Молекул строение. Появление понятия «атомно-молекулярное строение вещества»

Рассмотрим для начала два объекта - алмаз и кальцит, структура которых довольно характерна для обычного вещества:

В природе часто встречаются вещества подобного рода. Мы видим, что они имеют упорядоченную форму, и этому есть свои причины, что станет ясно при делении вещества на все более мелкие части. Отложим в сторону алмаз (наш бюджет не позволит проводить с ним эксперименты) и начнем дробить кальцит при помощи долота и молотка. Он распадется на мелкие куски, но - что самое интересное - эти куски будут повторять структуру большого куска. Не обращая внимания на размеры, можно заметить, что углы между гранями и плоскостями остаются постоянными. Раздробив минерал на мельчайшие частички и рассмотрев их под микроскопом, мы увидим все ту же, уже известную нам форму. Оказывается, такое строение имеют даже мельчайшие частички вещества.

Химики, которые называют кальцит карбонатом кальция, скажут, что его структура состоит из карбонатной группы (СО 3 , в которой атом углерода соединен с тремя атомами кислорода) и одного атома кальция. Физические наблюдения показывают, что многочисленные карбонатные группы и атомы кальция расположены в пространстве под теми же углами, что и грани большого кристалла кальцита.

Таким образом, видимая структура материала повторяет кристаллическую структуру. Это та же структура, только во много раз увеличенная.

Физические свойства вещества на макроскопическом уровне отображают закономерности на микроскопическом уровне.

Структура биологического материала также определяется его молекулярным строением. Многие биологические структуры походят на кристаллы, и под микроскопом видны их красивые, четкие формы. Мы уже видели, как упорядочены клетки внутри организма. Такое расположение зависит от структуры материалов, из которых они состоят.

Клетки и ткани всех организмов состоят из одних и тех же веществ. Прежде всего, это вода. На долю воды приходится около 70-90% всех биологических веществ, и потому физические и химические свойства воды во многом определяют свойства биологического материала. В воде растворены соли таких элементов, как натрий, калий, кальций, магний и хлор. Оставшаяся доля приходится на органические вещества, которые состоят из атомов углерода (С), связанных с атомами водорода, кислорода, азота (N) и иногда серы (S) и фосфора (Р).

Самые простые органические молекулы, которые можно встретить в природном газе или в нефти, - метан, этан и пропан.

Они называются углеводородами, поскольку состоят из атомов углерода и водорода. Эти атомы можно изобразить в виде крошечных шариков, соединенных между собой химическими связями. При химической связи два атома делят между собой пару электронов - по одному от каждого атома. На наших рисунках связь между двумя атомами изображена в виде линии. Каждый элемент характеризуется валентностью, или способностью образовывать определенное число химических связей. Валентность углерода равна четырем, поэтому каждый атом углерода может быть связан с четырьмя другими атомами; благодаря этому его свойству образуется большое число самых разных сочетаний атомов, что приводит к огромному разнообразию органических молекул (рис. 3.3). Две и три параллельные линии означают двойную и тройную связь соответственно. Связь посредством пары электронов называется ковалентной; она очень прочная, для ее разрыва требуется значительное количество энергии, потому органические молекулы довольно стабильны. Однако связи легко разрываются при сгорании (окислении), высвобождая большое количество энергии, поэтому углеводороды служат ценным видом топлива.

В самой простой органической молекуле метана атом углерода связан только с четырьмя атомами водорода. В другой молекуле атом углерода соединен одной связью с другим атомом углерода, образуя цепь С-С, на концах которой располагаются атомы водорода. Цепь С-С может достигать очень большой длины; молекулы воска, например, состоят из 30-36 атомов углерода. Цепь атомов углерода может также замыкаться в кольца различного размера. Но самое большое разнообразие получается от соединения атомов углерода с группами атомов других элементов. Например, гидроксильная группа ОН (кислород, связанный с водородом), присоединенная к углеродной цепи, образует спирт (алкоголь).

Рис. 3.3. Разнообразие органических молекул, основным элементом которых служат атомы углерода, как правило, соединенные в цепи. Каждая линия между атомами соответствует связи, то есть общей паре электронов. Двойные и тройные линии обозначают двойные и тройные связи между атомами. Более сложные молекулы, особенно те, что имеют кольцевые структуры, обычно изображаются в виде линий, в местах соединения которых атомы углерода (часто с одним или двумя атомами водорода) не обозначаются. Поскольку валентность углерода равна четырем, каждый атом углерода должен иметь четыре связи; если показаны только три связи атома углерода, то с этим атомом должен быть связан еще один атом водорода

Аминогруппа, состоящая из атома азота и двух атомов водорода (NH 2), соединенная с углеродной цепью, образует амин. В более сложных группах атом кислорода связан с атомом углерода двойной связью (С=О), и одна из таких комбинаций, карбоксильная группа СООН, образует молекулу кислоты. (Кислотой называется любое химическое соединение образующее ионы водорода; вспомним, что ионами называются положительно и отрицательно заряженные атомы или группы атомов.)

Комбинации всех видов этих групп с углеродными цепями различной длины и кольцами дает необычайно большое количество органических соединений, но в живых организмах часто встречаются лишь некоторые из них. Самые важные соединения - белки, нуклеиновые кислоты, углеводы и липиды.

Липиды, к которым относятся всем известные жиры и масла, состоят из длинных углеродных цепей - обычно из 16-18 атомов углерода. Мы прекрасно знакомы с их свойствами: ведь это те самые вещества, что оставляют несмываемые пятна на одежде. Все знают, что вода и масло не смешиваются. Вещества, которые смешиваются с водой, называются гидрофильными (буквально «любящими воду»), а вещества, которые, подобно маслу, не смешиваются с ней, называются гидрофобными («боящимися воды»). (Жирные, маслянистые пятна на одежде следует удалять при помощи сухих очистителей, в состав которых входят такие растворители как тетрахлорид углевода, или же при помощи растворителей, содержащих бензин, который также гидрофобен.) По существу, липиды можно определить как вещества, растворяющиеся только в гидрофобных растворителях.

Другие важные биологические вещества отличаются гигантским размером своих молекул. Молекулярный вес небольших молекул, таких, как пропан, бензин или сахар (вроде глюкозы), не превышает двух сотен единиц. В отличие от них, белки, нуклеиновые кислоты и некоторые другие строительные материалы клеток образованы крупными молекулами - макромолекулами, потому что их молекулярный вес исчисляется тысячами единиц и более. В том, что строительные материалы клеток бывают столь большими, ничего необычного нет, ведь и мы при строительстве используем длинные стальные балки и перекрытия из фанеры и железобетона. Твердые части клеток также состоят из больших компонентов.

Но все эти макромолекулы имеют сравнительно несложную структуру. Они представляют собой полимеры, состоящие из повторяющихся одинаковых, или идентичных, молекул, называемых мономерами:

Например, углеводороды состоят из Сахаров, которые представляют собой небольшие органические молекулы с формулой вроде С 6 Н 12 О 6 . Сахара, представляющие наибольший интерес для нас, - такие, как глюкоза, галактоза и манноза - имеют сложную структуру. Они могут соединяться друг с другом, образуя длинные цепи, иногда даже с ответвлениями. Когда молекулы глюкозы соединяются специфическим образом (химики называют это бета 1:4 связью), то получается целлюлоза:

Целлюлоза - прочный волокнистый материал, из которого состоят стенки растительных клеток, и как следствие это основная составляющая древесины. Но если молекулы глюкозы соединяются иначе (альфа 1:4 связь, иногда с ветвями 1:6), то получаются крахмал и гликоген - основной запасной материал растений и животных. Другие сахара в различных соединениях образуют пектины и камеди, из которых состоит сочная мякоть плодов и других частей растений. Все эти полимеры, масса которых достигает нескольких тысяч единиц, называются полисахаридами, а составляющие их мономеры (сахара) - моносахаридами. Другие полимеры также носят названия, начинающиеся на приставку «поли-», что значит «много».

