Обратная матрица и её свойства. Как возвести матрицу в куб и более высокие степени? Операции над матрицами

Итак, сервисы по решению матриц онлайн:

Сервис работы с матрицами позволяет выполнить элементарные преобразования матриц.
Если у Вас стоит задача выполнить более сложное преобразование, то этим сервисом стоит пользоваться как конструктором.

Пример . Даны матрицы A и B , надо найти C = A -1 * B + B T ,

  1. Вам стоит сначала найти обратную матрицу A1 = A -1 , воспользовавшись сервисом по нахождению обратной матрицы ;
  2. Далее, после того, как нашли матрицу A1 выполним умножение матриц A2 = A1 * B , воспользовавшись сервисом по умножению матриц ;
  3. Выполним транспонирование матрицы A3 = B T (сервис по нахождению транспонированной матрицы);
  4. И последнее - найдем сумму матриц С = A2 + A3 (сервис по вычислению суммы матриц) - и получаем ответ с самым подробным решением!;

Произведение матриц

Это он-лайн сервис в два шага :

  • Ввести первый сомножитель матрицу A
  • Ввести второй сомножитель матрицу или вектор-столбец B

Умножение матрицы на вектор

Умножение матрицы на вектор можно найти, воспользовавшись сервисом Умножение матриц
(Первым сомножителем будет данная матрица, вторым сомножителем будет столбец, состоящий из элементов данного вектора)

Это он-лайн сервис в два шага :

  • Введите матрицу A , для которой нужно найти обратную матрицу
  • Получите ответ с подробным решением по нахождению обратной матрицы

Определитель матрицы

Это он-лайн сервис в один шаг :

  • Введите матрицу A , для которой нужно найти определитель матрицы

Транспонирование матрицы

Здесь Вы сможете отследить алгоритм транспонирования матрицы и научиться самому решать подобные задачи.
Это он-лайн сервис в один шаг :

  • Введите матрицу A , которую надо транспонировать

Ранг матрицы

Это он-лайн сервис в один шаг :

  • Введите матрицу A , для которой нужно выполнить нахождение ранга

Собственные значения матрицы и собственные вектора матрицы

Это он-лайн сервис в один шаг :

  • Введите матрицу A , для которой нужно найти собственные вектора и собственные значения (собственные числа)

Возведение матрицы в степень

Это он-лайн сервис в два шага :

  • Введите матрицу A , которую будете возводить в степень
  • Ввести целое число q - степень

Похожие на обратные по многим свойствам.

Свойства обратной матрицы

  • det A − 1 = 1 det A {\displaystyle \det A^{-1}={\frac {1}{\det A}}} , где det {\displaystyle \ \det } обозначает определитель .
  • (A B) − 1 = B − 1 A − 1 {\displaystyle \ (AB)^{-1}=B^{-1}A^{-1}} для двух квадратных обратимых матриц A {\displaystyle A} и B {\displaystyle B} .
  • (A T) − 1 = (A − 1) T {\displaystyle \ (A^{T})^{-1}=(A^{-1})^{T}} , где (. . .) T {\displaystyle (...)^{T}} обозначает транспонированную матрицу.
  • (k A) − 1 = k − 1 A − 1 {\displaystyle \ (kA)^{-1}=k^{-1}A^{-1}} для любого коэффициента k ≠ 0 {\displaystyle k\not =0} .
  • E − 1 = E {\displaystyle \ E^{-1}=E} .
  • Если необходимо решить систему линейных уравнений , (b - ненулевой вектор) где x {\displaystyle x} - искомый вектор, и если A − 1 {\displaystyle A^{-1}} существует, то x = A − 1 b {\displaystyle x=A^{-1}b} . В противном случае либо размерность пространства решений больше нуля, либо их нет вовсе.

Видео по теме

Способы нахождения обратной матрицы

Если матрица обратима, то для нахождения обратной матрицы можно воспользоваться одним из следующих способов:

Точные (прямые) методы

Метод Жордана-Гаусса

Возьмём две матрицы: саму A и единичную E . Приведём матрицу A к единичной матрице методом Гаусса-Жордана применяя преобразования по строкам (можно также применять преобразования и по столбцам). После применения каждой операции к первой матрице применим ту же операцию ко второй. Когда приведение первой матрицы к единичному виду будет завершено, вторая матрица окажется равной A −1 .

При использовании метода Гаусса первая матрица будет умножаться слева на одну из элементарных матриц Λ i {\displaystyle \Lambda _{i}} (трансвекцию или диагональную матрицу с единицами на главной диагонали, кроме одной позиции):

Λ 1 ⋅ ⋯ ⋅ Λ n ⋅ A = Λ A = E ⇒ Λ = A − 1 {\displaystyle \Lambda _{1}\cdot \dots \cdot \Lambda _{n}\cdot A=\Lambda A=E\Rightarrow \Lambda =A^{-1}} . Λ m = [ 1 … 0 − a 1 m / a m m 0 … 0 … 0 … 1 − a m − 1 m / a m m 0 … 0 0 … 0 1 / a m m 0 … 0 0 … 0 − a m + 1 m / a m m 1 … 0 … 0 … 0 − a n m / a m m 0 … 1 ] {\displaystyle \Lambda _{m}={\begin{bmatrix}1&\dots &0&-a_{1m}/a_{mm}&0&\dots &0\\&&&\dots &&&\\0&\dots &1&-a_{m-1m}/a_{mm}&0&\dots &0\\0&\dots &0&1/a_{mm}&0&\dots &0\\0&\dots &0&-a_{m+1m}/a_{mm}&1&\dots &0\\&&&\dots &&&\\0&\dots &0&-a_{nm}/a_{mm}&0&\dots &1\end{bmatrix}}} .

Вторая матрица после применения всех операций станет равна Λ {\displaystyle \Lambda } , то есть будет искомой. Сложность алгоритма - O (n 3) {\displaystyle O(n^{3})} .

С помощью матрицы алгебраических дополнений

Матрица, обратная матрице A {\displaystyle A} , представима в виде

A − 1 = adj (A) det (A) {\displaystyle {A}^{-1}={{{\mbox{adj}}(A)} \over {\det(A)}}}

где adj (A) {\displaystyle {\mbox{adj}}(A)} - присоединенная матрица (матрица, составленная из алгебраических дополнений для соответствующих элементов транспонированной матрицы).

Сложность алгоритма зависит от сложности алгоритма расчета определителя O det и равна O(n²)·O det .

Использование LU/LUP-разложения

Матричное уравнение A X = I n {\displaystyle AX=I_{n}} для обратной матрицы X {\displaystyle X} можно рассматривать как совокупность n {\displaystyle n} систем вида A x = b {\displaystyle Ax=b} . Обозначим i {\displaystyle i} -ый столбец матрицы X {\displaystyle X} через X i {\displaystyle X_{i}} ; тогда A X i = e i {\displaystyle AX_{i}=e_{i}} , i = 1 , … , n {\displaystyle i=1,\ldots ,n} ,поскольку i {\displaystyle i} -м столбцом матрицы I n {\displaystyle I_{n}} является единичный вектор e i {\displaystyle e_{i}} . другими словами, нахождение обратной матрицы сводится к решению n уравнений с одной матрицей и разными правыми частями. После выполнения LUP-разложения (время O(n³)) на решение каждого из n уравнений нужно время O(n²), так что и эта часть работы требует времени O(n³) .

