Неопределённостей соотношение. Соотношение неопределённостей

пучками. Из рис. 2 видно, что угол между падающим электронным пучком и системой отражающих атомных плоскостей

Поэтому если отражение от этой системы атомных плоскостей соответствует дифракционному максимуму n-го порядка, то выполняется условие (?? ) Вульфа-Брэгга 2d sin θ = nλБ , которое можно записать в виде

√ 2m0 eU

Отсюда находим искомое межплоскостное расстояние

2m0 eU

Выполняя расчёт по этой формуле, получаем d = 2,1 · 10−10 м.

2 Соотношения неопределенностей Гейзенберга

В 1927 г. В. ГЕЙЗЕНБЕРГ установил, что при наличии у частиц волновых свойств существует связь между неопределенностями координат и соот-

ветствующими неопределенностями компонент импульса частицы. Эта связь имеет вид неравенств1 :

px ≥ ~ ,

py ≥ ~ ,

pz ≥ ~ .

Эти соотношения играют важную роль, позволяя очертить границы применимости классической механики, в которой, в отличие от квантовой механики, пренебрегают волновыми свойствами частиц.

Из соотношений Гейзенберга (?? ) следует, что из-за наличия у частицы волновых свойств нельзя одновременно точно измерить координату

и px → 0. Но это противоречит неравенствам (?? ). Отсюда следует, в частности, что в квантовой механике для описания движения частицы нельзя использовать представление о движении частицы по определённой траектории, так как такое движение предполагает возможность одновременного точного определения и координат, и импульса (скорости) частицы.

Аналогичные соотношения неопределённостей в квантовой механике записываются и для других пар физических величин. Так, например,

Ограничения на информацию о движении частицы и её состоянии, вытекающие из соотношений неопределённостей, оказываются несущественными для лабораторных макроскопических масштабов. Однако эти ограничения становятся существенными для малых масштабов расстояний, импульсов, энергий и времён жизни частиц, с которыми мы сталкиваемся в атомной и ядерной физике и в физике элементарных частиц.

2.1 Примеры решения задач

Задача. 2.1. Определите с помощью соотношений неопределённо-

1 Иногда в правой части неравенств(2.20) записывают не ~, а1 2 ~ или 2π~. В силу того, что эти соотношения используются как оценочные, принципиального различия между такими формами записи нет.

стей минимальную кинетическую энергию электрона, движущегося в области, размер которой L = 10−10 м соответствует характерному размеру атомов.

Решение. Для оценочных расчётов будем считать движение частицы одномерным и величину неопределённости координаты положим равной размеру области движения частицы, т.е. x = L. При оценке неопределённости импульса примем, что физически разумная неопределённость импульса не должна превышать значения самого импульса, т.е. положим px = p. Тогда из соотношения неопределённостей x · px = ~ получим, что при движении электрона в рассматриваемой области пространства Lp > ~, т.е. импульс частицы не может быть меньше чем

p min=

Это означает, в частности, что в квантовой механике частица не может иметь нулевой импульс, т.е. не может находиться в состоянии покоя.

Используя связь между импульсом p и кинетической энергией E для

√ K

нерелятивистской частицы в виде p = 2m0 EK запишем теперь следующее оценочное соотношение значения кинетической энергии частицы:

2m0 L2

Подставляя в эту формулу массу электрона m0 = 9.1 · 10−31 кг и размер области движения L = 10−10 м, находим EK min = 6 · 10−19 Дж = 3.9 эВ. Чтобы электрон с такой кинетической энергией удержать в области движения, необходима энергия связи такого же порядка. Этот вывод согласуется с опытными данными для энергий связи электронов в атомах.

Задача. 2.2. Используя соотношения неопределённостей, покажите, что в ядре атома не могут находиться электроны. Считать, что линейный размер ядра составляет L = 5 · 10−15 м.

Решение. Как и в задаче 2.1, на основании соотношения неопределённостей можно оценить минимальное значение импульса электрона

релятивистскую формулу связи импульса p с кинетической энергией EK частицы

pc = EK 2 + 2EK E0 ,

получаем квадратное уравнение для расчёта минимальной кинетической энергии электрона в ядре

(EK )

2E0 EK

Положительный корень этого уравнения

E K min= v

E0 2

определяет искомое значение кинетической энергии электрона, движущегося в ядре. Учитывая, что энергия покоя электрона E0 = m0 c2 = 8,19 · 10−14 Дж =0,51 МэВ, находим окончательно значение EK min = 6,2 · 10−22 Дж = 38,7 МэВ.

Как показывают экспериментальные данные, энергия связи частиц в ядре не превышает 10 МэВ. Следовательно, силы, действующие в ядре, не смогут удержать в нём электрон с кинетической энергией, равной 38,7 МэВ. Поэтому электрон не может быть составной частицей ядра атома.