Одни из самых важных полимеров, белки, состоят из длинных цепей мономеров - аминокислот. Аминокислоты названы так, потому что содержат аминогруппу (NH 2) и группу органической кислоты (СООН). Две аминокислоты сцепляются посредством соединения карбоксильной группы одной с аминогруппой другой и выделением молекулы воды:

Образовавшаяся молекула {дипептид) на одном конце по-прежнему имеет аминогруппу, а на другом - кислую группу, поэтому к ней могут присоединяться другие аминокислоты. Три аминокислоты образуют трипептид, и так далее; молекула из многих аминокислот называется полипептидом, что, собственно говоря, и есть белок. В типичном белке в одну длинную цепь соединены 200-300 аминокислот. (Когда аминокислота утрачивает аминогруппу и кислотную группу, встраиваясь в цепь, она называется остатком аминокислоты.) Поскольку у средней аминокислоты молекулярный вес равен приблизительно 100 единицам, то цепь в 300 аминокислот, или средний белок, имеет атомный вес около 3000 единиц.

Природные белки образуются из 20 видов аминокислот, отличающихся только структурой своей боковой цепи (табл. 3.1). Аминокислоты могут соединяться в любой последовательности, поэтому клетки способны производить огромное количество видов белков. Их предполагаемое разнообразие выходит за рамки человеческого представления. Если имеется 20 видов аминокислот, то 2 аминокислоты - 400 видов дипептидов (с двумя остатками). Трипептидов уже будет 8 тысяч видов, тетрапептидов - 160 тысяч, а цепей из 300 аминокислот - 20 300 видов. Такое огромное число невозможно себе представить. Все белки, когда либо производившиеся земными организмами, составляют лишь небольшую часть возможного разнообразия.

Каждый вид белка отличается уникальной последовательностью аминокислот. Например, у человека молекула гемоглобина, входящего в состав красных кровяных телец - эритроцитов, переносит кислород с кровью. Она начинается с последовательности Val-H is-Leu-Thr-Pro-Glu-Glu- Lys- Ser-Ala-Val-Thr-Ala (буквенные сокращения означают ту или иную аминокислоту). У обычного человека каждая молекула гемоглобина начинается именно с этой последовательности.

В простейшем организме производится по меньшей мере около 2 тысяч различных белков, а в сложных организмах, например у человека, - порядка 30-50 тысяч. (Недавние исследования определили именно такой диапазон, хотя точное количество остается неизвестным.) Каждый белок имеет структуру, подходящую для выполнения различных функций, поскольку белки - это основные «рабочие лошади» организма. Они выполняют практически все функции, которые мы отождествляем с понятием «живой организм»:

♦ белки - это ферменты, которые убыстряют и контролируют все химические реакции в организме;

♦ белки образуют видимые структуры тела: кератины служат строительным материалом волос, кожи и перьев; коллагены входят в состав хрящей и костей;

♦ белки образуют волокна, которые сокращают и растягивают мышцы и другие подвижные образования, такие как реснички и жгутики;

♦ белки составляют важный класс гормонов, которые передают сигналы от одного вида клеток в организме другому виду клеток;

♦ белки образуют рецепторы, которые получают сигналы, соединяясь с другими молекулами; клетка получает сигналы от гормонов, если молекула гормона соединяется с одним из ее
рецепторов; рецепторы, благодаря которым мы чувствуем вкус и запах, позволяют организму распознавать наличие небольших молекул во внешней среде и реагировать на них; белки переносят ионы и небольшие молекулы через клеточные мембраны, что необходимо для работы нашей нервной системы и таких
органов, как почки; белки регулируют все виды процессов и следят
за тем, чтобы они происходили с нужной скоростью.

Понять, каким образом устроены клетки и как они работают, можно, только узнав подробнее о некоторых функциях белков.

Конец работы -

Эта тема принадлежит разделу:

Генетика

GENETICS.. A BEGINNER S GUIDE.. B GUTTMAN A GRIFFITHS D SUZUKI AND T CULLIS..

Если Вам нужно дополнительный материал на эту тему, или Вы не нашли то, что искали, рекомендуем воспользоваться поиском по нашей базе работ:

Что будем делать с полученным материалом:

Если этот материал оказался полезным ля Вас, Вы можете сохранить его на свою страничку в социальных сетях:

Все темы данного раздела:

Гуттман Б., Гриффите Э., Сузуки Д., Куллис Т
Г97 Генетика / Бартон Гуттман, Энтони Гриффите, Дэвид Сузуки, Тара Куллис. - Пер. с англ. О. Перфильева. - М.: ФАИР-ПРЕСС, 2004. - 448 с: ил. - (Наука & Жизнь).

Генетика: прошлое, настоящее и будущее
«Почему у Джимми рыжие волосы, как у мамы, а у его папы черные?» «Почему у людей не рождаются щенки?» «А если конь женится на корове, у них будут дети?» «Почему Мэри така

Поиски порядка и смысла
Микробиолог и генетик Франсуа Жакоб однажды заметил, что «человеческому мозгу просто необходимо найти какой-то порядок во Вселенной». Любой ребенок сразу после рождения не имеет никакой системы, с

Современный образ науки
Генетика - важнейшая область современной биологии, и для того, чтобы лучше понять ее, нужно сначала уяснить, что такое наука в целом. Наука - это разновидность человеческой деятельности, важная сос

Перспективы современной генетики
Если исходить из социокультурного контекста, понятно, почему генетика пробуждает такой интерес и почему открытия в ее области имеют такие далеко идущие последствия. В последние годы была открыта мо

Примитивный интерес к наследственности
Если заглянуть в прошлое, то свидетельства интереса к вопросам наследственности можно найти еще в период палеолита, когда люди только начали понимать, что такое размножение. Возьмем для примера рис

Одомашнивание растений и животных в зеркале мифа
В многочисленных рисунках, произведениях изобразительного искусства и мифах древние люди отразили появление каждого из культурных растений и одомашненных животных, оказавших очень важное влияние на

Научные теории наследственности
Сходство детей и их родителей отмечается всеми. Древние люди считали, что похожие люди имеют общих предков, и поэтому особое внимание уделяли родству. Помимо того, что родственные связи скрепляли д

Откуда берутся дети?
Огромная роль наследственности для общества не только с физиологической, но и с культурной точек зрения, а также заинтересованность в здоровом потомстве заставили человечество задуматься, каким же

Строение клеток
Как телескоп революционным образом преобразил астрономию, так и микроскоп помог людям понять, из чего состоят живые организмы. Можно представить, какое удивление и изумление отразилось на лицах уче

Рост и биосинтез
Одно из самых очевидных свойств живого организма - способность к росту. Рост любого организма, например человека, является результатом двух процессов: роста клеток и их деления. Челов

Ферменты
Линию сборки на заводах обслуживают люди (хотя теперь их все чаще заменяют роботы). Кто же обслуживает пути метаболизма в организме? Каким образом происходят химические реакции, превращающие один м

Синтез полимеров
При первичных метаболических процессах синтезируются все аминокислоты, сахара, липиды и другие небольшие молекулы клетки, которые идут на образование таких макромолекул, как белки и полисахариды. П

Клетки как фабрики по самовоспроизводству и самообновлению
Постараемся еще раз представить, как работает организм. Из окружающей среды он получает вещество-сырье и по различным путям метаболизма превращает его в молекулы своей структуры - делает из первичн

