерджентность есть результат возникновения
между элементами системы так называемых синергических связей, которые
обеспечивают увеличение общего эффекта до величины, большей, чем сумма
эффектов элементов системы, действующих независимо. Поэтому
социально-экономические системы необходимо исследовать и моделировать в
целом;

Массовый характер экономических явлений и процессов. Закономерности
экономических процессов не обнаруживаются на основании небольшого числа
наблюдений. Поэтому моделирование в экономике должно опираться на
массовые наблюдения;

Динамичность экономических процессов, заключающаяся в изменении
параметров и структуры экономических систем под влиянием среды (внешних
факторов);

Случайность и неопределенность в развитии экономических явлений.
Поэтому экономические явления и процессы носят в основном вероятностный
характер, и для их изучения необходимо применение
экономико-математических моделей на базе теории вероятностей и
математической статистики;

Невозможность изолировать протекающие в экономических системах явления
и процессы от окружающей среды, чтобы наблюдать и исследовать их в
чистом виде;

Активная реакция на появляющиеся новые факторы, способность
социально-экономических систем к активным, не всегда предсказуемым
действиям в зависимости от отношения системы к этим факторам, способам и
методам их воздействия.

Выделенные свойства социально-экономических систем. естественно,
осложняют процесс их моделирования, однако эти свойства следует
постоянно иметь в виду при рассмотрении различных аспектов
экономико-математического моделирования, начиная с выбора типа модели и
кончая вопросами практического использования результатов моделирования.

1.2. Этапы экономико-математического моделирования

Процесс моделирования, в том числе и экономико-математического, включает
в себя три структурных элемента: объект исследования; субъект
(исследователь); модель, опосредующую отношения между познающим
субъектом и познаваемым объектом. Рассмотрим общую схему процесса
моделирования, состоящую из четырех этапов.

Пусть имеется некоторый объект, который мы хотим исследовать методом
моделирования. На первом э т а п е мы конструируем (или находим в
реальном мире) другой объект - модель исходного объекта-оригинала. Этап
построения модели предполагает наличие определенных сведений об
объекте-оригинале. Познавательные возможности модели определяются тем,
что модель отображает лишь некоторые существенные черты исходного
объекта, поэтому любая модель замещает оригинал в строго ограниченном
смысле. Из этого следует, что для одного объекта может быть построено
несколько моделей, отражающих определенные стороны исследуемого объекта
или характеризующих его с разной степенью детализации.

На втором этапе процесса моделирования модель выступает как
самостоятельный объект исследования. Например, одну из форм такого
исследования составляет проведение модельных экспериментов, при которых
целенаправленно изменяются условия функционирования модели и
систематизируются данные о ее "поведении". Конечным результатом этого
этапа является совокупность знаний о модели в отношении существенных
сторон объекта-оригинала, которые отражены в данной модели.

Третий этап заключается в переносе знаний с модели на оригинал, в
результате чего мы формируем множество знаний об исходном объекте и при
этом переходим с языка модели на язык оригинала. С достаточным
основанием переносить какой-либо результат с модели на оригинал можно
лишь в том случае, если этот результат соответствует признакам сходства
оригинала и модели (другими словами, признакам адекватности).

На четвертом этапе осуществляются практическая проверка полученных с
помощью модели знаний и их использование как для построения обобщающей
теории реального объекта, так и для его целенаправленного преобразования
или управления им. В итоге мы снова возвращаемся к проблематике
объекта-оригинала.

Моделирование представляет собой циклический процесс, т. е. за первым
четырехэтапным циклом может последовать второй, третий и т. д. При этом
знания об исследуемом объекте расширяются и уточняются, а первоначально
построенная модель постепенно совершенствуется. Таким образом, в
методологии моделирования заложены большие возможности
самосовершенствования.

Перейдем теперь непосредственно к процессу экономико-математического
моделирования, т. е. описания экономических и социальных систем и
процессов в виде экономико-математических моделей. Эта разновидность
моделирования обладает рядом существенных особенностей, связанных как с
объектом моделирования, так и с применяемыми аппаратом и средствами
моделирования. Поэтому целесообразно более детально проанализировать
последовательность и содержание этапов экономико-математического
моделирования, выделив следующие шесть этапов: постановка экономической
проблемы, ее качественный анализ; построение математической модели;
математический анализ модели; подготовка исходной информации; численное
решение; анализ численных результатов и их применение. Рассмотрим каждый
из этапов более подробно.

