Нерешенные вопросы физики. Проблемы современной физики

Ниже мы приведем список нерешенных проблем современной физики.

Некоторые из этих проблем носят теоретический характер. Это означает, что существующие теории оказываются неспособными объяснить определённые наблюдаемые явления или экспериментальные результаты.

Другие проблемы являются экспериментальными, а это означает, что имеются трудности в создании эксперимента по проверке предлагаемой теории или по более подробному исследованию какого-либо явления.

Некоторые из этих проблем тесно взаимосвязаны. Например, дополнительные измерения или суперсимметрия могут решить проблему иерархии. Считается, что полная теория квантовой гравитации способна ответить на бо́льшую часть из перечисленных вопросов.

Каким будет конец Вселенной?

Разгадка во многом зависит от тёмной энергии, которая остаётся неизвестным членом уравнения.

Тёмная энергия ответственна за ускоряющееся расширение Вселенной, но ее происхождение - тайна, покрытая мраком. Если тёмная энергия постоянна в течение долгого времени, нас, вероятно, ждёт «большое замораживание»: Вселенная продолжит расширяться всё быстрее, и в конечном счёте галактики настолько удалятся друг от друга, что нынешняя пустота космоса покажется детской забавой.

Если тёмная энергия возрастает, расширение станет настолько быстрым, что увеличится пространство не только между галактиками, но и между звёздами, то есть сами галактики будут разорваны; этот вариант называется «большим разрывом».

Ещё один сценарий состоит в том, что тёмная энергия уменьшится и уже не сможет противодействовать силе тяжести, что заставит Вселенную свернуться («большое сжатие»).

Ну а суть в том, что, как бы ни разворачивались события, мы обречены. До этого ещё, впрочем, миллиарды или даже триллионы лет - достаточно, чтобы разобраться в том, как же всё-таки погибнет Вселенная.

Квантовая гравитация

Несмотря на активные исследования, теория квантовой гравитации пока не построена. Основная трудность в её построении заключается в том, что две физические теории, которые она пытается связать воедино, - квантовая механика и общая теория относительности (ОТО) - опираются на разные наборы принципов.

Так, квантовая механика формулируется как теория, описывающая временну́ю эволюцию физических систем (например атомов или элементарных частиц) на фоне внешнего пространства-времени .

В ОТО внешнего пространства-времени нет - оно само является динамической переменной теории, зависящей от характеристик находящихся в нём классических систем.

При переходе к квантовой гравитации, как минимум, нужно заменить системы на квантовые (то есть произвести квантование). Возникающая связь требует какого-то квантования геометрии самого пространства-времени, причём физический смысл такого квантования абсолютно неясен и сколь-либо успешная непротиворечивая попытка его проведения отсутствует.

Даже попытка провести квантование линеаризованной классической теории гравитации (ОТО) наталкивается на многочисленные технические трудности - квантовая гравитация оказывается неперенормируемой теорией вследствие того, что гравитационная постоянная является размерной величиной.

Ситуация усугубляется тем, что прямые эксперименты в области квантовой гравитации, из-за слабости самих гравитационных взаимодействий, недоступны современным технологиям. В связи с этим в поиске правильной формулировки квантовой гравитации приходится пока опираться только на теоретические выкладки.

Бозон Хиггса не имеет абсолютно никакого смысла. Почему же он существует?

Бозон Хиггса объясняет, как все остальные частицы приобретают массу, но в то же время поднимает множество новых вопросов. Например, почему бозон Хиггса взаимодействует со всеми частицами по-разному? Так, t-кварк взаимодействует с ним сильнее, чем электрон, из-за чего масса первого намного выше, чем у второго.

Кроме того, бозон Хиггса - первая элементарная частица с нулевым спином.

«Перед нами совершенно новая область физики элементарных частиц, - говорит учёный Ричард Руис  - Мы понятия не имеем, какова её природа».

Излучение Хокинга

Производят ли чёрные дыры тепловое излучение, как это предсказывает теория? Содержит ли это излучение информацию об их внутренней структуре или нет, как следует из оригинального расчета Хокинга?

Почему случилось так, что Вселенная состоит из материи, а не антиматерии?

Антиматерия - та же материя: она обладает точно такими же свойствами, как вещество, из которого состоят планеты, звёзды, галактики.

Отличие только одно - заряд. Согласно современным представлениям, в новорождённой Вселенной того и другого было поровну. Вскоре после Большого взрыва материя и антиматерия аннигилировали (прореагировали с взаимным уничтожением и возникновением других частиц друг друга).

Спрашивается, как так вышло, что некоторое количество материи всё-таки осталось? Почему именно материя добилась успеха, а антивещество проиграло «перетягивание каната»?