Революционное открытие: законы менделя
Тайна передачи признаков по наследству всегда привлекала людей. В I веке до н. э. древнеримский философ Лукреций заметил, что дети иногда походят на своих дедушек или прадедушек. Столетием спустя П

Открытия Менделя
Грегор Мендель первым приблизился к разгадке древней тайны. Он был монахом в Брюннском монастыре (ныне Брно, Чехия) и помимо преподавательской деятельности занимался на досуге опытами по скрещивани

Родословные
Кроме подсчета количества растений и животных с теми или иными признаками, полученными при случайном скрещивании, полезно исследовать механизм наследственности на примере родословных (людей или дом

Группы крови
Неплохим уроком по генетике может оказаться исследование групп крови у людей. Кровь относят к той или иной группе в зависимости от того, как она взаимодействует с иммунной системой, которая защищае

Множественные аллели и доминантность
Такие явления, как неполная доминантность и кодоминантность, доказывают, что взаимодействие аллелей одного гена может быть довольно сложным. Как мы видели, группу крови определяют три аллеля одного

Тестовые скрещивания
Организмы с доминантным фенотипом по отдельному признаку могут быть гомозиготами или гетерозиготами - АА или Аа, если пользоваться условными обозначениями. Иногда важно знать генотип.

Вероятность
Менделевский закон расщепления позволяет предсказывать вероятность наследования некоторых признаков. Г. Менделя можно назвать основоположником статистических методов в изучении генетики, потому что

Два гена и более
Эти принципы теории вероятностей важно иметь в виду, когда мы анализируем результат от скрещивания по двум генам и более одновременно. Г. Мендель проводил опыты, в которых он наблюдал за одновремен

Первый закон Менделя и определение отцовства
Опираясь на простые рассуждения Менделя, современные генетики определяют характер наследования и проявления того или иного признака в родословных. Кроме того, законы Менделя могут иногда помочь опр

Клетки и размножение
После того как клеточная теория Шлейдена и Шванна стала общепринятой, патолог Рудольф Вирхов сделал свой немаловажный вклад. Он предположил, что не только все организмы состоят из клеток, но и всяк

Митоз и клеточный цикл
Отдельная клетка растет и делится на две новые клетки, проходя через клеточный цикл. Цель такого цикла - произвести две идентичные клетки и более, которые продолжат процесс, получив от родительской

Кариотип
Зная механизм митоза, можно лучше рассмотреть хромосомы, которые свободно движутся во время этого процесса. Поместим каплю крови в пробирку с питательным раствором, в котором могут размножаться лей

Мейоз и законы Менделя
В наши дни широко известно, что гены находятся в хромосомах, хотя в следующем разделе мы постараемся это утверждение доказать. Рассмотрев процесс мейоза, мы теперь можем найти в нем обоснование зак

Местонахождение генов
Основные процессы, происходящие при мейозе и митозе, были изучены к концу XIX века. Теперь известно, что это довольно сложный механизм распределения хромосом по дочерним клеткам, но до начала XX ве

Половые хромосомы
Еще в древности люди заметили, что некоторые заболевания появляются почти исключительно у мужчин, хотя передаются по материнской линии. Самый известный пример - гемофилия, или недостаточная

Нерасхождение хромосом
Обычно мужчины и женщины имеют хорошо выраженный фенотип, определяемый их набором хромосом - XY или XX. Но иногда рождаются дети с необычным числом половых хромосом, и это происходит в результате н

Гены и нарушения метаболизма
Люди - плохой «материал» для изучения законов наследственности, потому что у них трудно получить достаточно надежные данные, но первые наблюдения, как гены осуществляют свою функцию, были сделаны и

Гены и ферменты
В 1944 году Джордж Бидл и Эдвард Тэйтем подтвердили правильность выводов Гаррода на примере хлебной плесени Neurospora (эта плесень ярко-оранжевого цвета иногда образуется на черством хлебе)

Белки и информация
Поскольку гены контролируют производство и синтез белков, то еще раз рассмотрим структуру белков. Как было сказано в гл. 3, белки - наиболее разнообразные молекулы организма. Они являются составной

Исправление наследственных нарушений
В то время как в начале XX века генетика делала первые шаги, большим вниманием пользовалась идея улучшения человеческого рода, или евгеника (см. гл. 15). Когда люди узнали механизм наследств

Бактерии
Вспомним, что бактерии отличаются от других организмов тем, что они прокариоты, то есть не имеют окруженного мембраной ядра, в отличие от эукариот, в том числе растений и животных, в клетках которы

Первые шаги
В 1928 году Фредерик Гриффит обнаружил, что вещество умерших клеток одного штамма бактерий может переносить свои характеристики живым клеткам другого штамма. Например, было известно, что штамм IIIS

Бактериофаги
В 1915 году англичанин Фредерик Творт и канадец Феликс Д"Эрелль независимо друг от друга открыли бактериофаги, которые вызывают инфекции среди бактерий. Сама идея об инфекциях среди бактерий

Эксперимент Херши-Чейз
Зная, что фаги приблизительно наполовину состоят из ДНК и наполовину из белков, Альфред Херши и Марта Чейз решили исследовать функции этих двух компонентов, пометив их, то есть включив в их

Строение ДНК
Вспомним, что основными строительными компонентами организма служат полимеры. Нуклеиновые кислоты - это тоже полимеры, хотя они сильно отличаются по своему строению от белков. Их еще называют по

Модель днк и генетика
В отличие от работы Менделя, статья Уотсона и Крика сразу же привлекла внимание научного сообщества, поскольку она объясняла механизм наследственности. Сразу становилось понятно, что последовательн

Проверка модели
Настоящая научная ценность модели измеряется тем, что можно на практике проверить все выводы, к которым она приводит. Модель Уотсона- Крика не только вобрала в себя все известные факты о ДНК и насл

Распределение генов
То, что гены расположены в хромосомах, казалось бы, не соответствует тому факту, что у людей только 23 пары хромосом и вместе с тем тысячи различных признаков, которым должны соответствовать тысячи

С h/Y: 1 С H/Y: 1 с h/Y: 9 с H/Y.
Получается, что 10% сыновей, которых мы называем рекомбинантами, получили иную комбинацию генов, отличающуюся от комбинации их матерей. В профазе мейоза гомологичные пары выстраиваю

С H/Y: 1 С h/Y: 1 с H/Y: 9 с h/Y.
Этого и следовало ожидать: 90% начального расположения аллелей и 10% рекомбинаций. Определить расстояние между генами человека - достаточно сложно. У большинства организмов, скрещивать кот

A c/Y, 7 A C/Y, 8 a c/Y, 42 a C/Y.
Всего получается 15 (7 + 8) рекомбинаций из сотни, то есть 15%. Поэтому ген А можно поместить на хромосомной карте в 15 единицах от гена С. Однако три гена могут располагаться в последовател

Кроссинговер внутри генов
До середины 1940-х годов ученые полагали, что гены, скорее всего, представляют собой хромомеры, то есть крохотные комочки вдоль хромосом, благод

Генетика фагов
Макс Дельбрюк выбрал для своих исследований фаги, потому что они представляют собой очень простую биологическую систему: крохотные частички, которые могут воспроизводить себе подобных в других клет

Тонкая структура гена
Сеймур Бензер исследовал тонкую структуру гена с помощью фагов Т4, среди которых ему удалось выделить редкие внутригенные рекомбинанты. Бензер сосредоточил внимание на классе мутантов r - rII.