Если матрица A невырождена, то для неё можно рассчитать LUP-разложение P A = L U {\displaystyle PA=LU} . Пусть P A = B {\displaystyle PA=B} , B − 1 = D {\displaystyle B^{-1}=D} . Тогда из свойств обратной матрицы можно записать: D = U − 1 L − 1 {\displaystyle D=U^{-1}L^{-1}} . Если умножить это равенство на U и L то можно получить два равенства вида U D = L − 1 {\displaystyle UD=L^{-1}} и D L = U − 1 {\displaystyle DL=U^{-1}} . Первое из этих равенств представляет собой систему из n² линейных уравнений для n (n + 1) 2 {\displaystyle {\frac {n(n+1)}{2}}} из которых известны правые части (из свойств треугольных матриц). Второе представляет также систему из n² линейных уравнений для n (n − 1) 2 {\displaystyle {\frac {n(n-1)}{2}}} из которых известны правые части (также из свойств треугольных матриц). Вместе они представляют собой систему из n² равенств. С помощью этих равенств можно реккурентно определить все n² элементов матрицы D. Тогда из равенства (PA) −1 = A −1 P −1 = B −1 = D. получаем равенство A − 1 = D P {\displaystyle A^{-1}=DP} .

В случае использования LU-разложения не требуется перестановки столбцов матрицы D но решение может разойтись даже если матрица A невырождена.

Сложность алгоритма - O(n³).

Итерационные методы

Методы Шульца

{ Ψ k = E − A U k , U k + 1 = U k ∑ i = 0 n Ψ k i {\displaystyle {\begin{cases}\Psi _{k}=E-AU_{k},\\U_{k+1}=U_{k}\sum _{i=0}^{n}\Psi _{k}^{i}\end{cases}}}

Оценка погрешности

Выбор начального приближения

Проблема выбора начального приближения в рассматриваемых здесь процессах итерационного обращения матриц не позволяет относиться к ним как к самостоятельным универсальным методам, конкурирующими с прямыми методами обращения, основанными, например, на LU-разложении матриц. Имеются некоторые рекомендации по выбору U 0 {\displaystyle U_{0}} , обеспечивающие выполнение условия ρ (Ψ 0) < 1 {\displaystyle \rho (\Psi _{0})<1} (спектральный радиус матрицы меньше единицы), являющегося необходимым и достаточным для сходимости процесса. Однако при этом, во-первых, требуется знать сверху оценку спектра обращаемой матрицы A либо матрицы A A T {\displaystyle AA^{T}} (а именно, если A - симметричная положительно определённая матрица и ρ (A) ≤ β {\displaystyle \rho (A)\leq \beta } , то можно взять U 0 = α E {\displaystyle U_{0}={\alpha }E} , где ; если же A - произвольная невырожденная матрица и ρ (A A T) ≤ β {\displaystyle \rho (AA^{T})\leq \beta } , то полагают U 0 = α A T {\displaystyle U_{0}={\alpha }A^{T}} , где также α ∈ (0 , 2 β) {\displaystyle \alpha \in \left(0,{\frac {2}{\beta }}\right)} ; можно конечно упростить ситуацию и, воспользовавшись тем, что ρ (A A T) ≤ k A A T k {\displaystyle \rho (AA^{T})\leq {\mathcal {k}}AA^{T}{\mathcal {k}}} , положить U 0 = A T ‖ A A T ‖ {\displaystyle U_{0}={\frac {A^{T}}{\|AA^{T}\|}}} ). Во-вторых, при таком задании начальной матрицы нет гарантии, что ‖ Ψ 0 ‖ {\displaystyle \|\Psi _{0}\|} будет малой (возможно, даже окажется ‖ Ψ 0 ‖ > 1 {\displaystyle \|\Psi _{0}\|>1} ), и высокий порядок скорости сходимости обнаружится далеко не сразу.

Матрица - математический объект, записываемый в виде прямоугольной таблицы чисел и допускающий алгебраические операции (сложение, вычитание, умножение и др.) между ним и другими подобными объектами. Правила выполнения операций над матрицами сделаны такими,

чтобы было удобно записывать системы линейных уравнений. Обычно матрицу обозначают Заглавной буквой латинского алфавита и выделяют круглыми скобками «(…)» (встречается также

выделение квадратными скобками «[…]», двойными прямыми линиями «||…||») А числа, составляющие матрицу (элементы матрицы), обозначают той же буквой, что и саму матрицу, но маленькой. у каждого элемента матрицы есть 2 нижних индекса (a ij ) - первый «i» обозначает

номер строки, в которой находится элемент, а второй «j» - номер столбца.

Операции над матрицами

Умножение матрицы A на число

B , элементы которой получены путём умножения каждого элемента матрицыA на это число, то есть каждый элемент матрицыB равен

b ij= λ a ij

Сложение матриц A

элемент матрица C равен

c ij= a ij+ b ij

Вычитание матриц A

c ij= a ij- b ij

A + Θ =A

Умножение матриц (обозначение:AB , реже со знаком умножения) - есть операция вычисления матрицыC , элементы которой равны сумме произведений элементов в соответствующей строке первого множителя и столбце второго.

c ij= ∑ a ikb kj

В первом множителе должно быть столько же столбцов, сколько строк во втором . Если матрицаA имеет размерность,B -, то размерность их произведенияAB =C

есть . Умножение матриц не коммутативно. Это видно хотя бы из того, что если матрицы не квадратные, то можно умножать только одну на другую, но не наоборот. Для

квадратных матриц результат умножения зависит от порядка сомножителей.

Возводить в степень можно только квадратные матрицы.

Единичная матрица

Для квадратных матриц существует единичная матрица E такая, что умножение любой

матрицы на неё не влияет на результат, а именно

EA = AE= A

У единичной матрицы единицы стоят только по

диагонали, остальные элементы равны нулю

Для некоторых квадратных матриц можно найти так называемую обратную матрицу .

Обратная матрица A - 1 такова, что если умножить матрицу на неё, то получится единичная матрица

AA − 1 = E

Обратная матрица существует не всегда. Матрицы, для которых обратная существует, называются

невырожденными, а для которых нет - вырожденными. Матрица невырождена, если все ее строки (столбцы) линейно независимы как векторы. Максимальное число линейно независимых строк

(столбцов) называется рангом матрицы. Определителем (детерминантом) матрицы называется нормированный кососимметрический линейный функционал на строках матрицы. Матрица

вырождена тогда и только тогда, когда ее определитель равен нулю.

Свойства матриц

1. A + (B +C ) = (A +B ) +C

2. A + B= B+ A

3. A (BC ) = (AB )C

4. A (B+ C) = AB+ AC

5. (B+ C) A= BA+ CA

9. Симметричная матрица A положительно определена (A > 0), если значения у всех ее главных угловых миноровA k > 0

10. Симметричная матрица A отрицательно определена (A < 0), если матрица (−A )

положительно определена, то есть если для любого k главный минор k -го порядкаA k имеет знак (− 1)k

Системы линейных уравнений

Cистему из m уравнений сn неизвестными

a11 x1 +a12 x2 +…+a1n xn =b1 a21 x1 +a22 x2 +…+a2n xn =b2

am x1 +am x2 +…+am xn =bm

можно представить в матричном виде

и тогда всю систему можно записать так: AX =B

Операции над матрицами

Пусть a ij элементы матрицыA , аb ij - матрицыB .

Умножение матрицы A на число λ (обозначение: λA ) заключается в построении матрицы

B , элементы которой получены путём умножения каждого элемента матрицыA на это число, то есть каждый элемент матрицыB равенb ij = λa ij

Запишем матрицу А

Умножим первый элемент матрицы А на 2

Сложение матриц A + B есть операция нахождения матрицыC , все элементы которой равны по парной сумме всех соответствующих элементов матрицA иB , то есть каждый

элемент матрица C равен

c ij= a ij+ b ij

А+В Запишем матрицы А и В

Выполним сложение первых элементов матриц

Растянем значения, сначала по горизонтали, а затем по вертикали (можно наоборот)

Вычитание матриц A − B определяется аналогично сложению, это операция нахождения матрицыC , элементы которой

c ij= a ij- b ij

Сложение и вычитание допускается только для матриц одинакового размера.