Чтобы объяснить это неравенство, учёные усердно ищут примеры нарушения CP-инвариантности, то есть процессов, при которых частицы предпочитают распадаться с образованием материи, но не антиматерии.

«Прежде всего хотелось бы понять, различаются ли нейтринные осцилляции (превращение нейтрино в антинейтрино) между нейтрино и антинейтрино, - говорит поделившаяся вопросом Алисия Мэрино из Колорадского университета. - Ничего подобного до сих пор не наблюдалось, но мы надеемся на следующее поколение экспериментов».

Теория всего

Существует ли теория, которая объясняет значения всех фундаментальных физических констант? Существует ли теория, которая объясняет, почему законы физики таковы, как они есть?

Для обозначения теории, которая бы объединила все четыре фундаментальные взаимодействия в природе.

В течение двадцатого века было предложено множество «теорий всего», но ни одна из них не смогла пройти экспериментальную проверку, или существуют значительные затруднения в организации экспериментальной проверки для некоторых из кандидатов.

Бонус: Шаровая молния

Какова природа этого явления? Является ли шаровая молния самостоятельным объектом или подпитывается энергией извне? Все ли шаровые молнии имеют одну и ту же природу или существуют разные их типы?

Шаровая молния - светящийся плавающий в воздухе огненный шар, уникально редкое природное явление.

Единой физической теории возникновения и протекания этого явления к настоящему времени не представлено, также существуют научные теории, которые сводят феномен к галлюцинациям.

Существуют около 400 теорий, объясняющих явление, но ни одна из них не получила абсолютного признания в академической среде. В лабораторных условиях похожие, но кратковременные явления удалось получить несколькими разными способами, так что вопрос о природе шаровой молнии остаётся открытым. По состоянию на конец XX века не было создано ни одного опытного стенда, на котором это природное явление искусственно воспроизводилось бы в соответствии с описаниями очевидцев шаровой молнии.

Широко распространено мнение, что шаровая молния - явление электрического происхождения, естественной природы, то есть представляет собой особого вида молнию, существующую продолжительное время и имеющую форму шара, способного перемещаться по непредсказуемой, иногда удивительной для очевидцев траектории.

Традиционно достоверность многих свидетельств очевидцев шаровой молнии остаётся под сомнением, в том числе:

  • сам факт наблюдения хоть какого-то явления;
  • факт наблюдения именно шаровой молнии, а не какого-то другого явления;
  • отдельные подробности явления, приводимые в свидетельстве очевидца.

Сомнения в достоверности многих свидетельств осложняют изучение явления, а также создают почву для появления разных спекулятивно-сенсационных материалов, якобы связанных с этим явлением.