Комплементация и определение границ гена
Эксперименты по составлению карт показали, что область rII состоит из многих мелких участков, или сайтов, в которых могут происходить разные мутации. Но такие карты дают представление только

Что же такое ген!
Вернемся к определению гена. В классической генетике словом «ген» обозначалась единица генетического материала, выделяемая по трем критериям: по функции, мутации и рекомбинации. Изначально предпола

Рестрикционные ферменты и палиндромы
Бактерии и фаги, которые их атакуют, находятся в состоянии непрерывной химической войны. Бактерии, оказывающие сопротивление фаговой инфекции, получают преимущество в борьбе за существование, и они

Рестрикционное картирование
Сейчас известно и доступно для применения множество типов рестрикционных ферментов. Они разрезают ДНК на различные последовательности, и их можно использовать для анализа структуры ДНК и составлени

Как строятся белки?
Итак, информация, определяющая порядок аминокислот в белке, хранится в ДНК в виде ряда триплетных кодонов. Но как последовательность оснований ДНК превращается в реальный продукт? Конечно, чертежи

Молекулы РНК: инструменты для синтеза белка
В 1940-х годах, когда ученые еще недостаточно хорошо представляли строение нуклеиновых кислот, были получены доказательства того, что синтез белков всегда сопровождается синтезом рибонуклеиновой ки

РНК-транскрипция
Сейчас доказано, что РНК образуется в результате того же спаривания комплементарных оснований, с помощью которого образуется и двойная спираль ДНК из одинарной цепи (рис. 9.2). Этот процесс называе

Трансляция
Перенос информации с ДНК на РНК называется транскрипцией, а перенос этой информации с мРНК в белок - трансляцией. Обычно матричные РНК в течение некоторого времени программируют рибос

Сложные гены эукариот
Когда исследователи начали изучать гены различных белков в клетках эукариот, обнаружилось, что взаимодействие генов и белков в этих организмах более сложное, чем взаимодействие генов и белков прока

Генетический словарь
К 1962 году благодаря работам Крика и его коллег, о которых говорилось ранее, было установлено, что генетический код состоит из триплетов. После этого перед исследователями встала другая непростая

Колинеарность генов и белков
Гипотезу о колинеарности гена белку можно было подтвердить, показав, что последовательность мутаций гена соответствует изменениям последовательности аминокислот, к которым приводят эти мутации. Для

Терминирующие кодоны
Три код она из 64 не служат кодом для аминокислоты. Они означают конец синтеза белка и называются терминирующими или нонсенс-(стои-) ко-донами (stop codon). Их существование было подт

Универсальность кода
Значение кодонов было выяснено в ходе опытов на бактериях Е. coli. Но что если в генах других организмов, в том числе и человека, используется другой шифр? В таком случае мутации белков чело

Наследственностb в мире бактерий
Представители классической генетики едва ли смели мечтать о тех возможностях, какие открываются перед современными учеными, проводящими эксперименты на бактериях и вирусах бактерий. В этой главе мы

Бактерии-мутанты
Разные виды бактерий можно различать по фенотипическим признакам, таким как форма, цвет и другие характерные подробности их колоний. Но большой прогресс в генетике бактерий был достигнут в ходе исс

Пол у Е. соli
В 1946 году Джошуа Ледерберг и Эдвард Тэйтем принялись ставить генетические эксперименты на бактериях. Несколькими годами ранее Тэйтем работал в сотрудничестве с Джорджем Биллом, и они на основе оп

Плазмиды
Фактор F - пример так называемой плазмиды, то есть внехромосомного самореплицирующегося генетического элемента с кольцевой структурой. Плазмиды - это своего рода пассажиры в клетке, которые

Факторы резистентности и устойчивость к антибиотикам
В 1955 году одна жительница Японии вернулась из Гонконга с разновидностью дизентерии, вызываемой бактерией рода Shigella. Инфекцию Shigella легко лечить антибиотиками, но эти бактерии

Лизогения
Биологи, проводившие эксперименты с фагами до Второй мировой войны, часто утверждали, что некоторые штаммы бактерий переносят вирусы, которые иногда непредсказуемо проявляют себя в растущих культур

Гены, переносимые вирусом
Пытаясь определить, конъюгирует ли Salmonella подобно Е. coli, Нортон Циндер обнаружил, что фаги могут переносить гены из одной бактериальной клетки в другую. Это явление назвали т

Трансдукция и геном человека
В 1955 году Джошуа Ледерберг предположил, что трансдуцирующие вирусы можно использовать для введения генов в клетки человека. В то время такая идея казалась чистой фантазией, но сейчас она все боле

Регуляция генов и развитие организма
По мере чтения книги, как и на протяжении всей истории генетики, наше представление о генах постоянно изменялось. Если сначала мы считали ген неопределенным фактором, который каким-то образом перед

Регуляция генов у бактерий
Как и в предыдущих главах, начнем с простых биологических систем, то есть с бактерий, при изучении которых этот вопрос впервые был поставлен. Исследования велись преимущественно в 1950-х и 1960-х г

Регуляция генов эукариот
Вопрос о регуляции генов в клетках эукариот требует иной постановки, поскольку образ жизни типичных эукариот коренным образом отличается от образа жизни прокариот. Прокариоты - это протые бактерии,

Эмбриональное развитие в общих чертах
Эмбрион развивается из одной-единственной клетки - зиготы - и превращается в комплекс многих специализированных клеток. Зигота тотипотентна, то есть после многократного деления она может дат

Регуляция по времени и развитие крыла цыпленка
Прекрасный пример временного механизма - развитие крыла цыпленка (рис. 11.2). Крыло вырастает из задатка конечности, состоящего из клеток мезодермы, покрытых слоем эктодермы, включая апикальную обл

Формирование глаза мухи
Одна из самых интересных серий событий с участием нескольких генов происходит при формировании глаза мушки дрозофилы. Сложный глаз насекомого состоит приблизительно из 800 элементов. Отдельный элем

Вмешателbство в строение днк: возвращение эпиметея?
В древнегреческих мифах говорилось о титанах - расе гигантов, рожденных богами прежде расы людей. Титану Эпиметею боги поручили создать животных и растения, распределив между ними разнообразные сво

Рекомбинантная ДНК и рестриктазы
К 1972 году Анни Чанг, Поль Берг и Сеймур Коэн установили, что при помощи рестрикционных ферментов, рестриктаз, можно порезать две любые молекулы ДНК и сделать из них одну реком-бинантную

Изучение отдельных клонированных фрагментов
Часто внимание экспериментаторов сосредотачивается на отдельном донорском гене, который ученые хотят исследовать или использовать. При определенной удаче такой ген может уже содержаться в геномной

Генная терапия
Среди разнообразных способов применения трансгенных технологий особое место занимает генная терапия. Если можно модифицировать растительные и животные организмы, то что мешает применить те ж

Геномика - изучение всего генома
Последние достижения в области секвенирова-ния и развитие технических средств для обработки большого количества клонов в библиотеке генов позволили ученым исследовать сразу весь геном организма. Се

Генетик в роли доктора франкенштейна
В глазах современной общественности генетики часто ассоциируются с образом героя романа Мэри Шелли «Франкенштейн», безумно увлеченного своей работой и создавшего ужасное чудовище. Генетиков обвиняю

Контроль над исследованиями рекомбинантных ДНК
Споры о роли генетики начались задолго до современного расцвета генной инженерии. Еще в 1970-х годах не только ученое сообщество, но и широкая публика принялись обсуждать вопросы, связанные с проти

Генетически модифицированные организмы
Вопросы общественного влияния на генетику и регулирования научных исследований в этой области, во многом не решены до сих пор. По мере совершенствования микробиологических технологий и методов появ

Технологии в контексте
Одна из сторон возникшей проблемы - научное просвещение. Как шутят агенты по продаже недвижимости, три ключевых элемента, помогающих продать дом, - это его место, место и еще раз место. Точно так ж

Аргументы против генетически модифицированных продуктов
В ходе споров по поводу генетически модифицированных продуктов был выдвинут ряд аргументов против их использования. Мы перечислим здесь основные доводы противников, лежащие в основе их рассуждений.