Задача. 2.3. Используя соотношения неопределённостей Гейзенберга, получите оценочное соотношение, определяющее границы применимости классической механики для описания движения частицы в некоторой области пространства с характерным линейным размером L.

Решение. Очевидно, что понятие траектории можно использовать для описания механического движения частицы только в том случае, если неопределённость её координаты мала по сравнению с характерным размером области движения, т.е. x L.

Из соотношений неопределённостей, полагая px = p, получаем для

где λБ - длина волны де Бройля для рассматриваемой частицы.

Следовательно, условие, при выполнении которого для описания движения частицы можно использовать законы классической механики, пренебрегая квантовыми эффектами, можно записать в виде

λБ L .

Отметим, что в это условие входит размер области движения частицы, который обычно задаётся условием решаемой задачи. Анализ показывает, что полученное условие нарушается для частиц с малой массой, т.е. микрочастиц, движущихся в областях пространства порядка атомных размеров.

Задача. 2.4. Среднее время жизни атома в возбужденном состоянии составляет τ = 10−8 с. Оцените минимальное значение неопределённости частоты излучения атома.

Решение. Частота излучения, соответствующая переходу атома из возбуждённого состояния с энергией E2 в основное состояние с энергией E1 , определяется из соотношения

~ω = E1 − E2 .

Из соотношения неопределённостей (?? ) следует, что неопределённости энергий E1 и E2 зависят от времени жизни атома в основном и возбуждённом состояниях, причём

Так как в основном состоянии атом может находиться неограниченно долго, то следует полагать, что t1 → ∞. Время жизни атома в возбуждённом состоянии t2 = τ по условию задачи. Поэтому E1 = 0, а

E2 = ~/τ.

Тогда для оценки неопределённости частоты излучения атома получаем соотношение

Именно это значение определяет минимальную ширину спектральных линий излучения атомов. Реальная ширина спектральных линий увеличивается за счёт теплового движения излучающих атомов и других факторов.

Соотношения неопределённости Гейзенберга

В классической механике состояние материальной точки (классической частицы определяется заданием значений координат, импульса, энергии и т.д.). Микрообъекту не могут быть приписаны перечисленные переменные. Однако, информацию о микрочастицах мы получаем, наблюдая их взаимодействие с приборами представляющие собой макроскопические тела. Поэтому результаты измерений поневоле выражаются в терминах, разработанных для характеристики макротел, следовательно, приписываются и микрочастицам. Например, говорят о состоянии электрона, в котором он имеет какое-то значение энергии или импульса.

Своеобразие свойств микрочастиц проявляется в том, что не для всех переменных получается при измерениях точные значения. Так, например, электрон (и любая другая микрочастица) не может одновременно иметь точных значений координаты х и компоненты импульса Р х. Неопределённость значений x и Р х удовлетворяет соотношению:

Из уравнения (1) следует, что чем меньше неопределённость одной из переменных, тем больше неопределённость другой. Возможно, такое состояние, в котором одна из переменных имеет точное значение, другая переменная при этом оказывается совершенной неопределенной (ее неопределённость равна бесконечности).

– классические в механике пары называются

канонически сопряженными

т.е.

Произведение неопределённостей значений двух сопряженных переменных не может быть по порядку величины меньше постоянной Планка .

Гейзенберг (1901-1976 гг.), немец, Нобелевский лауреат 1932 г., в 1927 г. сформулировал принцип неопределенности, ограничивающий применение к микрообъектам классических понятий и представлений:

– это соотношение означает, что определение энергии с точностью до E должно занять интервал времени, равный по меньшей мере

Попытаемся определить значение координаты х свободно летящей микрочастицы, поставив на ее пути щель шириной х, расположенную перпендикулярно к направлению движения частицы. До прохождения через щель, Р х =0 Þ , зато координата х является совершенно неопределенной. В момент прохождения щель положение меняется. Вместо полной неопределенности х появляется неопределенность х, но это достигается ценой утраты определенности значения P х. Вследствие дифракции появляется некоторая вероятность того, что частица будет двигаться в пределах угла 2j, j – угол, соответствующий первому дифракционному min (интенсивностью высших порядков можно пренебречь).

Краю центрального дифракционного max (первому min) получающемуся от щели шириной х, соответствует угол j, для которого

Соотношение неопределённости показывает в какой мере можно пользоваться понятиями классической механики, в частности, с какой степенью точности можно говорить о траектории микрочастиц.

Подставим вместо

Мы видим, что чем больше масса частицы, тем меньше неопределённости её координаты и скорости, следовательно, c тем большей точностью применимо для неё понятие траектории.

Соотношение неопределённости является одним из фундаментальных положений квантовой механики.

В частности, оно позволяет объяснить тот факт, что электрон не падает на ядро атома, а также оценить размеры простейшего атома и минимальную возможную энергию электрона в таком атоме.

Если бы электрон упал на ядро, его координаты и импульс приняли бы определенные (нулевые) значения, что несовместимо с принципом неопределенности (доказательство от обратного).