По материалам: несколько десятков статей из

Выпуски:
* Александров Е.Б., Хвостенко Г.И., Чайка М.П. Интерференция атомных состояний. (1991)
* Алиханов А.И. Слабые взаимодействия. Новейшие исследования бета-распада. (1960)
* Аллен Л., Джонс Д. Основы физики газовых лазеров. (1970)
* Альперт Я.Л. Волны и искусственные тела в приземной плазме. (1974)
* (1988)
* Андреев И.В. Хромодинамика и жесткие процессы при высоких энергиях. (1981)
* Анисимов М.А. Критические явления в жидкостях и жидких кристаллах. (1987)
* Аракелян С.М., Чилингарян Ю.С. Нелинейная оптика жидких кристаллов. (1984)
* (1969)
* Ахманов С.А., Выслоух В.А., Чиркин А.С. Оптика фемотосекундных лазерных импульсов. (1988)
* (1981)
* (1962)
* Бахвалов Н.С., Жилейкин Я.М., Заболотская Е.А. и др. Нелинейная теория звуковых пучков. (1982)
* Белов К.П., Белянчикова М.А., Левитин Р.З., Никитин С.А. Редкоземельные ферромагнетики и антиферромагнетики. (1965)
* Бутыкин В.С., Каплан А.Е., Хронопуло Ю.Г., Якубович Е.И. Резонансные взаимодействия света с веществом. (1977)
* (1970)
* Бреслер С.Е. Радиоактивные элементы. (1949)
* Бродский А.М., Гуревич Ю.Я. Теория электронной эмиссии из металлов. (1973)
* Бугаков В.В. Диффузия в металлах и сплавах. (1949)
* Вавилов В.С., Гиппиус А.А., Конорова Е.А. Электронные и оптические процессы в алмазе. (1985)
* Вайсенберг А.О. Мю-мезон. (1964)
* (1968)
* Васильев В.А., Романовский Ю.М., Яхно В.Г. Автоволновые процессы. (1987)
* (1986)
* (1988)
* (1984)
* Вонсовский С.В. Современное учение о магнетизме. (1952)
* (1969)
* Вонсовский С.В. и др. Ферромагнитный резонанс. Явление резонансного поглощения высокочастотного электромагнитного поля в ферромагнитных веществах. (1961)
* (1981)
* Гейликман Б.Т., Кресин В.З. Кинетические и нестационарные явления в сверпроводниках. (1972)
* Гетце В. Фазовые переходы жидкость-стекло. (1992)
* (1975)
* Гинзбург В.Л., Рухадзе А.А. Волны в магнитоактивной плазме. (1970)
* Гинзбург С.Л. Необратимые явления в спиновых стеклах. (1989)
* Гринберг А.П. Методы ускорения заряженных частиц. (1950)
* Гурбатов С.Н., Малахов А.Н., Саичев А.И. Нелинейные случайные волны в средах без дисперсии. (1990)
* Гуревич Ю.Я., Харкац Ю.И. Суперионные проводники. (1992)
* Дорфман Я.Г. Магнитные свойства атомного ядра. (1948)
* Дорфман Я.Г. Диамагнитизм и химическая связь. (1961)
* Жевандров Н.Д. Оптическая анизотропия и миграция энергии в молекулярных кристаллах. (1987)
* (1970)
* (1984)
* (1972)
* Кернер Б.С., Осипов В.В. Автосолитоны: Локалализованные сильно-неравновесные области в однородных дисипативных системах. (1991)
* (1985)
* Кляцкин В.И. Метод погружения в теории распространения волн. (1986)
* Кляцкин В.И. Статистическое описание динамических систем с флуктуирующими параметрами. (1975)
* Корсунский М.И. Аномальная фотопроводимость. (1972)
* Кулик И.О., Янсон И.К. Эффект Джозефсона в сверхпроводящих туннельных структурах. (1970)
* Лихарев К.К. Введение в динамику джозефсоновских переходов. (1985)
* Лучевое приближение и вопросы распространения радиоволн. (1971) Сборник
* (1958)
* (1967)
* Миногин В.Г., Летохов В.С. Давление лазерного луча на атомы. (1986)
* Михайлов И.Г. Распространение ультрозвуковых волн в жидкостях. (1949)
* Нейтрино. (1970) Сборник
* Общие принципы квантовой теории поля и их следствия. (1977) Сборник
* Осташев В.Е. Распространение звука в движущихся средах. (1992)
* Павленко В.Н., Ситенко А.Г. Эховые явления в плазме и плазмоподобных средах. (1988)
* Паташинский А.З., Покровский В.Л. Флуктуационная теория фазовых переходов. (1975)
* Пушкаров Д.И. Дефектоны в кристаллах: Метод квазичастиц в квантовой теории дефектов. (1993)
* Рик Г.Р. Масс-спектроскопия. (1953)
* Сверхпроводимость: сб. ст. (1967)
* Сена Л.А. Столкновение электронов и ионов с атомами газа. (1948)
* (1960)
* (1964)
* Смилга В.П., Белоусов Ю.М. Мюонный метод исследования вещества. (1991)
* Смирнов Б.М. Комплексные ионы. (1983)
* (1988)
* (1991)
* Степанянц Ю.А., Фабрикант А.Л. Распространение волн в сдвиговых потоках. (1996)
* Тверской Б.А. Динамика радиационных поясов Земли. (1968)
* Туров Е.А. - Физические свойства магнитоупорядоченых кристаллов. феноменол. Теория спиновых волн в ферромагнетиках, антиферромагнетиках. (1963)
* (1972)
* (1961)
* Фотопроводимость. (1967) Сборник
* Фриш С.Э. Спектроскопическое определение ядерных моментов. (1948)
* (1965)
* Хриплович И.Б. Несохранение четности в атомных явлениях. (1981)
* Честер Дж. Теория необратимых процессов. (1966)
* Шикин В.Б., Монарха Ю.П. Двухмерные заряженные системы в гелии. (1989)

За последние 200 лет наука смогла ответить на огромное количество вопросов, касающихся природы и законов, которым подчиняется человечество. Сегодня люди исследуют галактики и атомы, создают машины, решающие проблемы, которые человек не может решить своими силами. Однако есть еще довольно много вопросов, на которые ученые пока не могут дать ответов. Эти нерешенные проблемы современной науки заставляют ученых озадаченно чесать головы и прикладывать еще более колоссальные усилия к тому, чтобы как можно скорее найти ответы на волнующие их вопросы.