Существует нулевая матрица Θ такая, что её прибавление к другой матрице A не изменяет A, то есть

A + Θ =A

Все элементы нулевой матрицы равны нулю.

Некоторые свойства операций над матрицами.
Матричные выражения

А сейчас последует продолжение темы, в котором мы рассмотрим не только новый материал, но и отработаем действия с матрицами .

Некоторые свойства операций над матрицами

Существует достаточно много свойств, которые касаются действий с матрицами, в той же Википедии можно полюбоваться стройными шеренгами соответствующих правил. Однако на практике многие свойства в известном смысле «мертвЫ», поскольку в ходе решения реальных задач используются лишь некоторые из них. Моя цель – рассмотреть прикладное применение свойств на конкретных примерах, и если вам необходима строгая теория, пожалуйста, воспользуйтесь другим источником информации.

Рассмотрим некоторые исключения из правила , которые потребуются для выполнения практических задач.

Если у квадратной матрицы существует обратная матрица , то их умножение коммутативно:

Единичной матрицей называется квадратная матрица, у которой на главной диагонали расположены единицы, а остальные элементы равны нулю. Например: , и т.д.

При этом справедливо следующее свойство : если произвольную матрицу умножить слева или справа на единичную матрицу подходящих размеров, то в результате получится исходная матрица:

Как видите, здесь также имеет место коммутативность матричного умножения.

Возьмём какую-нибудь матрицу, ну, скажем, матрицу из предыдущей задачи: .

Желающие могут провести проверку и убедиться, что:

Единичная матрица для матриц – это аналог числовой единицы для чисел, что особенно хорошо видно из только что рассмотренных примеров.

Коммутативность числового множителя относительно умножения матриц

Для матриц и действительного числа справедливо следующее свойство:

То есть числовой множитель можно (и нужно) вынести вперёд, чтобы он «не мешал» умножить матрицы.

Примечание : вообще говоря, формулировка свойства неполная – «лямбду» можно разместить в любом месте между матрицами, хоть в конце. Правило остаётся справедливым, если перемножаются три либо бОльшее количество матриц.

Пример 4

Вычислить произведение

Решение :

(1) Согласно свойству перемещаем числовой множитель вперёд. Сами матрицы переставлять нельзя!

(2) – (3) Выполняем матричное умножение.

(4) Здесь можно поделить каждое число 10, но тогда среди элементов матрицы появятся десятичные дроби, что не есть хорошо. Однако замечаем, что все числа матрицы делятся на 5, поэтому умножаем каждый элемент на .

Ответ :

Маленькая шарада для самостоятельного решения:

Пример 5

Вычислить , если

Решение и ответ в конце урока.

Какой технический приём важен в ходе решения подобных примеров? С числом разбираемся в последнюю очередь .

Прицепим к локомотиву ещё один вагон:

Как умножить три матрицы?

Прежде всего, ЧТО должно получиться в результате умножения трёх матриц ? Кошка не родит мышку. Если матричное умножение осуществимо, то в итоге тоже получится матрица. М-да, хорошо мой преподаватель по алгебре не видит, как я объясняю замкнутость алгебраической структуры относительно её элементов =)

Произведение трёх матриц можно вычислить двумя способами:

1) найти , а затем домножить на матрицу «цэ»: ;

2) либо сначала найти , потом выполнить умножение .

Результаты обязательно совпадут, и в теории данное свойство называют ассоциативностью матричного умножения :

Пример 6

Перемножить матрицы двумя способами

Алгоритм решения двухшаговый: находим произведение двух матриц, затем снова находим произведение двух матриц.

1) Используем формулу

Действие первое:

Действие второе:

2) Используем формулу

Действие первое:

Действие второе:

Ответ :

Более привычен и стандартен, конечно же, первый способ решения, там «как бы всё по порядку». Кстати, по поводу порядка. В рассматриваемом задании часто возникает иллюзия, что речь идёт о каких-то перестановках матриц. Их здесь нет. Снова напоминаю, что в общем случае ПЕРЕСТАВЛЯТЬ МАТРИЦЫ НЕЛЬЗЯ . Так, во втором пункте на втором шаге выполняем умножение , но ни в коем случае не . С обычными числами такой бы номер прошёл, а с матрицами – нет.

Свойство ассоциативности умножения справедливо не только для квадратных, но и для произвольных матриц – лишь бы они умножались:

Пример 7

Найти произведение трёх матриц

Это пример для самостоятельного решения. В образце решения вычисления проведены двумя способами, проанализируйте, какой путь выгоднее и короче.

Свойство ассоциативности матричного умножения имеет место быть и для бОльшего количества множителей.

Теперь самое время вернуться к степеням матриц. Квадрат матрицы рассмотрен в самом начале и на повестке дня вопрос:

Как возвести матрицу в куб и более высокие степени?

Данные операции также определены только для квадратных матриц. Чтобы возвести квадратную матрицу в куб, нужно вычислить произведение:

Фактически это частный случай умножения трёх матриц, по свойству ассоциативности матричного умножения: . А матрица, умноженная сама на себя – это квадрат матрицы:

Таким образом, получаем рабочую формулу:

То есть задание выполняется в два шага: сначала матрицу необходимо возвести в квадрат, а затем полученную матрицу умножить на матрицу .

Пример 8

Возвести матрицу в куб.

Это небольшая задачка для самостоятельного решения.

Возведение матрицы в четвёртую степень проводится закономерным образом:

Используя ассоциативность матричного умножения, выведем две рабочие формулы. Во-первых: – это произведение трёх матриц.

1) . Иными словами, сначала находим , затем домножаем его на «бэ» – получаем куб, и, наконец, выполняем умножение ещё раз – будет четвёртая степень.

2) Но существует решение на шаг короче: . То есть, на первом шаге находим квадрат и, минуя куб, выполняем умножение

Дополнительное задание к Примеру 8:

Возвести матрицу в четвёртую степень.

Как только что отмечалось, сделать это можно двумя способами:

1) Коль скоро известен куб, то выполняем умножение .

2) Однако, если по условию задачи требуется возвести матрицу только в четвёртую степень , то путь выгодно сократить – найти квадрат матрицы и воспользоваться формулой .

Оба варианта решения и ответ – в конце урока.

Аналогично матрица возводится в пятую и более высокие степени. Из практического опыта могу сказать, что иногда попадаются примеры на возведение в 4-ю степень, а вот уже пятой степени что-то не припомню. Но на всякий случай приведу оптимальный алгоритм:

1) находим ;
2) находим ;
3) возводим матрицу в пятую степень: .

Вот, пожалуй, и все основные свойства матричных операций, которые могут пригодиться в практических задачах.

Во втором разделе урока ожидается не менее пёстрая тусовка.

Матричные выражения

Повторим обычные школьные выражения с числами. Числовое выражение состоит из чисел, знаков математических действий и скобок, например: . При расчётах справедлив знакомый алгебраический приоритет: сначала учитываются скобки , затем выполняется возведение в степень / извлечение корней , потом умножение / деление и в последнюю очередь – сложение /вычитание .

Если числовое выражение имеет смысл, то результат его вычисления является числом , например:

Матричные выражения устроены практически так же! С тем отличием, что главными действующими лицами выступают матрицы. Плюс некоторые специфические матричные операции, такие, как транспонирование и нахождение обратной матрицы.

Рассмотрим матричное выражение , где – некоторые матрицы. В данном матричном выражении три слагаемых и операции сложения/вычитания выполняются в последнюю очередь.

В первом слагаемом сначала нужно транспонировать матрицу «бэ»: , потом выполнить умножение и внести «двойку» в полученную матрицу. Обратите внимание, что операция транспонирования имеет более высокий приоритет, чем умножение . Скобки, как и в числовых выражениях, меняют порядок действий: – тут сначала выполняется умножение , потом полученная матрица транспонируется и умножается на 2.

