Общая формула и виды изомерии алкенов. Основные реакции алкенов

Первым представителем ряда алкенов является этен (этилен), чтобы построить формулу следующего представителя ряда нужно к исходной формуле прибавить группу CH 2 ; многократно повторяя такую процедуру можно построить гомологический ряд алкенов.

CH 2 +CH 2 +CH 2 +CH 2 +CH 2 +CH 2 +CH 2 +CH 2

C 2 H 4 ® C 3 H 6 ® C 4 H 8 ® C 5 H 10 ® C 6 H 12 ® C 7 H 14 ® C 8 H 16 ® C 9 H 18 ® C 10 H 20

Чтобы построить название алкена необходимо в названии соответствующего алкана (с таким же числом атомов углерода как ив алкене) поменять суффикс – ан на - ен (или – илен).Например, алкан с четырьмя атомами углерода в цепи называется бутан, а соответствующий ему алкен – бутен (бутилен). Исключение составляет декан, соответствующий ему алкен будет называться не декен, а децен (децилен). Алкен с пятью атомами углерода в цепи помимо названия пентен имеет название амилен. В таблице ниже приведены формулы и названия первых десяти представителей ряда алкенов.

Однако, начиная с третьего, представитель ряда алкенов – бутена помимо словесного названия «бутен» после его написания должна стоять цифра 1 или 2, которая показывает местоположение двойной связи в углеродной цепи.

CH 2 = CH – CH 2 – CH 3 CH 3 – CH = CH – CH 3

бутен 1 бутен 2

Помимо систематической номенклатуры часто употребляются и рациональные названия алкенов при этом алкены рассматриваются, как производные этилена, в молекуле которого атомы водорода замещены на радикалы, а за основу берется название «этилен».

Например, CH 3 – CH = CH – C 2 H 5 – симметричный метилэтилэтилен.

(СH 3) – CH = CH – C 2 H 5 – симметричный этилизопропилэтилен.

(СH 3)C – CH = CH – CH(CH 3) 2 – симметричный изопропилизобутилэтилен.

Непредельные углеводородные радикалы по систематической номенклатуре называют, добавляя к корню суффикс - енил : этенил

CH 2 =CH -, пропенил-2 CH 2 = CH – CH 2 - . Но гораздо чаще для этих радикалов употребляют эмпирические названия – соответственно винил и аллил .

Изомерия алкенов.

Для алкенов характерно большое количество разных видов изомерии.

А) Изомерия углеродного скелета.

CH 2 = C – CH 2 – CH 2 – CH 3 СH 2 = CH – CH – CH 2 – CH 3

2-метил пентен-1 3-метил пентен-1

СH 2 = CH – CH 2 – CH – CH 3

4- метил пентен-1

Б) Изомерия положения двойной связи.

СH 2 = СH – CH 2 – CH 3 CH 3 – CH = CH – CH 3

бутен-1 бутен-2

В) Пространственная (стереоизомерия).

Изомеры, у которых одинаковые заместители расположены по одну сторону от двойной связи, называют цис -изомеры, а по разную – транс­­ -изомерами:

H 3 C CH 3 H 3 C H

цис -бутен транс -бутен

Цис - и транс - изомеры отличаются не только пространственным строением, но и многими физическими и химическими (и даже физиологическими) свойствами. Транс - Изомеры более устойчивы по сравнению с цис-изомерами . Это объясняется большей удаленностью в пространстве групп при атомах, связанных двойной связью, в случае транс – изомеров.

Г) Изомерия веществ разных классов органических соединений.

Изомерами алкенам являются циклопарафины, имеющие сходную с ними общую формулу – С n H 2 n .

CH 3 – CH = CH – CH 3

бутен -2

циклобутан

4. Нахождение алкенов в природе и способы их получения.

Также как и алканы, алкены в природе встречаются в составе нефти, попутного нефтяного и природного газов, бурого и каменного угля горючих сланцев.

А) Получение алкенов каталитической дегидрогенизацией алканов.

СH 3 – CH – CH 3 ® CH 2 = C – CH 3 + H 2 ­

CH 3 кат. (K 2 O-Cr 2 O 3 -Al 2 O 3) CH 3

Б) Дегидратация спиртов под действием серной кислоты или с участием Al 2 O ­3 (парафазная дегидратация).

этанол H 2 SO 4 (конц.) этен

C 2 H 5 OH ® CH 2 = CH 2 + H 2 O

этанол Al 2 O 3 этен

Дегидратация спиртов протекает по правилу А.М. Зайцева, согласно которому водород отщепляется от наименее гидрогенезированного атома углерода, то есть вторичного или третичного.