Этические аспекты клонирования
Клонирование животных, хотя и не имеет непосредственного отношения к трансгенным технологиям, также ставит подобные этические вопросы. Прежде всего, это касается млекопитающих. Известно давно о кло

Ответственность ученых
Современные генетические технологии способны причинить человечеству заметный вред, и поэтому общество должно постоянно быть начеку. В наши цели не входит защита генетических технологий или их осужд

Частота мутаций
Мутации всегда происходят естественно, случайно и без очевидной причины. Мы не можем заранее предсказать, какая именно мутация произойдет и где, поэтому при их изучении применяют статистические мет

Мутации у людей
Частоту мутаций у людей можно определить при помощи родословных, в которых проявляются доминантные черты. Дефект, неожиданно появившийся у одного представителя поколения и переданный потомству, дол

Излучение
Спонтанные мутации довольно редки. Частоту мутаций увеличивают мутагены. К самым мощным мутагенам относятся некоторые виды излучений. В 1927 году Герман Мюллер, экспериментировавший с дрозофилой, и

Что представляют собой мутации?
Мутация - это изменение в ДНК. Некоторые изменения происходят спонтанно, со временем. Например, молекулы ДНК теряют пуриновые основания гуанин и аденин (депуринизация) с относительно высокой скорос

Система восстановления ДНК
По мере развития жизни на нашей планете клетки постоянно встречались с различными мутагенами как в виде излучения, так и в виде химических веществ. Частота мутации должна находиться в пределах каки

Генетические последствия радиации
Ионизирующее излучение вызывает мутации любого рода - от точечных замен до хромосомных аберраций и разрывов. Поместив источники невысокой радиации в лесу, исследователи доказали, что постоянное изл

Хромосомные аберрации
Хромосомы содержат гены, расположенные в определенной последовательности. Фенотип организма зависит не только от тех или иных генов, но и от того, как они расположены относительно других генов. На

Хромосомы человека
Под электронным микроскопом хромосомы человека выглядят как свитые в многочисленные петли куски толстой веревки. Каждая хромосома представляет собой длинную, непрерывную цепь ДНК, в скрученном виде

Анеуплоидия
Богатый источник материала для исследований хромосомных аберраций - выкидыши в течение первых недель развития, так как у них насчитывается в 50-100 раз больше хромосомных нарушений, чем у новорожде

Дупликация и делеция
Дупликации и делеции больших участков хромосом почти всегда летальны, как и большинство мутаций. Если плод и выживает, то он характеризуется серьезными нарушениями в развитии. Самый известный приме

Инверсии
Многие из нас слышали о супругах, которым никак не удается завести детей из-за прерванных беременностей и выкидышей. Это происходит, если один из партнеров гетерозиготен по инверсии или транслокаци

Транслокации
Транслокации - частая причина наследственных нарушений, которую можно заметить в кариотипе. Обычно их переносят гетерозиготы, имеющие одну нормальную хромосому и одну хромосому с транслокацией.

Доказательства эволюции
Доказательства того, что разные организмы действительно произошли от общего предка посредством постепенного изменения, поступают из разных источников. Пожалуй, одно из самых сильных доказательств -

Эволюция как процесс
В широком плане эволюция охватывает три процесса: макроэволюцию, специализацию и микроэволюцию. Макроэволюция подразумевает совокупность всех процессов, благодаря которым в прошлом существов

Популяционная генетика
Делить аллели генов на дикие и мутантные, как мы это делали, знакомясь с основами генетики, не совсем правильно, и такое деление может привести к неправильному представлению об эволюции. Исследован

Эволюция человека
Наиболее противоречивый вывод из теории эволюции Дарвина заключался в предположении, что человек произошел от обезьяны. Представители христианской религии приняли эту идею с неодобрением, потому чт

Миграция и разнообразие Homo sapiens
Благодаря секвенированию ДНК людей по всему миру удалось построить филогенетическое дерево человечества. Корни этого дерева, как свидетельствуют окаменелые останки, уходят в Африку. Большинство био

Цвет кожи
Средний оттенок кожи популяции находится почти в прямой зависимости от долготы: самый темный встречается близ экватора, а самый светлый - ближе к полюсам. Темная кожа лучше защищает от ультрафиолет

Евгеника
Как уже говорилось в гл. 1, мысль об улучшении человеческого рода зародилась давно, по крайней мере, в древнегреческом обществе классического периода. Но особое внимание она привлекла в последние д

Словарb
Авторадиография- метод получения снимка радиоактивных материалов посредством их воздействия на фотографический раствор; там, где раствор проявляется, образуется темное пятно.

Карбоксильная группа- химическое соединение СООН, называемое еще кислотной группой, потому что атом водорода стремится отделиться в виде иона Н+
Карбоксильный конец- конец полипептидной цепи со свободной карбоксильной группой. Кариотип- схема хромосомного набора организма, получаемая в результате с

Цитозин - одно из пиримидиновых оснований ДНК или РНК
Частота аллелей- в популяционной генетике соотношение нескольких аллелей одного гена (или типа хромосом). Частота мутаций- мера вероятности того, что прои

(молекулярная структура), взаимное расположение атомов в молекулах. В ходе химических реакций происходит перегруппировка атомов в молекулах реагентов и образуются новые соединения. Поэтому одна из фундаментальных химических проблем состоит в выяснении расположения атомов в исходных соединениях и характера изменений при образовании из них других соединений.

Первые представления о структуре молекул основывались на анализе химического поведения вещества. Эти представления усложнялись по мере накопления знаний о химических свойствах веществ. Применение основных законов химии позволяло определить число и тип атомов, из которых состоит молекула данного соединения; эта информация содержится в химической формуле. Со временем химики осознали, что одной химической формулы недостаточно для точной характеристики молекулы, поскольку существуют молекулы-изомеры, имеющие одинаковые химические формулы, но разные свойства. Этот факт навел ученых на мысль, что атомы в молекуле должны иметь определенную топологию, стабилизируемую связями между ними. Впервые эту идею высказал в 1858 немецкий химик Ф.Кекуле. Согласно его представлениям, молекулу можно изобразить с помощью структурной формулы, в которой указаны не только сами атомы, но и связи между ними. Межатомные связи должны также соответствовать пространственному расположению атомов. Этапы развития представлений о строении молекулы метана отражены на рис. 1. Современным данным отвечает структура

г : молекула имеет форму правильного тетраэдра, в центре которого находится атом углерода, а в вершинах – атомы водорода. (6.58 Кб)

Подобные исследования, однако, ничего не говорили о размерах молекул. Эта информация стала доступна лишь с разработкой соответствующих физических методов. Наиболее важным из них оказалась рентгеновская дифракция. Из картин рассеяния рентгеновских лучей на кристаллах появилась возможность определять точное положение атомов в кристалле, а для молекулярных кристаллов удалось локализовать атомы в отдельной молекуле. Среди других методов можно отметить дифракцию электронов при прохождении их через газы или пары и анализ вращательных спектров молекул.

Вся эта информация дает только общее представление о структуре молекулы. Природу химических связей позволяет исследовать современная квантовая теория. И хотя с достаточно высокой точностью молекулярную структуру рассчитать пока не удается, все известные данные о химических связях можно объяснить. Было даже предсказано существование новых типов химических связей.