1. Постановка экономической проблемы и ее качественный анализ. На этом
этапе требуется сформулировать сущность проблемы, принимаемые
предпосылки и допущения. Необходимо выделить важнейшие черты и свойства
моделируемого объекта, изучить его структуру и

Взаимосвязь его элементов, хотя бы предварительно сформулировать
гипотезы, объясняющие поведение и развитие объекта.

2. Построение математической модели. Это этап формализации экономической
проблемы, т. е. выражения ее в виде конкретных математических
зависимостей (функций, уравнений, неравенств и др.). Построение модели
подразделяется в свою очередь на несколько стадий. Сначала определяется
тип экономико-математической модели, изучаются возможности ее применения
в данной задаче, уточняются конкретный перечень переменных и параметров
и форма связей. Для некоторых сложных объектов целесообразно строить
несколько разноаспект-ных моделей; при этом каждая модель выделяет лишь
некоторые стороны объекта, а другие стороны учитываются агрегированно и
приближенно. Оправдано стремление построить модель, относящуюся к хорошо
изученному классу математических задач, что может потребовать некоторого
упрощения исходных предпосылок модели, не искажающего основных черт
моделируемого объекта. Однако возможна и такая ситуация, когда
формализация проблемы приводит к неизвестной ранее математической
структуре.

3. Математический анализ модели. На этом этапе чисто математическими
приемами исследования выявляются общие свойства модели и ее решений. В
частности, важным моментом является доказательство существования решения
сформулированной задачи. При аналитическом исследовании выясняется,
единственно ли решение, какие переменные могут входить в решение, в
каких пределах они изменяются, каковы тенденции их изменения и т. д.
Однако модели сложных экономических объектов с большим трудом поддаются
аналитическому исследованию; в таких случаях переходят к численным
методам исследования.

4. Подготовка исходной информации. В экономических задачах это, как
правило, наиболее трудоемкий этап моделирования, так как дело не
сводится к пассивному сбору данных. Математическое моделирование
предъявляет жесткие требования к системе информации; при этом надо
принимать во внимание не только принципиальную возможность подготовки
информации требуемого качества, но и затраты на подготовку
информационных массивов. В процессе подготовки информации используются
методы теории вероятностей, теоретической и математической статистики
для организации выборочных обследований, оценки достоверности данных и
т.д. При системном экономико-математическом моделировании результаты
функционирования одних моделей служат исходной информацией для других.

5. Численное решение. Этот этап включает разработку алгоритмов
численного решения задачи, подготовку программ на ЭВМ и непосредственное
проведение расчетов;

При этом значительные трудности вызываются большой размерностью
экономических задач. Обычно расчеты на основе экономико-математической
модели носят многовариантный характер. Многочисленные модельные
эксперименты, изучение поведения модели при различных условиях возможно
проводить благодаря высокому быстродействию современных ЭВМ. Численное
решение существенно дополняет результаты аналитического исследования, а
для многих моделей является единственно возможным.

6. Анализ численных результатов и их применение. На этом этапе прежде
всего решается важнейший вопрос о правильности и полноте результатов
моделирования и применимости их как в практической деятельности, так и в
целях усовершенствования модели. Поэтому в первую очередь должна быть
проведена проверка адекватности модели по тем свойствам, которые выбраны
в качестве существенных (другими словами, должны быть произведены
верификация и валидация модели). Применение численных результатов
моделирования в экономике направлено на решение практических задач
(анализ экономических объектов, экономическое прогнозирование развития
хозяйственных и социальных процессов, выработка управленческих решений
на всех уровнях хозяйственной иерархии).

Перечисленные этапы экономико-математического моделирования находятся в
тесной взаимосвязи, в частности, могут иметь место возвратные связи
этапов. Так, на этапе построения модели может выясниться, что постановка
задачи или противоречива, или приводит к слишком сложной математической
модели; в этом случае исходная постановка задачи должна быть
скорректирована. Наиболее часто необходимость возврата к предшествующим
этапам моделирования возникает на этапе подготовки исходной информации.
Если необходимая информация отсутствует или затраты на ее подготовку
слишком велики, приходится возвращаться к этапам постановки задачи и ее
формализации, чтобы приспособиться к доступной исследователю информации.