Всем известно открытие Ньютона о гравитации. После этого открытия мир существенно изменился. Исследования Альберта Эйнштейна, великого ученого-физика , позволили заново и более глубоко взглянуть на это явление. Благодаря теории гравитации Эйнштейна человечеству удалось понять даже явления, связанные с искривлением света. Однако ученым до сих пор не удалось понять работу субатомных частиц, принцип действия которых основан на законах квантовой механики.

Сегодня существует несколько теорий о квантовой гравитации, но до сих пор ни одну из них не удалось доказать экспериментально. Конечно, разгадка этой задачи вряд ли окажет значительное влияние на повседневную жизнь человека, но, возможно, она поможет разгадать тайны, связанные с черными дырами и путешествием во времени.

Расширение Вселенной

Несмотря на то, что в настоящее время ученым уже известно довольно много об общем устройстве Вселенной, существует еще огромное количество вопросов, связанных с её развитием, например, из чего создана Вселенная .

Сравнительно недавно ученые обнаружили, что наша Вселенная постоянно расширяется, причем скорость её расширения возрастает. Это натолкнуло их на мысль, что, возможно, расширение Вселенной будет бесконечным. В связи с этим возникает вопрос: что вызывает расширение Вселенной и почему скорость её расширения увеличивается?

Видео об одной из нерешенных проблем науки - расширении Вселенной

Турбулентность в жидкой среде

Наверное, каждый человек знает, что турбулентность - это внезапная тряска во время полёта. Однако в механике жидкостей это слово имеет совсем другое значение. Возникновение летной турбулентности объясняется встречей двух воздушных тел, которые движутся на различных скоростях. Но физикам пока довольно сложно объяснить явление турбулентности в жидкой среде. Математики также весьма озадачены этой проблемой.

Турбулентность в жидкой среде окружает человека повсюду. В качестве классического примера такой турбулентности можно привести пример вытекающей из крана воды, полностью распадающейся на хаотичные жидкие частицы, которые отличаются от общего потока. В природе турбулентность является очень распространённым явлением, она встречается в разных океанических и геофизических потоках.

Несмотря на огромное количество проведённых экспериментов, в результате которых были получены некоторые эмпирические данные, убедительная теория о том, чем же именно вызывается турбулентность в жидкостях, как она контролируется и каким образом возможно упорядочить этот хаос, пока не создана.

Под процессом старения понимается постепенное нарушение и потеря организмом важных функций, в том числе, и способности к регенерации и размножению. Когда организм стареет, он уже не может так хорошо приспосабливаться к условиям окружающей среды, он значительно хуже противостоит травмам и болезням.

  • Наука, изучающая вопросы, связанные со старением организма, называется геронтологией.
  • Использование термина «старение» возможно при описании процесса разрушения какой-либо неживой системы, к примеру, металла, а также при описании процесса старения человеческого организма. Также учеными до сих пор не найдены ответы на вопросы, почему стареют растения и какие именно факторы инициируют программу старения.

Первая попытка научного объяснения такого процесса как старение была сделана во второй половине 19 века Вейсманом. Он предположил, что старение - это свойство, возникшее в результате эволюции. Вейсман считал, что организмы, которые не стареют, не только не полезны, но и вредны. Их отмирание необходимо для того, чтобы освободить место для молодых.

В настоящее время многими учеными было выдвинуто достаточно много гипотез о том, что же вызывает старение организмов, однако, все теории пока пользуются ограниченным успехом.

Как выживают тихоходки?

Тихоходки представляют собой микроорганизмы, довольно распространённые в природе. Они заселяют все климатические зоны и все континенты, могут жить на любой высоте и в любых условиях. Их чрезвычайные способности к выживанию не дают покоя многим ученым. Любопытно, что этим первым живым организмам удаётся выживать даже в опасном космическом вакууме. Так, несколько тихоходок были взяты на орбиту, где их подвергали воздействию различным видам космической радиации, однако к концу эксперимента практически все они остались невредимыми.

Этим организмам не страшна температура кипения воды, они выживают при температуре, несколько выше абсолютного ноля. Тихоходки нормально чувствуют себя на глубине 11 километров, в Марианской впадине, спокойно перенося её давление.

Тихоходки отличаются невероятными способностями к ангидробиозу, то есть, высушиванию. В этом состоянии наблюдается чрезвычайное замедление их метаболической активности. После высушивания это существо практически останавливает свою метаболическую активность, а после получения доступа к воде происходит восстановление его исходного состояния, и тихоходка продолжает жить, как ни в чем не бывало.