Простая ковалентная связь . Молекула водорода Н 2 состоит из двух идентичных атомов. По данным физических измерений длина связи – расстояние между ядрами атомов водорода (протонами) – составляет 0,70 (1 = 10 –8 см), что отвечает радиусу атома водорода в основном состоянии, т.е. в состоянии с минимальной энергией. Образование связи между атомами можно объяснить лишь в предположении, что их электроны локализуются в основном между ядрами, образуя облако отрицательно заряженных связывающих частиц и удерживая вместе положительно заряженные протоны.

Рассмотрим два водородных атома в основном состоянии, т.е. состоянии, в котором их электроны находятся на 1

s -орбитали. Каждый из этих электронов можно рассматривать как волну, а орбиталь – как стоячую волну. При сближении атомов орбитали начинают перекрываться (рис. 2), и, как в случае обычных волн, возникает интерференция – наложение волн (волновых функций) в области перекрывания. Если знаки волновых функций противоположны, то при интерференции волны уничтожают друг друга (деструктивная интерференция), а если одинаковы, то происходит их сложение (конструктивная интерференция). При сближении атомов водорода возможны два исхода в зависимости от того, находятся ли волновые функции в фазе (рис. 2, а ) или в противофазе (рис. 2, б ). В первом случае произойдет конструктивная интерференция, во втором – деструктивная, при этом появятся две молекулярные орбитали; для одной из них характерна высокая плотность в области между ядрами (рис. 2, в ), для другой – низкая (рис. 2, г ) – фактически узел с нулевой амплитудой, разделяющей ядра.

Таким образом, при сближении атомов водорода и их взаимодействии 1

s -орбитали образуют две молекулярные орбитали, а два электрона должны заполнить какую-то одну из них. Электроны в атомах всегда стремятся занять наиболее устойчивое положение – то, в котором их энергия минимальна. Для орбитали, показанной на рис. 2, в , характерна высокая плотность в области между ядрами, и каждый электрон, занявший эту орбиталь, будет б льшую часть времени находиться вблизи положительно заряженных ядер, т.е. его потенциальная энергия будет мала. Напротив, у орбитали, показанной на рис. 2, г , максимальная плотность имеет место в областях, расположенных слева и справа от ядер, и энергия электронов, находящихся на этой орбитали, будет велика. Итак, электроны обладают меньшей энергией, когда они занимают орбиталь в , причем эта энергия даже меньше той, которая была бы у них при бесконечном удалении атомов друг от друга. Поскольку в данном случае имеются только два электрона, оба они могут занимать более выгодную с энергетической точки зрения орбиталь, если их спины антипараллельны (принцип Паули). Поэтому энергия системы, состоящей из двух атомов водорода, при сближении атомов уменьшается, и чтобы затем удалить атомы друг от друга, потребуется энергия, равная энергии образования стабильной молекулы водорода Н 2 . Заметим, что необходимым условием существования молекулы водорода является преимущественная локализация электронов между ядрами в соответствии с тем, что мы уже говорили выше. Молекулярную орбиталь в называют связывающей, а орбиталь г – разрыхляющей.

Рассмотрим теперь сближение двух атомов гелия (атомный номер 2). Здесь тоже перекрывание 1

s -орбиталей приводит к образованию двух молекулярных орбиталей, одной из которых соответствует более низкая, а другой – более высокая энергия. На этот раз, однако, на орбиталях необходимо разместить 4 электрона, по 2 электрона от каждого атома гелия. Низкоэнергетическую связывающую орбиталь могут заполнить только два из них, два других должны занять высокоэнергетическую орбиталь г . Уменьшение энергии вследствие благоприятной локализации первой пары примерно равно увеличению энергии, обусловленному неблагоприятным расположением второй пары. Теперь сближение атомов не дает выигрыша в энергии, и молекулярный гелий Не 2 не образуется. Это удобно проиллюстрировать с помощью диаграммы (рис. 3); разные орбитали на ней представлены в виде энергетических уровней, на которых могут находиться электроны. Последние обозначены стрелками, направленными вверх и вниз, чтобы различить направления спинов. Два электрона могут занимать одну орбиталь, только если их спины антипараллельны.

Эти общие принципы выполняются при образовании молекул из атомов. Как только два атома сближаются настолько, что их атомные орбитали (АО) начинают перекрываться, появляются две молекулярные орбитали (МО): одна связывающая, другая разрыхляющая. Если на каждой из АО находится только по одному электрону, оба они могут занять связывающую МО с меньшей энергией, чем у АО, и образовать химическую связь. Связи такого типа, называемые теперь ковалентными, были давно известны химикам (представления о ковалентной связи легли в основу октетной теории связи, сформулированной американским физикохимиком Г.Льюисом в 1916). Их образование объясняли обобществлением пары электронов взаимодействующими атомами. Согласно современным представлениям, прочность связи зависит от степени перекрывания соответствующих орбиталей. Все сказанное выше позволяет предположить, что связи между атомами могут образовываться при обобществлении не только двух, но также одного или трех электронов. Однако они будут слабее обычных ковалентных связей по следующим причинам. При образовании одноэлектронной связи происходит уменьшение энергии только одного электрона, а в случае образования связи в результате обобществления трех электронов у двух из них энергия уменьшается, а у третьего, наоборот, увеличивается, компенсируя уменьшение энергии одного из первых двух электронов. В результате образующаяся трехэлектронная связь оказывается вдвое слабее обычной ковалентной.

Обобществление одного и трех электронов происходит при образовании молекулярного иона водорода Н

2 + и молекулы ННе соответственно. Вообще же связи такого типа встречаются редко, а соответствующие молекулы обладают высокой реакционной способностью.

Большинство пленкообразующих веществ относится к олигомерам и полимерам.

Олигомеры – полимеры низкой молекулярной массы (обычно не более нескольких тысяч). Олигомерами часто называют полимеры со степенью полимеризации меньше той, при которой начинают проявляться специфические свойства полимера, связанные с гибкостью его макромолекул. Важное значение имеют олигомеры, которые содержат функциональные группы, обуславливающие способность молекул олигомера соединяться друг с другом с образованием длинных молекулярных цепей или трехмерных сетчатых структур (феноло-формальдегидные смолы в стадии резола, смолы эпоксидные, полиэфиракрилаты, которые полимеризуются за счет концевых двойных связей, и др.).

Полимеры – высокомолекулярные соединения, макромолекулы которых состоят из большого числа повторяющихся звеньев с молекулярной массой, составляющей величину от нескольких тысяч до нескольких миллионов. В состав молекул высокомолекулярных соединений (макромолекул) входят сотни и тысячи атомов, связанных друг с другом силами главных валентностей.

Говоря о структурной формуле макромолекул, отметим, что атомы или атомные группировки в молекуле высокомолекулярного соединения могут располагаться либо в виде длинной цепи (линейные, например целлюлоза), либо в виде длинной цепи с разветвлениями (разветвленные, например амилопектин), либо, наконец, в виде трехмерной сетки, состоящей из отрезков цепного строения (сшитые). Примером сшитых высокомолекулярных соединений являются фенолоальдегидные смолы.

Если молекулярные цепи макромолекул состоят из большого числа повторяющихся группировок – звеньев, имеющих одинаковое строение, то такие высокомолекулярные соединения называют полимерами; если содержат несколько типов повторяющихся группировок – сополимерами - А – Б – А – Б -.