Пример Хотя соотношение неопределённости распространяется на частицы любых масс, для макрочастиц оно принципиального значения не имеет. Например, для тела m=1 г., движущегося с =600 м/с, при определении скорости с очень высокой точностью 10 -6 %, неопределенность координаты:

Т.е. очень и очень мала.

Для электрона движущегося с (что соответствует его энергии в 1эВ).

При определении скорости с точностью до 20%

Это очень большая неопределенность, т.к. расстояние между узлами кристаллической решетки твердых тел порядка единиц ангстрем.

Таким образом, любая квантовая система не может находится в состояниях, в которых координаты ее центра инерции (для частицы – координаты частицы) и импульс одновременно принимает вполне определенные значения.

В квантовой механике теряет смысл понятие траектории, т.к. если мы точно определим значения координат, то ничего не можем сказать о направлении ее движения (т.е. импульса), и наоборот.

Вообще говоря, принцип неопределенности справедлив как для макро-, так и для микрообъектов. Однако для макрообъектов значения неопределенности, оказывается пренебрежимо малыми по отношению к значениям самих этих величин, тогда как в микромире эти неопределённости оказываются существенными.

Гипотеза Де Бройля. Электронная микроскопия. Волновая функция.

Волны де Бройля

В начале XX века картина мира выглядела очень чётко и не представляла вариантов для толкования:

Каких частиц - это отдельный вопрос. Но именно так: или частицы иливолна - и никак иначе! Всё ясно и понятно.

Такая идиллия продолжалась до 1924 года, пока французский физик Луи де Бройль не пришёл к выводу, что волновые свойства присущи абсолютно всем материальным объектам .

(1)

На эту гипотезу де Бройля натолкнуло сходство уравнений, описывающих поведение лучей света методами геометрической оптики, и движение частиц в механике методом уравнений Гамильтона .

Предположение было неожиданным, красивым и многое объясняло, но нужно было его экспериментальное подтверждение, иначе всё так и осталось бы на уровне гипотезы.

Первое экспериментальное подтверждение гипотезы де Бройля в 1927 году получили американские исследователи Дэвидсон и Джермер . Они изучали угловое распределение электронов, рассеивающихся на монокристалле никеля.

Ионизационной камерой 4 , с присоединённым с ней гальванометром 5 , по силе возникающего тока I измерялось число электронов, отражённых от кристалла под углом , равным углу падения, то есть - интенсивность отражённого электронного пучка .

2. Если же угол падения электронного пучка на кристалл менялся , а ускоряющее напряжение Uоставалось неизменным , то интенсивность отражённого пучка имела ярко выраженные максимумы при углах падения, удовлетворяющих условию Вульфа-Брэгга.

Способ нахождения импульса зависит от скорости, которую имеет частица. Если скорость движения частицы во много раз меньше скорости света в вакууме, то импульс (количество движения) определяется привычной формулой.


Выясним, какое выражение (2 или 3) надо использовать для нахождения импульса в данном случае. Для этого сравним энергию электронов в условиях опыта Дэвидсона и Джермера с их энергией покоя.

В проведённых экспериментах ускоряющее напряжение было на уровне 400В . В этом случае энергия электронов не превышала E e = eU = 400 эВ . Энергия же покоя электрона E o = m o c 2 = 0,511 МэВ = 511000 эВ . Следовательно, E e <, электроны являются нерелятивистскими и для нахождения их импульса можно использовать выражение (2).

При разгоне (ускорении) электрона работа сил электрического поля идёт на увеличение его кинетической энергии. Для условий эксперимента получаем

Подстановка числовых значений даёт

Следовательно, при U = 400 В в описываемых экспериментах имеем для электрона значение длины волны де Бройля равное = 6,2 10 -11 м .

Такое же значение для длины волны дал и расчёт по формуле Вульфа-Брэгга, основанной на волновой теории.

Гипотеза Луи де Бройля о наличии у частиц волновых свойств получила своё экспериментальное подтверждение.

Вроде бы можно успокоиться и заняться чем-либо другим. Однако вопрос, поднятый де Бройлем , был слишком фундаментальным и нужны были более наглядные подтверждения. Поэтому экспериментаторы продолжили свою работу.

Следует отметить, что одновременно и независимо от Дэвидсона этими вопросами занимался профессор Абердинского университета Джордж П.Томсон (сын знаменитого Джозефа Джона Томсона , открывшего электрон), который и добился успеха первым.

На рис. 3 приведены первые фотографии с двумя дифракционными картинами при разных напряжениях на катодной трубке. Видно, что увеличение напряжения (левый снимок), приводящее к увеличению энергии электронов, приводит и к более чёткой картине с большим числом колец.