Во втором слагаемом в первую очередь выполняется матричное умножение , и обратная матрица находится уже от произведения. Если скобки убрать: , то сначала необходимо найти обратную матрицу , а затем перемножить матрицы: . Нахождение обратной матрицы также имеет приоритет перед умножением .

С третьим слагаемым всё очевидно: возводим матрицу в куб и вносим «пятёрку» в полученную матрицу.

Если матричное выражение имеет смысл, то результат его вычисления является матрицей .

Все задания будут из реальных контрольных работ, и мы начнём с самого простого:

Пример 9

Даны матрицы . Найти:

Решение :порядок действий очевиден, сначала выполняется умножение, затем сложение.


Сложение выполнить невозможно, поскольку матрицы разных размеров.

Не удивляйтесь, заведомо невозможные действия часто предлагаются в заданиях данного типа.

Пробуем вычислить второе выражение:

Тут всё нормально.

Ответ : действие выполнить невозможно, .

Эта тема является одной из самых ненавистных среди студентов. Хуже, наверное, только определители.

Фишка в том, что само понятие обратного элемента (и я сейчас не только о матрицах) отсылает нас к операции умножения. Даже в школьной программе умножение считается сложной операцией, а уж умножение матриц — вообще отдельная тема, которой у меня посвящён целый параграф и видеоурок.

Сегодня мы не будем вдаваться в подробности матричных вычислений. Просто вспомним: как обозначаются матрицы, как они умножаются и что из этого следует.

Повторение: умножение матриц

Прежде всего договоримся об обозначениях. Матрицей $A$ размера $\left[ m\times n \right]$ называется просто таблица из чисел, в которой ровно $m$ строк и $n$ столбцов:

\=\underbrace{\left[ \begin{matrix} {{a}_{11}} & {{a}_{12}} & ... & {{a}_{1n}} \\ {{a}_{21}} & {{a}_{22}} & ... & {{a}_{2n}} \\ ... & ... & ... & ... \\ {{a}_{m1}} & {{a}_{m2}} & ... & {{a}_{mn}} \\\end{matrix} \right]}_{n}\]

Чтобы случайно не перепутать строки и столбцы местами (поверьте, на экзамене можно и единицу с двойкой перепутать — что уж говорить про какие-то там строки), просто взгляните на картинку:

Определение индексов для клеток матрицы

Что происходит? Если разместить стандартную систему координат $OXY$ в левом верхнем углу и направить оси так, чтобы они охватывали всю матрицу, то каждой клетке этой матрицы можно однозначно сопоставить координаты $\left(x;y \right)$ — это и будет номер строки и номер столбца.

Почему система координат размещена именно в левом верхнем углу? Да потому что именно оттуда мы начинаем читать любые тексты. Это очень просто запомнить.

А почему ось $x$ направлена именно вниз, а не вправо? Опять всё просто: возьмите стандартную систему координат (ось $x$ идёт вправо, ось $y$ — вверх) и поверните её так, чтобы она охватывала матрицу. Это поворот на 90 градусов по часовой стрелке — его результат мы и видим на картинке.

В общем, как определять индексы у элементов матрицы, мы разобрались. Теперь давайте разберёмся с умножением.

Определение. Матрицы $A=\left[ m\times n \right]$ и $B=\left[ n\times k \right]$, когда количество столбцов в первой совпадает с количеством строк во второй, называются согласованными.

Именно в таком порядке. Можно сумничать и сказать, мол, матрицы $A$ и $B$ образуют упорядоченную пару $\left(A;B \right)$: если они согласованы в таком порядке, то совершенно необязательно, что $B$ и $A$, т.е. пара $\left(B;A \right)$ — тоже согласована.

Умножать можно только согласованные матрицы.

Определение. Произведение согласованных матриц $A=\left[ m\times n \right]$ и $B=\left[ n\times k \right]$ — это новая матрица $C=\left[ m\times k \right]$, элементы которой ${{c}_{ij}}$ считаются по формуле:

\[{{c}_{ij}}=\sum\limits_{k=1}^{n}{{{a}_{ik}}}\cdot {{b}_{kj}}\]

Другими словами: чтобы получить элемент ${{c}_{ij}}$ матрицы $C=A\cdot B$, нужно взять $i$-строку первой матрицы, $j$-й столбец второй матрицы, а затем попарно перемножить элементы из этой строки и столбца. Результаты сложить.

Да, вот такое суровое определение. Из него сразу следует несколько фактов:

  1. Умножение матриц, вообще говоря, некоммутативно: $A\cdot B\ne B\cdot A$;
  2. Однако умножение ассоциативно: $\left(A\cdot B \right)\cdot C=A\cdot \left(B\cdot C \right)$;
  3. И даже дистрибутивно: $\left(A+B \right)\cdot C=A\cdot C+B\cdot C$;
  4. И ещё раз дистрибутивно: $A\cdot \left(B+C \right)=A\cdot B+A\cdot C$.

Дистрибутивность умножения пришлось отдельно описывать для левого и правого множителя-суммы как раз из-за некоммутативности операции умножения.

Если всё же получается так, что $A\cdot B=B\cdot A$, такие матрицы называются перестановочными.

Среди всех матриц, которые там на что-то умножаются, есть особые — те, которые при умножении на любую матрицу $A$ снова дают $A$:

Определение. Матрица $E$ называется единичной, если $A\cdot E=A$ или $E\cdot A=A$. В случае с квадратной матрицей $A$ можем записать:

Единичная матрица — частый гость при решении матричных уравнений. И вообще частый гость в мире матриц.:)

А ещё из-за этой $E$ кое-кто придумал всю ту дичь, которая будет написана дальше.

Что такое обратная матрица

Поскольку умножение матриц — весьма трудоёмкая операция (приходится перемножать кучу строчек и столбцов), то понятие обратной матрицы тоже оказывается не самым тривиальным. И требующим некоторых пояснений.

Ключевое определение

Что ж, пора познать истину.

Определение. Матрица $B$ называется обратной к матрице $A$ , если

Обратная матрица обозначается через ${{A}^{-1}}$ (не путать со степенью!), поэтому определение можно переписать так:

Казалось бы, всё предельно просто и ясно. Но при анализе такого определения сразу возникает несколько вопросов:

  1. Всегда ли существует обратная матрица? И если не всегда, то как определить: когда она существует, а когда — нет?
  2. А кто сказал, что такая матрица ровно одна? Вдруг для некоторой исходной матрицы $A$ найдётся целая толпа обратных?
  3. Как выглядят все эти «обратные»? И как, собственно, их считать?

Насчёт алгоритмов вычисления — об этом мы поговорим чуть позже. Но на остальные вопросы ответим прямо сейчас. Оформим их в виде отдельных утверждений-лемм.

Основные свойства

Начнём с того, как в принципе должна выглядеть матрица $A$, чтобы для неё существовала ${{A}^{-1}}$. Сейчас мы убедимся в том, что обе эти матрицы должны быть квадратными, причём одного размера: $\left[ n\times n \right]$.

Лемма 1 . Дана матрица $A$ и обратная ей ${{A}^{-1}}$. Тогда обе эти матрицы — квадратные, причём одинакового порядка $n$.

Доказательство. Всё просто. Пусть матрица $A=\left[ m\times n \right]$, ${{A}^{-1}}=\left[ a\times b \right]$. Поскольку произведение $A\cdot {{A}^{-1}}=E$ по определению существует, матрицы $A$ и ${{A}^{-1}}$ согласованы в указанном порядке:

\[\begin{align} & \left[ m\times n \right]\cdot \left[ a\times b \right]=\left[ m\times b \right] \\ & n=a \end{align}\]

Это прямое следствие из алгоритма перемножения матриц: коэффициенты $n$ и $a$ являются «транзитными» и должны быть равны.