Изучение этого существа обещает получить интересные результаты. В случае воплощения крионики в жизнь, их применения станут невероятными. Так, ученые утверждают, что, разгадав тайну живучести тихоходки, они смогут создать скафандр, в котором можно будет осваивать другие планеты, а хранение лекарств и таблеток станет возможным при комнатной температуре.

Астрономия, физика, биология, геология - это те направления, в которых ведут работу многие ученые. Благодаря их открытиям появляются новые невероятные теории, которые еще несколько десятилетий назад казались фантастикой и, которые, возможно позволят очень скоро разгадать некоторые нерешенные до настоящего времени проблемы науки.

Какие из нерешенных проблем науки интересны Вам больше всего? Расскажите об этом в

Экология жизни. Помимо стандартных логических задач вроде «если дерево падает в лесу и никто не слышит, издает ли оно звук?», бесчисленные загадки

Помимо стандартных логических задач вроде «если дерево падает в лесу и никто не слышит, издает ли оно звук?», бесчисленные загадки продолжают волновать умы людей, занятых во всех дисциплинах современной науки и гуманитарных науках.

Вопросы вроде «существует ли универсальное определение «слова»?», «существует ли цвет физически или проявляется только у нас в умах?» и «какова вероятность, что солнце встанет завтра?» не дают людям спать. Мы собрали эти вопросы во всех сферах: медицине, физике, биологии, философии и математике, и решили задать их вам. Сможете ответить?

Почему клетки совершают самоубийство?

Биохимическое событие, известное как апоптоз, иногда называют «запрограммированной смертью клетки» или «клеточным суицидом». По причинам, которые наука в полной мере не осознает, клетки обладают возможностью «решить умереть» весьма организованным и ожидаемым образом, который полностью отличается от некроза (клеточной смерти, вызванной болезнью или травмой). Порядка 50-80 миллиардов клеток умирают в результате запрограммированной смерти клеток в человеческом организме каждый день, но механизм, который за ними стоит, и даже само это намерение непонятны в полной мере.

С одной стороны, слишком много запрограммированных смертей клеток приводит к атрофии мышц и к мышечной слабости, с другой же - отсутствие должного апоптоза позволяет клеткам пролиферировать, что может привести к раку. Общая концепция апоптоза была впервые описана немецким ученым Карлом Фогтом в 1842 году. С тех пор в понимании этого процесса был достигнут нехилый прогресс, но полноценного объяснения ему так и нет.

Вычислительная теория сознания

Некоторые ученые приравнивают деятельность ума к способу, которым компьютер обрабатывает информацию. Таким образом, в середине 60-х годов была разработана вычислительная теория сознания, и человек начал бороться с машиной всерьез. Проще говоря, представьте, что ваш мозг - это компьютер, а сознание - операционная система, которая им управляет.

Если погрузиться в контекст информатики, аналогия будет простой: в теории, программы выдают данные, основанные на серии входной информации (внешние раздражители, взгляд, звук и т. д.) и памяти (которую можно одновременно посчитать физическим жестким диском и нашей психологической памятью). Программы управляются алгоритмами, которые имеют конечное число шагов, повторяющихся в соответствии с различными вводными. Как и мозг, компьютер должен делать репрезентации того, что не может физически рассчитать - и это один из сильнейших аргументов в пользу этой теории.

Тем не менее вычислительная теория отличается от репрезентативной теории сознания тем, что не все состояния являются репрезентативными (вроде депрессии), а значит, и не смогут отвечать на воздействие компьютерного характера. Но эта проблема философская: вычислительная теория сознания работает отлично, пока речь не заходит о «перепрограммировании» мозгов, которые в депрессии. Мы не можем сбросить себя до заводских настроек.

Сложная проблема сознания

В философских диалогах «сознание» определяется как «квалиа» и проблема квалиа будет преследовать человечество, наверное, всегда. Квалиа описывает отдельные проявления субъективного сознательного опыта - например, головную боль. Мы все испытывали эту боль, но нет никакого способа измерить, испытывали ли мы одинаковую головную боль, и вообще, был ли этот опыт единым, ведь опыт боли основан на нашем восприятии ее.

Хотя было проделано множество научных попыток определить сознание, никто так и не разработал общепринятую теорию. Некоторые философы подвергали сомнению саму возможность этого.

Проблема Гетье

Проблема Гетье звучит так: «Является ли обоснованное истинное убеждение знанием?». Эта логическая головоломка входит в число самых неприятных, потому что требует от нас задуматься о том, является ли истина универсальной константой. Также она поднимает массу мысленных экспериментов и философских аргументов, в том числе и «обоснованное истинное убеждение»:

Субъект А знает, что предложение Б истинно тогда и только тогда, если:

Б является истиной,

и А считает, что Б является истиной,

и А убежден, что вера в истинность Б обоснована.