Выше уже сказано о циклическом характере процесса моделирования.
Недостатки, которые не удается исправить на тех или иных этапах
моделирования, устраняются в последующих циклах. Однако результаты
каждого цикла имеют и вполне самостоятельное значение. Начав
исследование с построения простой модели, можно получить полезные
результаты, а затем перейти к созданию более сложной и более совершенной
модели, включающей в себя новые условия и более точные математические
зависимости.

1.3. Классификация экономико-математических методов и моделей

Суть экономико-математического моделирования заключается в описании
социально-экономических систем и процессов в виде
экономико-математических моделей. В § 1.1 кратко рассмотрен смысл
понятий «метод моделирования» и «модель». Исходя из этого
экономико-математические методы следует понимать как инструмент, а
экономико-математические модели - как продукт процесса
экономико-математического моделирования.

Рассмотрим вопросы классификации экономико-математических методов. Эти
методы, как отмечено выше, представляют собой комплекс
экономико-математических дисциплин, являющихся сплавом экономики,
математики и кибернетики. Поэтому классификация экономико-математических
методов сводится к классификации научных дисциплин, входящих в их
состав. Хотя общепринятая классификация этих дисциплин пока не
выработана, с известной степенью приближения в составе
экономико-математических методов можно выделить следующие разделы:

Экономическая кибернетика: системный анализ экономики, теория
экономической информации и теория управляющих систем;

Математическая статистика: экономические приложения данной дисциплины
- выборочный метод, дисперсионный анализ, корреляционный анализ,
регрессионный анализ, многомерный статистический анализ, факторный
анализ, теория индексов и др.;

Математическая экономия и изучающая те же вопросы с количественной
стороны эконометрия: теория экономического роста, теория
производственных функций, межотраслевые балансы, национальные счета,
анализ спроса и потребления, региональный и пространственный анализ,
глобальное моделирование и др.;

Методы принятия оптимальных решений, в том числе исследование операций
в экономике. Это наиболее объемный раздел, включающий в себя следующие
дисциплины и методы: оптимальное (математическое) программирование, в
том числе методы ветвей и границ, сетевые методы планирования и
управления, программно-целевые методы планирования и управления, теорию
и методы управления запасами, теорию массового обслуживания, теорию игр.
теорию и методы принятия решений. теорию расписаний. В оптимальное
(математическое) программирование входят в свою очередь линейное
программирование, нелинейное программирование, динамическое
программирование, дискретное (целочисленное) программирование,
дробно-линейное программирование, параметрическое программирование,
сепарабельное программирование, стохастическое программирование,
геометрическое программирование;

Методы и дисциплины, специфичные отдельно как для централизованно
планируемой экономики, так и для. рыночной (конкурентной) экономики. К
первым можно отнести теорию оптимального функционирования экономики,
оптимальное планирование, теорию оптимального ценообразования, модели
материально-технического снабжения и др. Ко вторым - методы, позволяющие
разработать модели свободной конкуренции, модели капиталистического
цикла, модели монополии, модели индикативного планирования, модели
теории фирмы и т. д. Многие из методов, разработанных для
централизованно планируемой экономики, могут оказаться полезными и при
экономико-математическом моделировании в условиях рыночной экономики;

Методы экспериментального изучения экономических явлений. К ним
относят, как правило, математические методы анализа и планирования
экономических экспериментов, методы машинной имитации (имитационное
моделирование), деловые игры. Сюда можно отвести также и методы
экспертных оценок, разработанные для оценки явлений, не поддающихся
непосредственному измерению. Перейдем теперь к вопросам классификации
экономико-математических моделей, другими словами, математических
моделей социально-экономических систем и процессов. Единой системы
классификации таких моделей в настоящее время также не существует,
однако обычно выделяют более десяти основных признаков их классификации,
или классификационных рубрик. Рассмотрим некоторые из этих рубрик.