Вместе с тем определено и обратное умножение: ${{A}^{-1}}\cdot A=E$, поэтому матрицы ${{A}^{-1}}$ и $A$ тоже согласованы в указанном порядке:

\[\begin{align} & \left[ a\times b \right]\cdot \left[ m\times n \right]=\left[ a\times n \right] \\ & b=m \end{align}\]

Таким образом, без ограничения общности можем считать, что $A=\left[ m\times n \right]$, ${{A}^{-1}}=\left[ n\times m \right]$. Однако согласно определению $A\cdot {{A}^{-1}}={{A}^{-1}}\cdot A$, поэтому размеры матриц строго совпадают:

\[\begin{align} & \left[ m\times n \right]=\left[ n\times m \right] \\ & m=n \end{align}\]

Вот и получается, что все три матрицы — $A$, ${{A}^{-1}}$ и $E$ — являются квадратными размером $\left[ n\times n \right]$. Лемма доказана.

Что ж, уже неплохо. Мы видим, что обратимыми бывают лишь квадратные матрицы. Теперь давайте убедимся, что обратная матрица всегда одна.

Лемма 2 . Дана матрица $A$ и обратная ей ${{A}^{-1}}$. Тогда эта обратная матрица — единственная.

Доказательство. Пойдём от противного: пусть у матрицы $A$ есть хотя бы два экземпляра обратных —$B$ и $C$. Тогда, согласно определению, верны следующие равенства:

\[\begin{align} & A\cdot B=B\cdot A=E; \\ & A\cdot C=C\cdot A=E. \\ \end{align}\]

Из леммы 1 мы заключаем, что все четыре матрицы — $A$, $B$, $C$ и $E$ — являются квадратными одинакового порядка: $\left[ n\times n \right]$. Следовательно, определено произведение:

Поскольку умножение матриц ассоциативно (но не коммутативно!), мы можем записать:

\[\begin{align} & B\cdot A\cdot C=\left(B\cdot A \right)\cdot C=E\cdot C=C; \\ & B\cdot A\cdot C=B\cdot \left(A\cdot C \right)=B\cdot E=B; \\ & B\cdot A\cdot C=C=B\Rightarrow B=C. \\ \end{align}\]

Получили единственно возможный вариант: два экземпляра обратной матрицы равны. Лемма доказана.

Приведённые рассуждения почти дословно повторяют доказательство единственность обратного элемента для всех действительных чисел $b\ne 0$. Единственное существенное дополнение — учёт размерности матриц.

Впрочем, мы до сих пор ничего не знаем о том, всякая ли квадратная матрица является обратимой. Тут нам на помощь приходит определитель — это ключевая характеристика для всех квадратных матриц.

Лемма 3 . Дана матрица $A$. Если обратная к ней матрица ${{A}^{-1}}$ существует, то определитель исходной матрицы отличен от нуля:

\[\left| A \right|\ne 0\]

Доказательство. Мы уже знаем, что $A$ и ${{A}^{-1}}$ — квадратные матрицы размера $\left[ n\times n \right]$. Следовательно, для каждой из них можно вычислить определитель: $\left| A \right|$ и $\left| {{A}^{-1}} \right|$. Однако определитель произведения равен произведению определителей:

\[\left| A\cdot B \right|=\left| A \right|\cdot \left| B \right|\Rightarrow \left| A\cdot {{A}^{-1}} \right|=\left| A \right|\cdot \left| {{A}^{-1}} \right|\]

Но согласно определению $A\cdot {{A}^{-1}}=E$, а определитель $E$ всегда равен 1, поэтому

\[\begin{align} & A\cdot {{A}^{-1}}=E; \\ & \left| A\cdot {{A}^{-1}} \right|=\left| E \right|; \\ & \left| A \right|\cdot \left| {{A}^{-1}} \right|=1. \\ \end{align}\]

Произведение двух чисел равно единице только в том случае, когда каждое из этих чисел отлично от нуля:

\[\left| A \right|\ne 0;\quad \left| {{A}^{-1}} \right|\ne 0.\]

Вот и получается, что $\left| A \right|\ne 0$. Лемма доказана.

На самом деле это требование вполне логично. Сейчас мы разберём алгоритм нахождения обратной матрицы — и станет совершенно ясно, почему при нулевом определителе никакой обратной матрицы в принципе не может существовать.

Но для начала сформулируем «вспомогательное» определение:

Определение. Вырожденная матрица — это квадратная матрица размера $\left[ n\times n \right]$, чей определитель равен нулю.

Таким образом, мы можем утверждать, что всякая обратимая матрица является невырожденной.

Как найти обратную матрицу

Сейчас мы рассмотрим универсальный алгоритм нахождения обратных матриц. Вообще, существует два общепринятых алгоритма, и второй мы тоже сегодня рассмотрим.

Тот, который будет рассмотрен сейчас, очень эффективен для матриц размера $\left[ 2\times 2 \right]$ и — частично — размера $\left[ 3\times 3 \right]$. А вот начиная с размера $\left[ 4\times 4 \right]$ его лучше не применять. Почему — сейчас сами всё поймёте.

Алгебраические дополнения

Готовьтесь. Сейчас будет боль. Нет, не переживайте: к вам не идёт красивая медсестра в юбке, чулках с кружевами и не сделает укол в ягодицу. Всё куда прозаичнее: к вам идут алгебраические дополнения и Её Величество «Союзная Матрица».

Начнём с главного. Пусть имеется квадратная матрица размера $A=\left[ n\times n \right]$, элементы которой именуются ${{a}_{ij}}$. Тогда для каждого такого элемента можно определить алгебраическое дополнение:

Определение. Алгебраическое дополнение ${{A}_{ij}}$ к элементу ${{a}_{ij}}$, стоящего в $i$-й строке и $j$-м столбце матрицы $A=\left[ n\times n \right]$ — это конструкция вида

\[{{A}_{ij}}={{\left(-1 \right)}^{i+j}}\cdot M_{ij}^{*}\]

Где $M_{ij}^{*}$ — определитель матрицы, полученной из исходной $A$ вычёркиванием той самой $i$-й строки и $j$-го столбца.

Ещё раз. Алгебраическое дополнение к элементу матрицы с координатами $\left(i;j \right)$ обозначается как ${{A}_{ij}}$ и считается по схеме:

  1. Сначала вычёркиваем из исходной матрицы $i$-строчку и $j$-й столбец. Получим новую квадратную матрицу, и её определитель мы обозначаем как $M_{ij}^{*}$.
  2. Затем умножаем этот определитель на ${{\left(-1 \right)}^{i+j}}$ — поначалу это выражение может показаться мозговыносящим, но по сути мы просто выясняем знак перед $M_{ij}^{*}$.
  3. Считаем — получаем конкретное число. Т.е. алгебраическое дополнение — это именно число, а не какая-то новая матрица и т.д.

Саму матрицу $M_{ij}^{*}$ называют дополнительным минором к элементу ${{a}_{ij}}$. И в этом смысле приведённое выше определение алгебраического дополнения является частным случаем более сложного определения — того, что мы рассматривали в уроке про определитель.

Важное замечание. Вообще-то во «взрослой» математике алгебраические дополнения определяются так:

  1. Берём в квадратной матрице $k$ строчек и $k$ столбцов. На их пересечении получится матрица размера $\left[ k\times k \right]$ — её определитель называется минором порядка $k$ и обозначается ${{M}_{k}}$.
  2. Затем вычёркиваем эти «избранные» $k$ строчек и $k$ столбцов. Снова получится квадратная матрица — её определитель называется дополнительным минором и обозначается $M_{k}^{*}$.
  3. Умножаем $M_{k}^{*}$ на ${{\left(-1 \right)}^{t}}$, где $t$ — это (вот сейчас внимание!) сумма номеров всех выбранных строчек и столбцов. Это и будет алгебраическое дополнение.