Многократно повторив свои эксперименты с различными образцами фольги, Джордж П.Томсон пришёл к выводу:

Несколько послеДж.П.Томсона аналогичные результаты были получены П.С.Тартаковским , а затем и другими физиками, которые также смогли зафиксировать дифракционные кольца, возникающие при прохождении пучка электронов через тонкие слои металла.

Советский физик Иосив Мандельштам с сотрудниками пошёл ещё дальше, он сумел экспериментально показать, что де Бройлевские волны могут интерферировать между собой.

Затем был показано, что волновые свойства обнаруживают нейтроны, протоны и даже молекулы водорода.

Дифракция электронов (электронография ) применяется сейчас при исследовании структуры поверхности, например, при изучении коррозии, при адсорбции газов на поверхностях.

Дифракция нейтронов (нейтронография ) является мощным средством изучения структур, в особенности органических кристаллов, содержащих водород, что невозможно сделать с использованием рентгеновского излучения.

Появились и новая отрасль науки - электронная оптика , давшая миру новый прибор - электронный микроскоп , без которого в настоящее время немыслимы многие исследования. При ускоряющих напряжениях от 50 до 100кВ разрешающая способность электронных микроскопов приближается к 20 .

Но всё это было позже, а первопроходцы

Соотношение неопределённости Гейзенберга

Доказанное одновременное наличие у микрочастиц и корпускулярных и волновых свойств приводило к невозможности применения к ним законов классической механики.

В макромире можно однозначно определить в любой момент времени импульс и координату движущего тела или материальной точки; можно рассчитать и траекторию их движения.

В микромире из-за наличия волновых свойств одновременные значения координат и скорости (импульса) не существуют: если известна скорость (импульс), то местоположение частицы (её координаты) не имеют определённого значения - понятие длина волны в конкретной точке не имеет смысла . То же самое и наоборот.

Налицо парадокс, который впервые был сформулирован немецким физиком Вернером Гейзенбергом в виде так называемого
принципа неопределённости
:

Разделив выражение (4) на массу m частицы, получим другую форму записи принципа неопределённости:

Сказанное выше хорошо иллюстрируется несколькими примерами, с которыми можно познакомиться здесь.

Если выразить p х через энергию ( p х = Е/ v x), то учитывая, что х/ v х = t, получаем соотношение неопределённостей для энергииE и времениt :

(6)

Здесь tпредставляет собой время, в течение которого микрочастица обладает энергией .

Например, атом на самом низком энергетическом уровне может пребывать сколь угодно долго (), поэтому энергия этого состояния вполне определена: Е = 0.

В более высоком энергетическом состояни и атом пребывает очень недолго. Если это время равно t, то энергия атома в этом состоянии может быть определена с точностью до и будет равна . При переходе атома с более высокого уровня на более низкий энергетический уровень с энергией Е" он излучает фотон с энергией

(7)

Таким образом, энергия излучённого фотона может быть известна только с точностью до Е. Величина же Е определяется временем t жизни атома в возбуждённом состоянии.

На основании выражения (7) можно утверждать, что частота излучённого кванта (фотона) имеет неопределённость , равную = Е / h, то есть линии в спектре будут иметь частоту, равную Е / h.

Уравнение Шредингера

В классической механике движение любой материальной точки однозначно описывается уравнением Исаака Ньютона (второй закон Ньютона ), которое в движении вдоль оси ОХ (одномерный случай) имеет вид

(8)

В квантовой механике необходим учёт волновых свойств частиц. Поэтому вместо формулы (8) должно быть использовано другое уравнение. Такое уравнение в 1926 году было записано Эрнестом Шредингером и носит его имя.

Чтобы уравнение, описывающее движения микрочастицы, учитывало её волновые свойства , это уравнение должно быть волновым . Для плоской волны, распространяющейся вдоль оси ОХ, волновое уравнение представляет собой дифференциальное уравнение второго порядка в частных производных . Независимыми переменными в нём являются координата и время.

В случае электромагнитной волны имеем

Для описания движения микрочастицы введём функцию = (x, y, z, t) , связанную с длиной волны де Бройля (смысл этой функции рассмотрим ниже). В этих обозначениях получим

Возьмём вторую частную производную уравнения (11) по времени, то есть продифференцируем его два раза по t

Поскольку v/ = , то можем записать ( /v) 2 =1/() 2 . Теперь, зная, что длина волны де Бройля = h/(mv), получим

С учётом (14) и (15) из (13) получаем

(17)

Здесь - оператор Лапласа. Применение его к пси-функции даёт - лаплассиан .

В общем случае волновое уравнение является функцией двух видов переменных. Как уже говорилось, уравнение Шредингера в виде (16) и (17) не зависит от времени и записано для стационарного случая, при котором волновая функция не зависит от времени: в уравнении (16) = (x) , а в уравнении (17) = (x, y, z) .

При учёте времени как ещё одной переменной, = (x, y, z, t) и уравнение Шредингера принимает вид

Во-первых , оно справедливо лишь при малых (по сравнению со скоростью света в вакууме) скоростях движения частицы, когда
v<< c.