Критики проблем вроде Гетье считают, что невозможно обосновать что-то, что не является истиной (поскольку «истина» считается понятием, которое возводит аргумент в незыблемый статус). Сложно определить не только что для кого-то значит истинность, но и что значит вера в то, что это так. И это серьезно повлияло на все, от криминалистики до медицины.

Все цвета - у нас в голове?

Одним из самых сложных в человеческом опыте остается восприятие цвета: действительно ли физические объекты в нашем мире обладают цветом, который мы распознаем и обрабатываем, или же процесс наделения цветом происходит исключительно у нас в головах?

Мы знаем, что существование цветов обязано разным длинам волн, но когда дело доходит до нашего восприятия цвета, нашей общей номенклатуры и простого факта, что наши головы, вероятно, взорвутся, если мы вдруг встретимся с никогда не виданным доселе цветом в нашей универсальной палитре, эта идея продолжает удивлять ученых, философов и всех остальных.

Что такое темная материя?

Астрофизики знают, чем темная материя не является, но это определение их совсем не устраивает: хотя мы не можем видеть ее даже с помощью самых мощных телескопов, мы знаем, что во Вселенной ее больше, чем обычной материи. Она не поглощает и не излучает свет, но разница в гравитационных эффектах крупных тел (планет и т. п.) навела ученых на мысль, что что-то невидимое играет роль в их движении.

Теория, впервые предложенная в 1932 году, сводилась по большей части к проблеме «недостающей массы». Существование черной материи остается недоказанным, но научное сообщество вынуждено принимать ее существование как факт, чем бы она ни была.

Проблема восхода солнца

Какова вероятность того, что завтра взойдет солнце? Философы и статистики задаются этим вопросом тысячелетия, пытаясь вывести неопровержимую формулу для этого ежедневного события. Этот вопрос предназначен для демонстрации ограничений теории вероятности. Трудность возникает, когда мы начинаем задумываться о том, что есть много различий между предварительным знанием одного человека, предварительным знанием человечества и предварительным знанием Вселенной того, встанет ли солнце.

Если p - это долгосрочная частота восходов солнца, и к p применяется равномерное распределение вероятностей, тогда величина p увеличивается с каждым днем, когда солнце на самом деле встает и мы видим (личность, человечество, Вселенная), что это происходит.

137 элемент

Названный в честь Ричарда Фейнмана, предлагаемый окончательный элемент периодической таблицы Менделеева «фейнманиум» представляет собой теоретический элемент, который может стать последним возможным элементом; чтобы выйти за пределы №137, элементам придется двигаться быстрее скорости света. Выдвигались предположения, что элементам выше №124 не будет хватать стабильности на существование в течение более нескольких наносекунд, а значит такой элемент, как фейнманиум, будет уничтожаться в процессе спонтанного деления, прежде чем его можно будет изучить.

Что еще более интересно, так это то, что номер 137 был не просто так выбран в честь Фейнмана; он считал, что этот номер обладает глубоким смыслом, так как «1/137 = почти точно значению так называемой константы тонкой структуры, безразмерной величины, которая определяет силу электромагнитного взаимодействия».

Большим вопросом остается, сможет ли такой элемент существовать за пределами сугубо теоретического и произойдет ли это на нашем веку?

Существует ли универсальное определение слова «слово»?

В лингвистике слово - это небольшое высказывание, которое может обладать каким-либо смыслом: в практическом или буквальном смысле. Морфема, которая чуть меньше, но с помощью которой все еще можно сообщать смысл, в отличие от слова, не может оставаться особняком. Вы можете сказать «-ство» и понять, что это значит, но едва ли разговор из таких обрезков будет иметь смысл.

Каждый язык в мире имеет свой собственный лексикон, который делится на лексемы, являющиеся формами отдельных слов. Лексемы чрезвычайно важны для языка. Но опять же, в более общем смысле, мельчайшей единицей речи остается слово, которое может стоять особняком и будет иметь смысл; правда, остаются проблемы с определением, к примеру, частиц, предлогов и союзов, поскольку они особым смыслом вне контекста не обладают, хотя и остаются словами в общем смысле.

Паранормальные способности за миллион долларов

С момента начала в 1964 году порядка 1000 человек приняли участие в «Паранормальном испытании» (Paranormal Challenge), но никто так и не взял приз. Образовательный фонд Джеймса Рэнди предлагает миллион долларов любому, кто сможет научно подтвердить сверхъестественные или паранормальные способности. На протяжении многих лет масса медиумов пытались проявить себя, но им категорически отказывали. Чтобы все удалось, претендент должен получить одобрение от учебного института или другой организации соответствующего уровня.