Взгляните на третий шаг: там вообще-то сумма $2k$ слагаемых! Другое дело, что для $k=1$ мы получим лишь 2 слагаемых — это и будут те самые $i+j$ — «координаты» элемента ${{a}_{ij}}$, для которого мы ищем алгебраическое дополнение.

Таким образом сегодня мы используем слегка упрощённое определение. Но как мы увидим в дальнейшем, его окажется более чем достаточно. Куда важнее следующая штука:

Определение. Союзная матрица $S$ к квадратной матрице $A=\left[ n\times n \right]$ — это новая матрица размера $\left[ n\times n \right]$, которая получается из $A$ заменой ${{a}_{ij}}$ алгебраическими дополнениями ${{A}_{ij}}$:

\\Rightarrow S=\left[ \begin{matrix} {{A}_{11}} & {{A}_{12}} & ... & {{A}_{1n}} \\ {{A}_{21}} & {{A}_{22}} & ... & {{A}_{2n}} \\ ... & ... & ... & ... \\ {{A}_{n1}} & {{A}_{n2}} & ... & {{A}_{nn}} \\\end{matrix} \right]\]

Первая мысль, возникающая в момент осознания этого определения — «это сколько же придётся всего считать!» Расслабьтесь: считать придётся, но не так уж и много.:)

Что ж, всё это очень мило, но зачем это нужно? А вот зачем.

Основная теорема

Вернёмся немного назад. Помните, в Лемме 3 утверждалось, что обратимая матрица $A$ всегда не вырождена (т.е. её определитель отличен от нуля: $\left| A \right|\ne 0$).

Так вот, верно и обратное: если матрица $A$ не вырождена, то она всегда обратима. И даже существует схема поиска ${{A}^{-1}}$. Зацените:

Теорема об обратной матрице. Пусть дана квадратная матрица $A=\left[ n\times n \right]$, причём её определитель отличен от нуля: $\left| A \right|\ne 0$. Тогда обратная матрица ${{A}^{-1}}$ существует и считается по формуле:

\[{{A}^{-1}}=\frac{1}{\left| A \right|}\cdot {{S}^{T}}\]

А теперь — всё то же самое, но разборчивым почерком. Чтобы найти обратную матрицу, нужно:

  1. Посчитать определитель $\left| A \right|$ и убедиться, что он отличен от нуля.
  2. Составить союзную матрицу $S$, т.е. посчитать 100500 алгебраических дополнений ${{A}_{ij}}$ и расставить их на месте ${{a}_{ij}}$.
  3. Транспонировать эту матрицу $S$, а затем умножить её на некое число $q={1}/{\left| A \right|}\;$.

И всё! Обратная матрица ${{A}^{-1}}$ найдена. Давайте посмотрим на примеры:

\[\left[ \begin{matrix} 3 & 1 \\ 5 & 2 \\\end{matrix} \right]\]

Решение. Проверим обратимость. Посчитаем определитель:

\[\left| A \right|=\left| \begin{matrix} 3 & 1 \\ 5 & 2 \\\end{matrix} \right|=3\cdot 2-1\cdot 5=6-5=1\]

Определитель отличен от нуля. Значит, матрица обратима. Составим союзную матрицу:

Посчитаем алгебраические дополнения:

\[\begin{align} & {{A}_{11}}={{\left(-1 \right)}^{1+1}}\cdot \left| 2 \right|=2; \\ & {{A}_{12}}={{\left(-1 \right)}^{1+2}}\cdot \left| 5 \right|=-5; \\ & {{A}_{21}}={{\left(-1 \right)}^{2+1}}\cdot \left| 1 \right|=-1; \\ & {{A}_{22}}={{\left(-1 \right)}^{2+2}}\cdot \left| 3 \right|=3. \\ \end{align}\]

Обратите внимание: определители |2|, |5|, |1| и |3| — это именно определители матриц размера $\left[ 1\times 1 \right]$, а не модули. Т.е. если в определителях стояли отрицательные числа, убирать «минус» не надо.

Итого наша союзная матрица выглядит так:

\[{{A}^{-1}}=\frac{1}{\left| A \right|}\cdot {{S}^{T}}=\frac{1}{1}\cdot {{\left[ \begin{array}{*{35}{r}} 2 & -5 \\ -1 & 3 \\\end{array} \right]}^{T}}=\left[ \begin{array}{*{35}{r}} 2 & -1 \\ -5 & 3 \\\end{array} \right]\]

Ну вот и всё. Задача решена.

Ответ. $\left[ \begin{array}{*{35}{r}} 2 & -1 \\ -5 & 3 \\\end{array} \right]$

Задача. Найдите обратную матрицу:

\[\left[ \begin{array}{*{35}{r}} 1 & -1 & 2 \\ 0 & 2 & -1 \\ 1 & 0 & 1 \\\end{array} \right]\]

Решение. Опять считаем определитель:

\[\begin{align} & \left| \begin{array}{*{35}{r}} 1 & -1 & 2 \\ 0 & 2 & -1 \\ 1 & 0 & 1 \\\end{array} \right|=\begin{matrix} \left(1\cdot 2\cdot 1+\left(-1 \right)\cdot \left(-1 \right)\cdot 1+2\cdot 0\cdot 0 \right)- \\ -\left(2\cdot 2\cdot 1+\left(-1 \right)\cdot 0\cdot 1+1\cdot \left(-1 \right)\cdot 0 \right) \\\end{matrix}= \\ & =\left(2+1+0 \right)-\left(4+0+0 \right)=-1\ne 0. \\ \end{align}\]

Определитель отличен от нуля — матрица обратима. А вот сейчас будет самая жесть: надо посчитать аж 9 (девять, мать их!) алгебраических дополнений. И каждое из них будет содержать определитель $\left[ 2\times 2 \right]$. Полетели:

\[\begin{matrix} {{A}_{11}}={{\left(-1 \right)}^{1+1}}\cdot \left| \begin{matrix} 2 & -1 \\ 0 & 1 \\\end{matrix} \right|=2; \\ {{A}_{12}}={{\left(-1 \right)}^{1+2}}\cdot \left| \begin{matrix} 0 & -1 \\ 1 & 1 \\\end{matrix} \right|=-1; \\ {{A}_{13}}={{\left(-1 \right)}^{1+3}}\cdot \left| \begin{matrix} 0 & 2 \\ 1 & 0 \\\end{matrix} \right|=-2; \\ ... \\ {{A}_{33}}={{\left(-1 \right)}^{3+3}}\cdot \left| \begin{matrix} 1 & -1 \\ 0 & 2 \\\end{matrix} \right|=2; \\ \end{matrix}\]

Короче, союзная матрица будет выглядеть так:

Следовательно, обратная матрица будет такой:

\[{{A}^{-1}}=\frac{1}{-1}\cdot \left[ \begin{matrix} 2 & -1 & -2 \\ 1 & -1 & -1 \\ -3 & 1 & 2 \\\end{matrix} \right]=\left[ \begin{array}{*{35}{r}}-2 & -1 & 3 \\ 1 & 1 & -1 \\ 2 & 1 & -2 \\\end{array} \right]\]

Ну и всё. Вот и ответ.

Ответ. $\left[ \begin{array}{*{35}{r}} -2 & -1 & 3 \\ 1 & 1 & -1 \\ 2 & 1 & -2 \\\end{array} \right]$

Как видите, в конце каждого примера мы выполняли проверку. В связи с этим важное замечание:

Не ленитесь выполнять проверку. Умножьте исходную матрицу на найденную обратную — должна получиться $E$.

Выполнить эту проверку намного проще и быстрее, чем искать ошибку в дальнейших вычислениях, когда, например, вы решаете матричное уравнение.