В зависимости от химического состава основной цепи высокомолекулярные соединения делятся на гетероцепные, в основной цепи макромолекул которых содержатся атомы различных элементов (углерода, азота, кремния, фосфора), и гомоцепные, макромолекулярные цепи которых построены из одинаковых атомов, основное место среди них занимают карбоцепные полимеры (главные цепи макромолекул состоят только из атомов углерода). Если макромолекулы полимера наряду с атомами углерода содержат атомы неорганических элементов, то они называются элементоорганическими.

Химическое строение некоторых представителей полимеров выглядит так:

… -
СН2 – СН2 – СН2 – СН2 - …

фрагмент карбоцепного полимера (полиэтилен, полипропилен, полиизобутилен, полиметилметакрилат, поливиниловый спирт и др.).

К полимерам гетероцепного класса относятся многочисленные простые и сложные полиэфиры, полиамиды, полиуретаны, природные белки и т. д., а также большая группа элементоорганических полимеров:

… -
СН2 – СН2 – О – СН2 – СН2 – О – СН2 – СН2 – О -

полиэтиленоксид (простой эфир)

полиэтилентерефталат (сложный полиэфир)

полиамид

полидиметилсилоксан (элементоорганический полимер)

полифосфонитрилхлорид (неорганический полимер).

Еще один класс полимеров – это высокомолекулярные соединения с сопряженной системой связей: различные полиацетилены, полинитрилы, полифенилены, полиоксадиазолы и многие другие соединения. Например,

… - СН = СН – СН = СН – СН = СН -…

полиацетилен

полифенилен

полиоксадиазол

К этому же классу относится группа хелатных полимеров, в состав которых входят различные элементы, способные к образованию координационных связей (они обычно обозначаются стрелками). Элементарное звено таких полимеров часто имеет сложное строение:

Свойства хелатных полимеров изучены еще недостаточно, но, несомненно, они очень интересны с многих точек зрения.

В зависимости от формы макромолекул высокомолекулярные соединения делятся на фибриллярные и глобулярные. У фибриллярных полимеров молекулы по форме представляют собой линейные или слабо разветвленные цепи. Фибриллярные высокомолекулярные соединения легко образуют надмолекулярные структуры в виде асимметричных пачек молекул – фибрилл. Цепи молекул внутри каждой фибриллы ориентированы в одном и том же направлении (целлюлозные волокна, полиамиды и др.).

Глобулярными называют высокомолекулярные соединения, макромолекулы которых имеют форму более или менее шарообразных клубков, глобул, последней может быть сильно разветвленная макромолекула. Разрушение такой глобулы невозможно без химической деструкции макромолекулы. Возможно также образование глобул у фибриллярных высокомолекулярных соединений, связанное с изменением формы их молекул.

Отдельная глобула может быть образована гибкой линейной макромолекулой, свернувшейся в клубок под влиянием сил внутримолекулярного взаимодействия.

Строение полимеров в виде длинных макромолекул, звенья которых связаны химическими связями вдоль цепи макромолекул, доказано различными способами. Одним из мощных методов анализа химического строения молекул является метод рентгеноструктурного анализа. С помощью этого метода можно определять расстояние между центрами масс соседних атомов, связанных как химически, так и межмолекулярными (физическими) связями. Поскольку длины химических связей в низкомолекулярных кристаллических веществах хорошо известны, можно, проведя рентгеноструктурный анализ ориентированных полимерных систем, находящихся в кристаллическом состоянии, определить, какие из атомов расположены на расстоянии друг от друга, равном длине химической связи, а какие – на большем расстоянии, т. е. химически не связаны. Этим путем и было установлено наличие химических связей вдоль цепи макромолекулы и межмолекулярных связей у соседних атомов как внутри цепи, так и между соседними цепями.

Следует отметить, что наличие множества звеньев в макромолекуле обуславливает разнообразие химического строения полимеров. Например, каждое звено в процессе элементарного акта роста цепи может присоединяться к соседнему звену по-разному – «голова к голове», «хвост к хвосту» или «голова к хвосту». Различные варианты присоединения звена к растущей макромолекуле возможны для несимметричных мономеров типа

У таких мономеров возможны варианты «голова к голове»:

и «голова к хвосту»:

Возможно и чередование типов присоединения. Таким образом, полимер содержит не макромолекулы строго одинакового химического строения, а смесь изомерных макромолекул, что и отличает его от чистых низкомолекулярных веществ, построенных из одинаковых молекул.

В ряду замещенных предельных углеводородов с возрастанием числа углеродных атомов количество возможных изомеров быстро увеличивается. А когда число звеньев достигает десятков или сотен тысяч, то количество возможных изомеров будет выражаться астрономическими числами.

Полимеры, построенные из звеньев с регулярно чередующимся направлением заместителей, получили название стереорегулярных.

Если заместители расположены по одну сторону плоскости главных связей, стереорегулярные полимеры называются изотактическими, если по обе стороны – синдиотактическими.

Если заместители располагаются беспорядочно по обе стороны плоскости главных связей, их называют нерегулярными или атактическими:

Еще сложнее строение полимеров, полученных из дизамещенных мономеров, поскольку уже в самом мономере заместители могут располагаться по одну сторону первичных связей (цис-изомер) или по обе стороны (транс-изомер):

цис- транс-

Синтез макромолекул из цис-изомеров приводит к получению эритродиизотактических полимеров:

а из транс-изомеров – треодиизотактических полимеров:

Все изменения в химическом строении полимера влекут за собой изменение свойств материалов на их основе.

Вопросы, связанные со стереорегулярностью построения макромолекулярных цепей, очень интересны, но и не менее сложны, привлекают внимание исследователей многие годы. Материалы на основе стереорегулярных полимеров по свойствам сильно отличаются от материалов, созданных из нерегулярных полимеров. Они легко кристаллизуются, обеспечивая регулирование их физической структуры и свойств, а также расширяются температурные границы работоспособности. Классический пример «сшитого» полимера – отвержденные эпоксидные смолы:


Если все главные цепи в блоке полимерного материала связаны между собой пространственными связями или цепочками, блок можно рассматривать как одну гигантскую макромолекулу.

Сейчас установлено, что структурированные полимеры типа фенолоформальдегидных и эпоксидных смол вовсе не образуют правильную пространственную сетку с последовательным чередованием звеньев и сшивок. Блок такого пространственно-структурированного полимера часто построен из глобул, образующихся уже в процессе синтеза смол. Возникающие на первой стадии синтеза глобулярные образования растворяют мономер, и дальнейший процесс конденсации состоит в наращивании размеров глобул. На конечной стадии процесса глобулы содержат большое количество макромолекул. Это не мешает последующей химической связи между отдельными скрученными цепями.

Существует несколько основных способов получения сетчатых полимеров:

1. Проведение химической реакции между двумя (или более) различными функциональными концевыми группами, присоединенными к цепи небольшой молекулярной массы. В результате формируется частая сетка с короткими цепями между узлами сшивки.

2. Химическое связывание высокомолекулярных соединений по концевым группам с помощью низкомолекулярного сшивающего агента. В результате формируется редкая сетка с протяженными линейными фрагментами между узлами сшивки.

3. Образование сетки за счет сополимеризации двух - и полифункциональных мономеров. Примером такой сетки является система стирол - дивинилбензол:

4. Вулканизация полимерных цепей путем вовлечения в реакцию функциональных групп, расположенных вдоль основной цепи. Реакция проводится либо при использовании низкомолекулярного сшивающего агента, либо за счет радиации и других типов воздействия на функциональные группы.

5. Образование сеток за счет реакции двух (или более) разнородных полимеров по функциональным группам, расположенным вдоль цепи каждого из полимеров (т. е. в повторяющихся звеньях, а не по концам).