Во-вторых , уравнение Шредингера не описывает процессы, происходящие с изменением числа взаимодействующих частиц, их рождением или аннигиляцией, и не учитывает внутренних степеней свободы частиц, таких, например, как спин.

Релятивистский вариант этого уравнения (когда v c.) был получен Полем Дираком (здесь мы его не рассматриваем).

Записанные выше (16) и (17) стационарные варианты уравнения Шредингера получаются из временн го уравнения (18) при не учёте фактора времени.

Уравнение Шредингера записано для частицы, движущейся в поле, характеризуемом потенциальной энергией U . При решении этого уравнения надо задать вид потенциального поля и закон изменения U . Из решения этого уравнения следует закон квантования энергии для частиц, совпадающий с правилами, введёнными Бором при разработке теории атома водорода. Однако здесь он получается естественным путём , как результат решения, а не искусственно постулируетс я, как у Бора.

Приведённые в этом разделе рассуждения не претендуют на вывод уравнения Шредингера. По сути, уравнение (18) постулируется, а об его справедливости судят, сравнивая следствия из этого уравнения с результатами экспериментов.

Именно благодаря экспериментальным свидетельствам и можно с уверенностью утверждать, что уравнение Шредингера успешно описывает поведение микрообъектов в нерелятивистском приближении.

Допустим, что имеется столь слабый поток частиц, что сквозь щель проходит один электрон за другим через большой промежуток времени. Уравнение Шредингера не позволяет точно предсказать, в какое именно место экрана попадёт конкретный электрон. Это уравнение даёт только вероятность распределения частиц по экрану после прохождения щели. Однако, если эксперимент продолжать достаточно долго, так, чтобы на экран попало большое количество частиц, возникает обычная дифракционная картина.

Следовательно, теория предсказывает только статистический результат , то есть то, что произойдёт в среднем, за большой промежуток времени.

Волновая функция

Попробуем теперь разобраться, что представляет собой введённая в предыдущем параграфе волновая функция = (x, y, z, t) ,.

Для этого рассмотрим в общем виде плоскую волну, которая распространяется в направлении нормали On (см. рис.4). Колебания в плоскости волнового фронта волны АВ запишем в комплексном виде

= 0 exp(-2 i t), (19)

где 0 - амплитуда, - частота, t - время. Через некоторое время фронт волны переместится и займёт положение A"B" .

Соотношение неопределенности Гейзенберга представляется как одно из основных, фундаментальных положений квантовой механики.
Приводим характеристику, данную этому соотношению Л. Д. Ландау:

“Открытие принципа неопределенности показало, что человек в процессе познания природы может оторваться от своего воображения, он может открыть и осознать даже то, что ему не под силу представить”.

Точка зрения Ландау отражает распространенное мнение о соотношении неопределенности Гейзенберга. Рассмотрим положения, в основном, сформулированные авторами квантовой механики, связанными с изложением и трактовкой этого соотношения, которые могут оправдать приведенную характеристику.

1. “Классическая физика как раз и кончается в том месте, где нельзя уже отказаться от учета влияния наблюдателя на исследуемые процессы” ,“Невозможность отдалить самостоятельное поведение от их взаимодействия с измерительными приборами, предназначенных для изучения условий протекания явления, влечет за собой неоднозначность в приписывании обычных атрибутов атомным явлениям. Это обстоятельство вызывает необходимость пересмотра нашего отношения к проблеме физического объяснения”.

Данный фактор, в действительности, имеет место и в процессе обычных измерений, описываемых с помощью классической механики. Но влияние измерительного прибора и методики измерения либо учитывается и вводится поправка, либо результат измерений фигурирует как условный, т. е. оговаривается методика. Во всяком случае, этот фактор достаточно очевидный и не выглядит парадоксальным.

2. “Специфическая неточность, обусловленная соотношением неопределенности, в классической физике отсутствует”.

“В квантовой механике мы встречаемся с парадоксальной ситуацией - наблюдаемые события повинуются закону случая… Сегодня порядок идей обратный [по сравнению с “предвзятыми идеями о причинности”]: случайность стала первичным понятием”. “С точки зрения квантовой теории нет никакой причины, по которой [например] распались имменно эти ядра, они распались “просто так”, спонтанно. Квантовая теория предсказывает лишь вероятность распада ядер”.

В данном случае отрицается наличие причины происходящих явлений. Это часто используемый в квантовой механике способ “решения научных задач”: проблема “закрывается” путем провозглашения соответствующего “закона” или “принципа”. Для Борна “детерминизм” являлся ярлыком, характеризующим неприятие “современной” науки. Его совершенно не устраивала и “компромиссная” теория “скрытых переменных”.

В основе мистического миропонимания лежит аналогичное восприятие необъяснимого: подразумевается, что феномен, недоступный нашему пониманию, находится вне сферы возможности его объяснения.