По общему целевому назначению экономико-математические модели делятся на
теоретико-аналитические, используемые при изучении общих свойств и
закономерностей экономических процессов, и прикладные, применяемые в
решении конкретных экономических задач анализа, прогнозирования и
управления. Различные типы прикладных экономико-математических моделей
как раз и рассматриваются в данном учебном пособии.

По степени агрегирования объектов моделирования модели разделяются на
макроэкономические и микроэкономические. Хотя между ними и нет четкого
разграничения, к первым из них относят модели, отражающие
функционирование экономики как единого целого, в то время как
микроэкономические модели связаны, как правило, с такими звеньями
экономики, как предприятия и фирмы.

По конкретному предназначению, т. е. по цели создания и применения,
выделяют балансовые модели, выражающие требование соответствия наличия
ресурсов и их использования; трендовые модели, в которых развитие
моделируемой экономической системы отражается через тренд (длительную
тенденцию) ее основных показателей; оптимизационные модели,
предназначенные для выбора наилучшего варианта из определенного числа
вариантов производства, распределения или потребления; имитационные
модели, предназначенные для использования в процессе машинной имитации
изучаемых систем или процессов и др.

По типу информации, используемой в модели экономико-математические
модели делятся на аналитические, построенные на априорной информации, и
идентифицируемые, построенные на апостериорной информации.

По учету фактора времени модели подразделяются на статические, в которых
все зависимости отнесены к одному моменту времени, и динамические,
описывающие экономические системы в развитии.

По учету фактора неопределенности модели распадаются на
детерминированные, если в них результаты на выходе однозначно
определяются управляющими воздействиями, и стохастические
(вероятностные), если при задании на входе модели определенной
совокупности значений на ее выходе могут получаться различные результаты
в зависимости от действия случайного фактора.

Экономико-математические модели могут классифицироваться также по
характеристике математических объектов, включенных в модель, другими
словами. по типу математического аппарата, используемого в модели. По
этому признаку могут быть выделены матричные модели, модели линейного и
нелинейного программирования, корреляционно-регрессионные модели, модели
теории массового обслуживания, модели сетевого планирования и
управления, модели теории игр и т.д.

Наконец, по типу подхода к изучаемым социально-экономическим системам
выделяют дескриптивные и нормативные модели. При дескриптивном
(описательном) подходе получаются модели, предназначенные для описания и
объяснения фактически наблюдаемых явлений или для прогноза этих явлений;
в качестве примера дескриптивных моделей можно привести названные ранее
балансовые и трендовые модели. При нормативном подходе интересуются не
тем, каким образом устроена и развивается экономическая система, а как
она должна быть устроена и как должна действовать в смысле определенных
критериев. В частности, все оптимизационные модели относятся к типу
нормативных; другим примером могут служить нормативные модели уровня
жизни.

Рассмотрим в качестве примера экономико-математическую модель
межотраслевого баланса (ЭММ МОБ). С учетом приведенных выше
классификационных рубрик это прикладная, макроэкономическая,
аналитическая, дескриптивная, детерминированная, балансовая, матричная
модель; при этом существуют как статические, так и динамические ЭММ МОБ.



Последние материалы раздела:

SA. Парообразование. Испарение, конденсация, кипение. Насыщенные и ненасыщенные пары Испарение и конденсация в природе сообщение
SA. Парообразование. Испарение, конденсация, кипение. Насыщенные и ненасыщенные пары Испарение и конденсация в природе сообщение

Все газы явл. парами какого-либо вещества, поэтому принципиальной разницы между понятиями газ и пар нет. Водяной пар явл. реальным газом и широко...

Программа и учебные пособия для воскресных школ А тех, кто вокруг, не судить за грехи
Программа и учебные пособия для воскресных школ А тех, кто вокруг, не судить за грехи

Учебно-методический комплект "Вертоград" включает Конспекты учителя, Рабочие Тетради и Сборники тестов по следующим предметам:1. ХРАМОВЕДЕНИЕ...

Перемещение Определить величину перемещения тела
Перемещение Определить величину перемещения тела

Когда мы говорим о перемещении, важно помнить, что перемещение зависит от системы отсчета, в которой рассматривается движение. Обратите внимание...