Хотя ни один из 1000 претендентов не смог доказать наличие наблюдаемых психических паранормальных способностей, которые можно было засвидетельствовать научно, Рэнди сказал, что «очень немногие» из конкурсантов посчитали, что их провал был обусловлен отсутствием талантов. По большей части все сводили неудачи к нервозности.

Проблема в том, что этот конкурс едва ли кто-нибудь когда-нибудь выиграет. Если кто-то будет обладать сверхъестественными способностями, это значит, что их нельзя объяснить естественным научным подходом. Улавливаете?опубликовано

Нерешенные проблемы

Теперь, уяснив, как наука вписывается в умственную деятельность человека и как она функционирует, можно видеть, что ее открытость позволяет различными путями идти к более полному постижению Вселенной. Возникают новые явления, по поводу которых гипотезы хранят молчание, и, чтобы нарушить его, выдвигаются новые гипотезы, полные свежих идей. На их основе уточняются предсказания. Создается новое экспериментальное оборудование. Вся эта деятельность приводит к появлению гипотез, более точно отражающих поведение Вселенной. И все это ради одной цели - понять Вселенную во всем ее многообразии.

Научные гипотезы можно рассматривать как ответы на вопросы об устройстве Вселенной. Наша же задача состоит в исследовании пяти крупнейших проблем, не решенных до настоящего времени. Под словом «крупнейшие» подразумеваются проблемы, имеющие далеко идущие последствия, самые важные для нашего дальнейшего понимания, или обладающие наиболее весомым прикладным значением. Мы ограничимся одной крупнейшей нерешенной проблемой, взятой из кажсдой пяти отраслей естествознания, и попытаемся описать, каким образом можно ускорить их решение. Конечно, науки о человеке и обществе, гуманитарные и прикладные, имеют свои нерешенные проблемы (например, природа сознания), но данный вопрос выходит за рамки этой книги.

Вот отобранные нами в каждой из пяти отраслей естествознания крупнейшие нерешенные проблемы и то, чем мы руководствовались в своем выборе.

Физика. Связанные с движением свойства массы тела (скорость, ускорение и момент наряду с кинетической и потенциальной энергией) нам хорошо известны. А природа самой массы, присущей многим, но не всем элементарным частицам Вселенной, нам не понятна. Крупнейшая нерешенная задача физики такова: почему одни частицы обладают массой [покоя], а другие - нет?

Химия. Изучение химических реакций живых и неживых тел ведется широко и весьма успешно. Крупнейшая нерешенная задача химии такова: какого рода химические реакции подтолкнули атомы к образованию первых живых существ?

Биология. Недавно удалось получить геном, или молекулярный чертеж, многих живых организмов. Геномы несут информацию об общих белках, или протеоме, живых организмов. Крупнейшая нерешенная задача биологии такова: каково строение и предназначение протеома?

Геология. Модель тектоники плит удовлетворительно описывает последствия взаимодействия верхних оболочек Земли. Но атмосферные явления, особенно тип погоды, похоже, не поддаются попыткам создать модели, ведущие к получению надежных прогнозов. Крупнейшая нерешенная задача геологии такова: возможен ли точный долговременный прогноз погоды?

Астрономия. Хотя многие стороны общего устройства Вселенной хорошо известны, в ее развитии еще много неясного. Недавнее открытие, что скорость расширения Вселенной возрастает, приводит к мысли, что она будет расширяться бесконечно. Крупнейшая нерешенная задача астрономии такова: почему Вселенная расширяется со все большей скоростью?

Многие иные занимательные вопросы, связанные с этими задачами, будут возникать попутно, и некоторые из них сами могут в будущем стать крупнейшими. Об этом идет речь в заключительном разделе книги: «Список идей».

Уильям Гарвей, английский врач XVII века, определивший природу кровообращения, сказал: «Все, что мы знаем, бесконечно мало по сравнению с тем, что нам пока неведомо» [ «Анатомическое исследование о движении сердца и крови у животных», 1628]. И это верно, поскольку вопросы множатся быстрее, чем на них успевают ответить. По мере расширения освещаемого наукой пространства увеличивается и обступающий его мрак.