Следует отметить, что не все классики квантовой механики придерживались этой теории, в частности, против нее решительно выступал Планк: “eсли подобный шаг оказался бы действительно необходимым, то тем самым цель физического исследования была бы значительно отброшена назад, что нанесло бы значительный ущерб, значение которого нетрудно оценить”. Тем не менее, подобное толкование “принципа неопределенности” вошло в ортодоксальную науку.

3. Соотношение неопределенности ряд авторов рассматривал как отражение волновых свойств частиц - следствие корпускулярно-волнового дуализма. “Соотношения неопределенности Гейзенберга непосредственно вытекают из положения, что элементами новой картины мира являются не материальные частицы, а простейшие периодические волны материи”. “Соотношения неопределенности следуют из способа которым связываются с помощью постоянной h корпускулярная и волновая сторона единых объектов вещества и излучения”.

Однако эта точка зрения не является обоснованной, о чем, в частности, свидетельствует вывод соотношения Гейзенбергом без “непосредственного обращения к волновой картине с помощью математической схемы квантовой теории”.

4. Соотношение неопределенности Гейзенберга показывает, что “между точностью, с которой одновременно может быть установлено положение частицы, и точностью ее импульса существует определенное соотношение” :

qp h , (1)
где - среднеквадратичное отклонение. Нетрадиционное обозначение в формуле вводится для того, чтобы подчеркнуть отличие от единичного отклонения, которое часто обозначается символом D , что в отдельных случаях вызывает неверное толкование формулы.

О неприятии данного соотношения в период становления квантовой теории свидетельствуют дискуссии между Эйнштейном и Бором и, в частности, т. н. “парадокс Эйнштейна – Подольского – Розена”, в котором предполагается “мысленное” одновременное измерение импульса и координаты у двух частиц – “двойников”.

Характерная деталь: анализ приведенного выражения проводится так, как будто это эмпирическая формула, а не соотношение, полученное аналитическим путем. В результате трактовка соотношения оказывается не связанной с предпосылками и условностями, которые подразумевались при его выводе, и это является одной из причин тех парадоксов, которые связываются с данным соотношением. Конкретно, эти противоречия отметим в заключении нашего анализа.

Приводим относительно простой вывод соотношения, делая упор на исходные постулаты и условности.

1. В основе соотношения лежит формула Планка, отражающая положение о квантовании “действия ”:

E = nh
(E -энергия фотона, n - частота электромагнитной волны)

или ее следствия:

(p - импульс, l - длина волны).

Приращение “действия”, соответствующее h ,

DS h = p Dq
(Dq - приращение координаты)

или при одновременном изменении p и q:

DS h = Dp Dq .(2)

2. Отметим, что проявление импульса невозможно без перемещения, а проявление энергии - вне времени . Под “проявлением” подразумевается регистрация путем взаимодействия объекта с наблюдателем, с измерительным прибором. Это условие справедливо и в классической механике.

3. В случае использования соотношения неопределенности, а возможно и в общем случае, измеряется “действие”, а не его компоненты - импульс, координаты, энергию, время .

Знаменательно - в действии объединены три основополагающие понятия: сила, длина, время. Измерительный же прибор “отградуирован”, соответственно, на импульс, координаты, энергию и время.

4. Неопределенность - это принципиальная невозможность определить величину параметра, а не результат влияния помех или ошибки измерения, подчиненных вероятностным законам, если их точное воздействие неизвестно.

Неопределенность, которую нельзя устранить, имеет место и в классической механике, она просто объясняется и легко воспринимается. Это случай, когда ограничена разрешающая способность конкретного измерительного инструмента: слишком велика при измерении “цена деления”, т. е. измерение осуществляется с помощью определенного шаблона, а требуется точность более высокая, чем та, что обеспечивается размерами или другими параметрами шаблона. Ни у кого, например, не вызывает удивления, что величина разрешения, достигаемого микроскопом, ограничена длиной волны в луче освещения. Эта неопределенность не связана с нашим незнанием причины погрешности, тем более, что этой причины не существует - у нас нет методики или инструмента для более точного определения измеряемого параметра.

5. В соотношении неопределенность рассматривается как фактор, вызывающий ошибку. Следовательно, формально предполагается стремление получить большую точность, чем та, которая может обеспечить дискретная величина кванта действия.

См. также «Физический портал»

Принцип неопределённости Гейзенбе́рга (или Га́йзенберга ) в квантовой механике - фундаментальное неравенство (соотношение неопределённостей), устанавливающее предел точности одновременного определения пары характеризующих квантовую систему физических наблюдаемых (см. физическая величина), описываемых некоммутирующими операторами (например, координаты и импульса, тока и напряжения, электрического и магнитного поля). Соотношение неопределенностей задаёт нижний предел для произведения среднеквадратичных отклонений пары квантовых наблюдаемых. Принцип неопределённости, открытый Вернером Гейзенбергом в г., является одним из краеугольных камней квантовой механики.