Альтернативный способ

Как я и говорил, теорема об обратной матрице прекрасно работает для размеров $\left[ 2\times 2 \right]$ и $\left[ 3\times 3 \right]$ (в последнем случае — уже не так уж и «прекрасно»), а вот для матриц больших размеров начинается прям печаль.

Но не переживайте: есть альтернативный алгоритм, с помощью которого можно невозмутимо найти обратную хоть для матрицы $\left[ 10\times 10 \right]$. Но, как это часто бывает, для рассмотрения этого алгоритма нам потребуется небольшая теоретическая вводная.

Элементарные преобразования

Среди всевозможных преобразований матрицы есть несколько особых — их называют элементарными. Таких преобразований ровно три:

  1. Умножение. Можно взять $i$-ю строку (столбец) и умножить её на любое число $k\ne 0$;
  2. Сложение. Прибавить к $i$-й строке (столбцу) любую другую $j$-ю строку (столбец), умноженную на любое число $k\ne 0$ (можно, конечно, и $k=0$, но какой в этом смысл? Ничего не изменится же).
  3. Перестановка. Взять $i$-ю и $j$-ю строки (столбцы) и поменять местами.

Почему эти преобразования называются элементарными (для больших матриц они выглядят не такими уж элементарными) и почему их только три — эти вопросы выходят за рамки сегодняшнего урока. Поэтому не будем вдаваться в подробности.

Важно другое: все эти извращения нам предстоит выполнять над присоединённой матрицей. Да, да: вы не ослышались. Сейчас будет ещё одно определение — последнее в сегодняшнем уроке.

Присоединённая матрица

Наверняка в школе вы решали системы уравнений методом сложения. Ну, там, вычесть из одной строки другую, умножить какую-то строку на число — вот это вот всё.

Так вот: сейчас будет всё то же, но уже «по-взрослому». Готовы?

Определение. Пусть дана матрица $A=\left[ n\times n \right]$ и единичная матрица $E$ такого же размера $n$. Тогда присоединённая матрица $\left[ A\left| E \right. \right]$ — это новая матрица размера $\left[ n\times 2n \right]$, которая выглядит так:

\[\left[ A\left| E \right. \right]=\left[ \begin{array}{rrrr|rrrr}{{a}_{11}} & {{a}_{12}} & ... & {{a}_{1n}} & 1 & 0 & ... & 0 \\{{a}_{21}} & {{a}_{22}} & ... & {{a}_{2n}} & 0 & 1 & ... & 0 \\... & ... & ... & ... & ... & ... & ... & ... \\{{a}_{n1}} & {{a}_{n2}} & ... & {{a}_{nn}} & 0 & 0 & ... & 1 \\\end{array} \right]\]

Короче говоря, берём матрицу $A$, справа приписываем к ней единичную матрицу $E$ нужного размера, разделяем их вертикальной чертой для красоты — вот вам и присоединённая.:)

В чём прикол? А вот в чём:

Теорема. Пусть матрица $A$ обратима. Рассмотрим присоединённую матрицу $\left[ A\left| E \right. \right]$. Если с помощью элементарных преобразований строк привести её к виду $\left[ E\left| B \right. \right]$, т.е. путём умножения, вычитания и перестановки строк получить из $A$ матрицу $E$ справа, то полученная слева матрица $B$ — это обратная к $A$:

\[\left[ A\left| E \right. \right]\to \left[ E\left| B \right. \right]\Rightarrow B={{A}^{-1}}\]

Вот так всё просто! Короче говоря, алгоритм нахождения обратной матрицы выглядит так:

  1. Записать присоединённую матрицу $\left[ A\left| E \right. \right]$;
  2. Выполнять элементарные преобразования строк до тех пор, пока права вместо $A$ не появится $E$;
  3. Разумеется, слева тоже что-то появится — некая матрица $B$. Это и будет обратная;
  4. PROFIT!:)

Конечно, сказать намного проще, чем сделать. Поэтому давайте рассмотрим парочку примеров: для размеров $\left[ 3\times 3 \right]$ и $\left[ 4\times 4 \right]$.

Задача. Найдите обратную матрицу:

\[\left[ \begin{array}{*{35}{r}} 1 & 5 & 1 \\ 3 & 2 & 1 \\ 6 & -2 & 1 \\\end{array} \right]\]

Решение. Составляем присоединённую матрицу:

\[\left[ \begin{array}{rrr|rrr} 1 & 5 & 1 & 1 & 0 & 0 \\ 3 & 2 & 1 & 0 & 1 & 0 \\ 6 & -2 & 1 & 0 & 0 & 1 \\\end{array} \right]\]

Поскольку последний столбец исходной матрицы заполнен единицами, вычтем первую строку из остальных:

\[\begin{align} & \left[ \begin{array}{rrr|rrr} 1 & 5 & 1 & 1 & 0 & 0 \\ 3 & 2 & 1 & 0 & 1 & 0 \\ 6 & -2 & 1 & 0 & 0 & 1 \\\end{array} \right]\begin{matrix} \downarrow \\ -1 \\ -1 \\\end{matrix}\to \\ & \to \left[ \begin{array}{rrr|rrr} 1 & 5 & 1 & 1 & 0 & 0 \\ 2 & -3 & 0 & -1 & 1 & 0 \\ 5 & -7 & 0 & -1 & 0 & 1 \\\end{array} \right] \\ \end{align}\]

Больше единиц нет, кроме первой строки. Но её мы не трогаем, иначе в третьем столбце начнут «размножаться» только что убранные единицы.

Зато можем вычесть вторую строку дважды из последней — получим единицу в левом нижнем углу:

\[\begin{align} & \left[ \begin{array}{rrr|rrr} 1 & 5 & 1 & 1 & 0 & 0 \\ 2 & -3 & 0 & -1 & 1 & 0 \\ 5 & -7 & 0 & -1 & 0 & 1 \\\end{array} \right]\begin{matrix} \ \\ \downarrow \\ -2 \\\end{matrix}\to \\ & \left[ \begin{array}{rrr|rrr} 1 & 5 & 1 & 1 & 0 & 0 \\ 2 & -3 & 0 & -1 & 1 & 0 \\ 1 & -1 & 0 & 1 & -2 & 1 \\\end{array} \right] \\ \end{align}\]

Теперь можно вычесть последнюю строку из первой и дважды из второй — таким образом мы «занулим» первый столбец:

\[\begin{align} & \left[ \begin{array}{rrr|rrr} 1 & 5 & 1 & 1 & 0 & 0 \\ 2 & -3 & 0 & -1 & 1 & 0 \\ 1 & -1 & 0 & 1 & -2 & 1 \\\end{array} \right]\begin{matrix} -1 \\ -2 \\ \uparrow \\\end{matrix}\to \\ & \to \left[ \begin{array}{rrr|rrr} 0 & 6 & 1 & 0 & 2 & -1 \\ 0 & -1 & 0 & -3 & 5 & -2 \\ 1 & -1 & 0 & 1 & -2 & 1 \\\end{array} \right] \\ \end{align}\]

Умножим вторую строку на −1, а затем вычтем её 6 раз из первой и прибавим 1 раз к последней:

\[\begin{align} & \left[ \begin{array}{rrr|rrr} 0 & 6 & 1 & 0 & 2 & -1 \\ 0 & -1 & 0 & -3 & 5 & -2 \\ 1 & -1 & 0 & 1 & -2 & 1 \\\end{array} \right]\begin{matrix} \ \\ \left| \cdot \left(-1 \right) \right. \\ \ \\\end{matrix}\to \\ & \to \left[ \begin{array}{rrr|rrr} 0 & 6 & 1 & 0 & 2 & -1 \\ 0 & 1 & 0 & 3 & -5 & 2 \\ 1 & -1 & 0 & 1 & -2 & 1 \\\end{array} \right]\begin{matrix} -6 \\ \updownarrow \\ +1 \\\end{matrix}\to \\ & \to \left[ \begin{array}{rrr|rrr} 0 & 0 & 1 & -18 & 32 & -13 \\ 0 & 1 & 0 & 3 & -5 & 2 \\ 1 & 0 & 0 & 4 & -7 & 3 \\\end{array} \right] \\ \end{align}\]

Осталось лишь поменять местами строки 1 и 3:

\[\left[ \begin{array}{rrr|rrr} 1 & 0 & 0 & 4 & -7 & 3 \\ 0 & 1 & 0 & 3 & -5 & 2 \\ 0 & 0 & 1 & -18 & 32 & -13 \\\end{array} \right]\]

Готово! Справа — искомая обратная матрица.