Из книги Занимательно об астрономии автора Томилин Анатолий Николаевич

5. Проблемы релятивистской астронавигации Одним из самых противных испытаний, которым подвергается летчик, а сейчас космонавт, как это показывают в кино, является карусель. Мы, летчики недавнего прошлого, в свое время называли ее «вертушкой» или «сепаратором». Тех, кто не

Из книги Пять нерешенных проблем науки автора Уиггинс Артур

Проблемы физики Какова природа света?Свет в некоторых случаях ведет себя подобно волне, а во многих других - сродни частице. Спрашивается: что же он такое? Ни то, ни другое. Частица и волна - лишь упрощенное представление о поведении света. На самом же деле свет не частица

Из книги Самосознающая вселенная. Как сознание создает материальный мир автора Госвами Амит

Проблемы химии Как состав молекулы определяет ее облик?Знание орбитального строения атомов в простых молекулах позволяет довольно легко определить внешний вид молекулы. Однако теоретические исследования облика сложных молекул, особенно биологически важных, пока не

Из книги Мир в ореховой скорлупке [илл. книга-журнал] автора Хокинг Стивен Уильям

Проблемы биологии Как развивается целый организм из одной оплодотворенной яйцеклетки?На данный вопрос, похоже, удастся ответить, как только будет решена главная задача из гл. 4: каково устроение и предназначение протеома? Конечно, каждому организму свойственны свои

Из книги История лазера автора Бертолотти Марио

Проблемы геологии Что вызывает большие перемены в климате Земли наподобие повсеместного потепления и ледниковых периодов?Ледниковые периоды, свойственные Земле последние 35 млн. лет, наступали примерно каждые 100 тыс. лет. Ледники надвигаются и отступают по всему

Из книги Атомная проблема автора Рэн Филипп

Проблемы астрономии Одиноки ли мы во Вселенной?Несмотря на отсутствие каких-либо экспериментальных свидетельств существования внеземной жизни, теорий на этот счет хватает с избытком, как и попыток обнаружить весточки от далеких цивилизаций.Как эволюционируют

Из книги Астероидно-кометная опасность: вчера, сегодня, завтра автора Шустов Борис Михайлович

Из книги Новый ум короля [О компьютерах, мышлении и законах физики] автора Пенроуз Роджер

Нерешённые проблемы современной физики

Из книги Гравитация [От хрустальных сфер до кротовых нор] автора Петров Александр Николаевич

Теоретические проблемы Вставка из Википедии.Psychedelic - август 2013Ниже приведён список нерешённых проблем современной физики. Некоторые из этих проблем носят теоретический характер, что означает, что существующие теории оказываются неспособными объяснить определённые

Из книги Идеальная теория [Битва за общую теорию относительности] автора Феррейра Педро

ГЛАВА 14 РЕШЕНИЕ В ПОИСКЕ ПРОБЛЕМЫ ИЛИ МНОГИЕ ПРОБЛЕМЫ С ОДНИМ И ТЕМ ЖЕ РЕШЕНИЕМ? ПРИМЕНЕНИЯ ЛАЗЕРОВ В 1898 г. г. Уэллс вообразил в своей книге «Война миров» захват Земли марсианами, которые использовали лучи смерти, способные без труда проходить через кирпичи, сжигать леса, и

Из книги автора

II. Социальная сторона проблемы Эта сторона проблемы является, без сомнения, самой важной и самой интересной. Ввиду ее большой сложности мы ограничимся здесь лишь самыми общими соображениями.1. Изменения в мировой экономической географии.Как мы видели выше, стоимость

Из книги автора

1.2. Астрономический аспект проблемы АКО Вопрос об оценках значимости астероидно-кометной опасности связан, в первую очередь, с нашим знанием о населенности Солнечной системы малыми телами, особенно теми, что могут столкнуться с Землей. Такие знания дает астрономия.

Из книги автора

Из книги автора

Из книги автора

Новые проблемы космологии Вернемся к парадоксам нерелятивистской космологии. Вспомним, что причина гравитационного парадокса в том, что для однозначного определения гравитационного воздействия либо недостаточно уравнений, либо нет возможности корректно задать

Из книги автора

Глава 9. Проблемы унификации В 1947 году только что окончивший аспирантуру Брайс Девитт встретился с Вольфгангом Паули и рассказал, что работает над квантованием гравитационного поля. Девитт не понимал, почему две великие концепции XX века - квантовая физика и общая теория



Последние материалы раздела:

Важность Патриотического Воспитания Через Детские Песни
Важность Патриотического Воспитания Через Детские Песни

Патриотическое воспитание детей является важной частью их общего воспитания и развития. Оно помогает формировать у детей чувство гордости за свою...

Изменение вида звездного неба в течение суток
Изменение вида звездного неба в течение суток

Тема урока «Изменение вида звездного неба в течение года». Цель урока: Изучить видимое годичное движение Солнца. Звёздное небо – великая книга...

Развитие критического мышления: технологии и методики
Развитие критического мышления: технологии и методики

Критическое мышление – это система суждений, способствующая анализу информации, ее собственной интерпретации, а также обоснованности...