Краткий обзор

Соотношения неопределённостей Гейзенберга являются теоретическим пределом точности одновременных измерений двух некоммутирующих наблюдаемых. Они справедливы как для идеальных измерений, иногда называемых измерениями фон Неймана , так и для неидеальных измерений или измерений Ландау .

Согласно принципу неопределённостей, частица не может быть описана как классическая частица, то есть например у нее не могут быть одновременно точно измерено положение и скорость (импульс) , так же как у обычной классической волны и как волна . (Сам факт того, что какое-либо из этих описаний может быть справедливо, по крайней мере в отдельных случаях, называют корпускулярно-волновым дуализмом). Принцип неопределённости, в виде, первоначально предложенном Гейзенбергом, применим и в случае, когда ни одно из этих двух описаний не является полностью и исключительно подходящим, например частица с определённым значением энергии, находящаяся в коробке с идеально отражающими стенками; то есть для систем, которые не характеризуются ни каким-либо определённым «положением» или пространственной координатой (волновая функция частицы делокализована на всё пространство коробки, то есть ее координаты не имеют определенного значения, локализация частицы осуществлена не точнее размеров коробки), ни определённым значением импульса (включая его направление; в примере с частицей в коробке модуль импульса определен, но не определено его направление).

Соотношения неопределённостей не ограничивают точность однократного измерения любой величины (для многомерных величин тут подразумевается в общем случае только одна компонента). Если её оператор коммутирует сам с собой в разные моменты времени, то не ограничена точность и многократного (или непрерывного) измерения одной величины. Например, соотношение неопределённостей для свободной частицы не препятствует точному измерению её импульса, но не позволяет точно измерить её координату (это ограничение называется стандартный квантовый предел для координаты).

Соотношение неопределенностей в квантовой механике есть в математическом смысле есть непосредственное прямое следствие некоего свойства преобразования Фурье .

Существует точная количественная аналогия между соотношениями неопределённости Гейзенберга и свойствами волн или сигналов . Рассмотрим переменный во времени сигнал, например звуковую волну . Бессмысленно говорить о частотном спектре сигнала в какой-либо момент времени. Для точного определения частоты необходимо наблюдать за сигналом в течение некоторого времени, таким образом теряя точность определения времени. Другими словами, звук не может одновременно иметь и точное значение времени его фиксации, как его имеет очень короткий импульс, и точного значения частоты, как это имеет место для непрерывного (и в принципе бесконечно длительного) чистого тона (чистой синусоиды). Временно́е положение и частота волны математически полностью аналогичны координате и (квантово-механическому) импульсу частицы. Что совсем не удивительно, если вспомнить, что (или p x = k x в системе единиц ), то есть импульс в квантовой механике - это и есть пространственная частота вдоль соответствующей координаты.

В повседневной жизни мы обычно не наблюдаем квантовую неопределённость потому, что значение чрезвычайно мало, и поэтому соотношения неопределенностей накладывают такие слабые ограничения на погрешности измерения, которые заведомо незаметны на фоне реальных практических погрешностей наших приборов или органов чувств.

Определение

Если имеется несколько идентичных копий системы в данном состоянии, то измеренные значения координаты и импульса будут подчиняться определённому распределению вероятности - это фундаментальный постулат квантовой механики. Измеряя величину среднеквадратического отклонения Δx координаты и среднеквадратического отклонения Δp импульса, мы найдем что:

,

где - приведённая постоянная Планка .

Отметим, что это неравенство даёт несколько возможностей - состояние может быть таким, что x может быть измерен с высокой точностью, но тогда p будет известен только приблизительно, или наоборот p может быть определён точно, в то время как x - нет. Во всех же других состояниях, и x и p могут быть измерены с «разумной» (но не произвольно высокой) точностью.

Варианты и примеры

Обобщённый принцип неопределённости

Принцип неопределённости не относится только к координате и импульсу (как он был впервые предложен Гейзенбергом). В своей общей форме, он применим к каждой паре сопряжённых переменных . В общем случае, и в отличие от случая координаты и импульса, обсуждённого выше, нижняя граница произведения «неопределённостей» двух сопряжённых переменных зависит от состояния системы. Принцип неопределённости становится тогда теоремой в теории операторов, которую мы здесь приведем

Следовательно, верна следующая общая форма принципа неопределённости , впервые выведенная в г. Говардом Перси Робертсоном и (независимо) Эрвином Шрёдингером :

Это неравенство называют соотношением Робертсона - Шрёдингера .

Оператор A B B A называют коммутатором A и B и обозначают как [A ,B ] . Он определен для тех x , для которых определены оба A B x и B A x .