6. Синтез полимерных сеток с помощью реакции полициклотримеризации. Для этого используются олигомеры с концевыми группами, способными к образованию циклов в ходе реакции. Например, тримеризация бифункциональных олигомеров (или мономеров), содержащих цианатные концевые группы:

Возможны и другие пути получения полимерных сеток.

Относительно новым типом полимеров являются «интерполимеры», под которыми подразумевают систему, построенную из двух (или более) разнородных по химическому строению макромолекул, химически связанных между собой за счет функциональных групп, расположенных в повторяющихся звеньях каждой макромолекулы. Схематически это показано на рис. 1.

Рис. 1. Схематическое изображение макромолекулы интерполимера

Конкретный пример такой системы – продукт взаимодействия полистирола с политрихлорбутадиеном:

Получение интерполимеров позволяет открывать возможности модификации структуры и свойств полимеров.

Таким образом, согласно современным представлениям о структуре и свойствах полимеров, структура полимера начинается уже с формы макромолекулы и ее расположения в пространстве. Макромолекула всегда является первичным элементом любой структуры (так же, как элементарное звено – первичный элемент химического строения цепи).

В лакокрасочной технологии химические процессы, приводящие к образованию пространственных полимеров, занимают особое место и являются важным приемом получения покрытий с заданными свойствами. Так, химическому отверждению при пленкообразовании подвергаются алкидные, феноло - и аминоформальдегидные, эпоксидные, полиуретановые и другие по молекулярной массе и свойствам пленкообразователи.

Перевод пленкообразователей в состояние «сетчатого» полимера пространственного строения приводит к улучшению атмосферо-, водо-, масло - и теплостойкости, твердости и прочности, адгезии и др.

Все термореактивные пленкообразователи содержат реакционноспособные группы, но в некоторых случаях для образования пространственного полимера необходим дополнительный реагент - отвердитель, как бы «сшивающий» макромолекулы между собой.

Чрезмерная частота межмолекулярных связей приводит к увеличению хрупкости и склонности пленки к растрескиванию, обусловленной возрастанием внутренних напряжений. Поэтому частоту связей регулируют путем изменения режима отверждения (температуры, длительности), числа функциональных групп пленкообразователя, а также природы и содержания отвердителя.

Знаете ли Вы, что такое мысленный эксперимент, gedanken experiment?
Это несуществующая практика, потусторонний опыт, воображение того, чего нет на самом деле. Мысленные эксперименты подобны снам наяву. Они рождают чудовищ. В отличие от физического эксперимента, который является опытной проверкой гипотез, "мысленный эксперимент" фокуснически подменяет экспериментальную проверку желаемыми, не проверенными на практике выводами, манипулируя логикообразными построениями, реально нарушающими саму логику путем использования недоказанных посылок в качестве доказанных, то есть путем подмены. Таким образом, основной задачей заявителей "мысленных экспериментов" является обман слушателя или читателя путем замены настоящего физического эксперимента его "куклой" - фиктивными рассуждениями под честное слово без самой физической проверки.
Заполнение физики воображаемыми, "мысленными экспериментами" привело к возникновению абсурдной сюрреалистической, спутанно-запутанной картины мира. Настоящий исследователь должен отличать такие "фантики" от настоящих ценностей.

Релятивисты и позитивисты утверждают, что "мысленный эксперимент" весьма полезный интрумент для проверки теорий (также возникающих в нашем уме) на непротиворечивость. В этом они обманывают людей, так как любая проверка может осуществляться только независимым от объекта проверки источником. Сам заявитель гипотезы не может быть проверкой своего же заявления, так как причина самого этого заявления есть отсутствие видимых для заявителя противоречий в заявлении.

Это мы видим на примере СТО и ОТО, превратившихся в своеобразный вид религии, управляющей наукой и общественным мнением. Никакое количество фактов, противоречащих им, не может преодолеть формулу Эйнштейна: "Если факт не соответствует теории - измените факт" (В другом варианте " - Факт не соответствует теории? - Тем хуже для факта").

Максимально, на что может претендовать "мысленный эксперимент" - это только на внутреннюю непротиворечивость гипотезы в рамках собственной, часто отнюдь не истинной логики заявителя. Соответсвие практике это не проверяет. Настоящая проверка может состояться только в действительном физическом эксперименте.

Эксперимент на то и эксперимент, что он есть не изощрение мысли, а проверка мысли. Непротиворечивая внутри себя мысль не может сама себя проверить. Это доказано Куртом Гёделем.

Cтраница 1


Молекулярные структуры на основе жирных кислот, их производных, витаминов, порфиринов, пептидов способны имитировать биологические процессы, протекающие в природе, они используются в биофизических, биохимических исследованиях и изучаются как потенциальные лекарственные препараты.  

Молекулярная структура в твердом теле определяется сильным взаимодействием между молекулами, приводящим к колебаниям их около неподвижных центров, совпадающих с равновесными положениями молекул под действием силовых полей, образованных системой молекул. Эти неподвижные в пространстве положения равновесия являются устойчивыми. Они могут образовывать правильную, периодическую систему, что соответствует кристаллической решетке, свойственной микроструктуре кристаллических твердых тел, либо хаотически разбросаны в случае аморфного их состояния. В последнем случае из-за потери устойчивости возникает тенденция к переходу аморфной структуры в кристаллическую. Однако продолжительность этого перехода оказывается настолько значительной, что фактически наблюдаются как кристаллические, так и аморфные состояния твердых тел. Характерные свойства молекулярной (атомной) структуры твердого тела сохраняются по всей его протяженности, что позволяет говорить о наличии в этой структуре как ближнего, так и дальнего порядков.  


Молекулярная структура поверхностных слоев.  

Зависимость электрического сопротивления от степени уплотнения молекулярной структуры органического вещества.  

Молекулярная структура с легкоподвижными электронами называется металлической, так как от этого зависят характерные свойства металлов. Подвижность электронов в значительной степени определяется расстоянием между атомами.  

Молекулярная структура отсутствует также при образовании твердого тела в случае ковалентных нелокализованных связей. Кроме валентных сил, при взаимодействии атомов и молекул играют существенную роль и более слабые, так называемые п о-ляризационные силы.  

Молекулярная структура отсутствует также при образовании твердого тела в случае ковалентных нелокализованных связей. Кроме валентных сил, при взаимодействии атомов и молекул играют существенную роль и более слабые, так называемые п о-л я р и з а ц и о н н ы е силы.  

Молекулярная структура таких солевых полиэлектролитных комплексов может быть различной для одной и той же пары компонентов в зависимости от условий, при которых происходит образование комплекса.  

Молекулярная структура, показанная на рис. 6, находится в соответствии со свойствами вещества. Интенсивная линия при 1541 см-1, появляющаяся вследствие образования координационных двойных связей, лежит исключительно высоко для л-связанной сопряженной системы.  

Молекулярная структура, состоящая из слоев молекул, упакованных тю елочному (паркетному) методу. Слои параллельны плоскости (100), причем длинная ось молекулы расположена перпендикулярно этой плоскости.  



Последние материалы раздела:

Развитие критического мышления: технологии и методики
Развитие критического мышления: технологии и методики

Критическое мышление – это система суждений, способствующая анализу информации, ее собственной интерпретации, а также обоснованности...

Онлайн обучение профессии Программист 1С
Онлайн обучение профессии Программист 1С

В современном мире цифровых технологий профессия программиста остается одной из самых востребованных и перспективных. Особенно высок спрос на...

Пробный ЕГЭ по русскому языку
Пробный ЕГЭ по русскому языку

Здравствуйте! Уточните, пожалуйста, как верно оформлять подобные предложения с оборотом «Как пишет...» (двоеточие/запятая, кавычки/без,...