Ответ. $\left[ \begin{array}{*{35}{r}}4 & -7 & 3 \\ 3 & -5 & 2 \\ -18 & 32 & -13 \\\end{array} \right]$

Задача. Найдите обратную матрицу:

\[\left[ \begin{matrix} 1 & 4 & 2 & 3 \\ 1 & -2 & 1 & -2 \\ 1 & -1 & 1 & 1 \\ 0 & -10 & -2 & -5 \\\end{matrix} \right]\]

Решение. Снова составляем присоединённую:

\[\left[ \begin{array}{rrrr|rrrr} 1 & 4 & 2 & 3 & 1 & 0 & 0 & 0 \\ 1 & -2 & 1 & -2 & 0 & 1 & 0 & 0 \\ 1 & -1 & 1 & 1 & 0 & 0 & 1 & 0 \\ 0 & -10 & -2 & -5 & 0 & 0 & 0 & 1 \\\end{array} \right]\]

Немного позалимаем, попечалимся от того, сколько сейчас придётся считать... и начнём считать. Для начала «обнулим» первый столбец, вычитая строку 1 из строк 2 и 3:

\[\begin{align} & \left[ \begin{array}{rrrr|rrrr} 1 & 4 & 2 & 3 & 1 & 0 & 0 & 0 \\ 1 & -2 & 1 & -2 & 0 & 1 & 0 & 0 \\ 1 & -1 & 1 & 1 & 0 & 0 & 1 & 0 \\ 0 & -10 & -2 & -5 & 0 & 0 & 0 & 1 \\\end{array} \right]\begin{matrix} \downarrow \\ -1 \\ -1 \\ \ \\\end{matrix}\to \\ & \to \left[ \begin{array}{rrrr|rrrr} 1 & 4 & 2 & 3 & 1 & 0 & 0 & 0 \\ 0 & -6 & -1 & -5 & -1 & 1 & 0 & 0 \\ 0 & -5 & -1 & -2 & -1 & 0 & 1 & 0 \\ 0 & -10 & -2 & -5 & 0 & 0 & 0 & 1 \\\end{array} \right] \\ \end{align}\]

Наблюдаем слишком много «минусов» в строках 2—4. Умножим все три строки на −1, а затем «выжжем» третий столбец, вычитая строку 3 из остальных:

\[\begin{align} & \left[ \begin{array}{rrrr|rrrr} 1 & 4 & 2 & 3 & 1 & 0 & 0 & 0 \\ 0 & -6 & -1 & -5 & -1 & 1 & 0 & 0 \\ 0 & -5 & -1 & -2 & -1 & 0 & 1 & 0 \\ 0 & -10 & -2 & -5 & 0 & 0 & 0 & 1 \\\end{array} \right]\begin{matrix} \ \\ \left| \cdot \left(-1 \right) \right. \\ \left| \cdot \left(-1 \right) \right. \\ \left| \cdot \left(-1 \right) \right. \\\end{matrix}\to \\ & \to \left[ \begin{array}{rrrr|rrrr} 1 & 4 & 2 & 3 & 1 & 0 & 0 & 0 \\ 0 & 6 & 1 & 5 & 1 & -1 & 0 & 0 \\ 0 & 5 & 1 & 2 & 1 & 0 & -1 & 0 \\ 0 & 10 & 2 & 5 & 0 & 0 & 0 & -1 \\\end{array} \right]\begin{matrix} -2 \\ -1 \\ \updownarrow \\ -2 \\\end{matrix}\to \\ & \to \left[ \begin{array}{rrrr|rrrr} 1 & -6 & 0 & -1 & -1 & 0 & 2 & 0 \\ 0 & 1 & 0 & 3 & 0 & -1 & 1 & 0 \\ 0 & 5 & 1 & 2 & 1 & 0 & -1 & 0 \\ 0 & 0 & 0 & 1 & -2 & 0 & 2 & -1 \\\end{array} \right] \\ \end{align}\]

Теперь самое время «поджарить» последний столбец исходной матрицы: вычитаем строку 4 из остальных:

\[\begin{align} & \left[ \begin{array}{rrrr|rrrr} 1 & -6 & 0 & -1 & -1 & 0 & 2 & 0 \\ 0 & 1 & 0 & 3 & 0 & -1 & 1 & 0 \\ 0 & 5 & 1 & 2 & 1 & 0 & -1 & 0 \\ 0 & 0 & 0 & 1 & -2 & 0 & 2 & -1 \\\end{array} \right]\begin{matrix} +1 \\ -3 \\ -2 \\ \uparrow \\\end{matrix}\to \\ & \to \left[ \begin{array}{rrrr|rrrr} 1 & -6 & 0 & 0 & -3 & 0 & 4 & -1 \\ 0 & 1 & 0 & 0 & 6 & -1 & -5 & 3 \\ 0 & 5 & 1 & 0 & 5 & 0 & -5 & 2 \\ 0 & 0 & 0 & 1 & -2 & 0 & 2 & -1 \\\end{array} \right] \\ \end{align}\]

Финальный бросок: «выжигаем» второй столбец, вычитая строку 2 из строки 1 и 3:

\[\begin{align} & \left[ \begin{array}{rrrr|rrrr} 1 & -6 & 0 & 0 & -3 & 0 & 4 & -1 \\ 0 & 1 & 0 & 0 & 6 & -1 & -5 & 3 \\ 0 & 5 & 1 & 0 & 5 & 0 & -5 & 2 \\ 0 & 0 & 0 & 1 & -2 & 0 & 2 & -1 \\\end{array} \right]\begin{matrix} 6 \\ \updownarrow \\ -5 \\ \ \\\end{matrix}\to \\ & \to \left[ \begin{array}{rrrr|rrrr} 1 & 0 & 0 & 0 & 33 & -6 & -26 & -17 \\ 0 & 1 & 0 & 0 & 6 & -1 & -5 & 3 \\ 0 & 0 & 1 & 0 & -25 & 5 & 20 & -13 \\ 0 & 0 & 0 & 1 & -2 & 0 & 2 & -1 \\\end{array} \right] \\ \end{align}\]

И снова слева единичная матрица, значит справа — обратная.:)

Ответ. $\left[ \begin{matrix} 33 & -6 & -26 & 17 \\ 6 & -1 & -5 & 3 \\ -25 & 5 & 20 & -13 \\ -2 & 0 & 2 & -1 \\\end{matrix} \right]$



Последние материалы раздела:

Изменение вида звездного неба в течение суток
Изменение вида звездного неба в течение суток

Тема урока «Изменение вида звездного неба в течение года». Цель урока: Изучить видимое годичное движение Солнца. Звёздное небо – великая книга...

Развитие критического мышления: технологии и методики
Развитие критического мышления: технологии и методики

Критическое мышление – это система суждений, способствующая анализу информации, ее собственной интерпретации, а также обоснованности...

Онлайн обучение профессии Программист 1С
Онлайн обучение профессии Программист 1С

В современном мире цифровых технологий профессия программиста остается одной из самых востребованных и перспективных. Особенно высок спрос на...