Из соотношения Робертсона - Шрёдингера немедленно следует соотношение неопределённости Гейзенберга :

Предположим, A и B - две физические величины, которые связаны с самосопряжёнными операторами. Если A B ψ и B A ψ определены, тогда:

,

Среднее значение оператора величины X в состоянии ψ системы, и

Возможно также существование двух некоммутирующих самосопряжённых операторов A и B , которые имеют один и тот же собственный вектор ψ . В этом случае ψ представляет собой чистое состояние, которое является одновременно измеримым для A и B .

Общие наблюдаемые переменные, которые повинуются принципу неопределённости

Предыдущие математические результаты показывают, как найти соотношения неопределённостей между физическими переменными, а именно, определить значения пар переменных A и B , коммутатор которых имеет определённые аналитические свойства.

  • самое известное отношение неопределённости - между координатой и импульсом частицы в пространстве:
  • отношение неопределённости между двумя ортогональными компонентами оператора полного углового момента частицы:
где i , j , k различны и J i обозначает угловой момент вдоль оси x i .
  • следующее отношение неопределённости между энергией и временем часто представляется в учебниках физики, хотя его интерпретация требует осторожности, так как не существует оператора, представляющего время:
. Однако, при условие периодичности несущественно и принцип неопределенности принимает привычный вид: .

Выражение конечного доступного количества информации Фишера

Принцип неопределённости альтернативно выводится как выражение неравенства Крамера - Рао в классической теории измерений, в случае когда измеряется положение частицы. Средне-квадратичный импульс частицы входит в неравенство как информация Фишера . См. также полная физическая информация.

Интерпретации

Эйнштейн был убеждён, что эта интерпретация была ошибочной. Его рассуждение основывалось на том, что все уже известные распределения вероятности являлись результатом детерминированных событий. Распределение подбрасываемой монеты или катящейся кости может быть описано распределением вероятности (50 % орёл, 50 % решка). Но это не означает, что их физические движения непредсказуемы. Обычная механика может вычислить точно, как каждая монета приземлится, если силы, действующие на неё, будут известны, а орлы/решки будут все ещё распределяться случайно (при случайных начальных силах).

Эйнштейн предполагал, что существуют скрытые переменные в квантовой механике, которые лежат в основе наблюдаемых вероятностей.

Ни Эйнштейн, ни кто-либо ещё с тех пор не смог построить удовлетворительную теорию скрытых переменных, и неравенство Белла иллюстрирует некоторые очень тернистые пути в попытке сделать это. Хотя поведение индивидуальной частицы случайно, оно также скоррелировано с поведением других частиц. Поэтому, если принцип неопределённости - результат некоторого детерминированного процесса, то получается, что частицы на больших расстояниях должны немедленно передавать информацию друг другу, чтобы гарантировать корреляции в своём поведении.

Принцип неопределённости в популярной культуре

Принцип неопределённости часто неправильно понимается или приводится в популярной прессе. Одна частая неправильная формулировка в том, что наблюдение события изменяет само событие. Вообще говоря, это не имеет отношения к принципу неопределённости. Почти любой линейный оператор изменяет вектор, на котором он действует (то есть почти любое наблюдение изменяет состояние), но для коммутативных операторов никаких ограничений на возможный разброс значений нет (). Например, проекции импульса на оси c и y можно измерить вместе сколь угодно точно, хотя каждое измерение изменяет состояние системы. Кроме того, в принципе неопределённости речь идёт о параллельном измерении величин для нескольких систем, находящихся в одном состоянии, а не о последовательных взаимодействиях с одной и той же системой.

Другие (также вводящие в заблуждение) аналогии с макроскопическими эффектами были предложены для объяснения принципа неопределённости: одна из них рассматривает придавливание арбузной семечки пальцем. Эффект известен - нельзя предсказать, как быстро или куда семечка исчезнет. Этот случайный результат базируется полностью на хаотичности, которую можно объяснить в простых классических терминах.

В некоторых научно-фантастических рассказах устройство для преодоления принципа неопределённости называют компенсатором Гейзенберга, наиболее известное используется на звездолёте «Энтерпрайз» из фантастического телесериала Звёздный Путь в телепортаторе. Однако, неизвестно, что означает «преодоление принципа неопределённости». На одной из пресс-конференций продюсера сериала спросили «Как работает компенсатор Гейзенберга?», на что он ответил «Спасибо, хорошо!»



Последние материалы раздела:

Изменение вида звездного неба в течение суток
Изменение вида звездного неба в течение суток

Тема урока «Изменение вида звездного неба в течение года». Цель урока: Изучить видимое годичное движение Солнца. Звёздное небо – великая книга...

Развитие критического мышления: технологии и методики
Развитие критического мышления: технологии и методики

Критическое мышление – это система суждений, способствующая анализу информации, ее собственной интерпретации, а также обоснованности...

Онлайн обучение профессии Программист 1С
Онлайн обучение профессии Программист 1С

В современном мире цифровых технологий профессия программиста остается одной из самых востребованных и перспективных. Особенно высок спрос на...