H 3 C – CH – C ® H 3 C – CH = C – CH 3


3-метилбутанол-2 2-метилбутен

В) Взаимодействие галогеналкилов со щелочами (дегидрогалогенирование).

H 3 C – C – CH 2 Cl + KOH ® H 3 C – C = CH 2 + H 2 O + KCl

1-хлор 2-метлпропан (спирт. р-р) 2-метилпропен-1

Г) Действие магнием или цинком на дигалогенпроизводные алкилов с атомами галогена при соседних углеродных атомах (дегалогенирование).

спирт. t

CH 3 -CHCl-CH 2 Cl + Zn ® CH 3 -CH = CH 2 + ZnCl 2

1.2- дихлорпропан пропен-1

Д) Селективное гидрирование алкинов на катализаторе.

СH º CH + H 2 ® CH 2 =CH 2

этин этен

5. Физические свойства алкенов.

Первые три представителя гомологического ряда этилена газы.

Начиная с C 5 H 10 до С 17 Н 34 – жидкости, начиная с С 18 Н 36 и далее твердые вещества. С увеличением молекулярной массы повышаются температуры плавления и кипения. Алкены с углеродной цепью нормального строения кипят при более высокой температуре, чем их изомеры, имеющие изостроение. Температура кипения цис - изомеров выше, чем транс – изомеров, а температура плавления – наоборот. Алкены малополярны, но легко поляризуются. Алкены плохо растворимы в воде (однако лучше, чем соответствующие алканы). Они хорошо растворяются в органических растворителях. Этилен и пропилен горят кипящим пламенем.

В таблице ниже приведены основные физические свойства некоторых представителей ряда алкенов.

Алкен Формула t пл. ­ o C t кип. ­ o C d 4 20
Этен (этилен) C 2 H 4 -169,1 -103,7 0,5700
Пропен (пропилен) C 3 H 6 -187,6 -47,7 0,6100 (при t(кип) )
Бутен (бутилен-1) C 4 H 8 -185,3 -6,3 0,5951
цис – Бутен-2 C 4 H 8 -138,9 3,7 0,6213
транс – Бутен-2 C 4 H 8 -105,5 0,9 0,6042
Изобутилен (2-метилпропен) C 4 H 8 -140,4 -7,0 0,6260
Пентен-1 (амилен) C 5 H 10 -165,2 +30,1 0,6400
Гексен-1 (гексилен) C 6 H 12 -139,8 63,5 0,6730
Гептен-1 (гептилен) C 7 H 14 -119 93,6 0,6970
Октен-1 (октилен) C 8 H 16 -101,7 121,3 0,7140
Нонен-1 (нонилен) C 9 H 18 -81,4 146,8 0,7290
Децен-1 (децилен) C 10 H 20 -66,3 170,6 0,7410

6. Химические свойства алкенов.

А) Присоединение водорода (гидрирование).

CH 2 = CH 2 + H 2 ® CH 3 – CH 3

этен этан

Б)Взаимодействие с галогенами (галогенирование).

Легче идет присоединение хлора и брома к алкенам, труднее - йода

CH 3 – CH = CH 2 + Cl 2 ® CH 3 – CHCl – CH 2 Cl

пропилен 1,2-дихлорпропан

В) Присоединение галогенводородов (гидрогалогенирование)

Присоединение галогенводородов к алкенам при обычных условиях протекает согласно правилу Марковникова: при ионном присоединении галогенводородов к несимметричным алкенам (при обычных условиях) водород присоединяется по месту двойной связи к наиболее гидрогенизированному (связанному с наибольшим числом водородных атомов)атому углерода, а галоген – менее гидрогенизированному.

CH 2 =CH 2 + HBr ® CH 3 – CH 2 Br

этен бромэтан

Г) Присоединение воды к алкенам (гидратация).

Присоединение воды к алкенам протекает также согласно правилу Марковникова.

CH 3 – CH = CH 2 + H – OH ® CH 3 – CHOH – CH 3

пропен-1 пропанол-2

Е) Алкилирование алканов алкенами.

Алкилирование – реакция, с помощью которой можно вводить различные углеводородные радикалы (алкилы) в молекулы органических соединений. В качестве алкилирующих средств используют галогеналкилы, непредельные углеводороды, спирты и другие органические вещества. Например, в присутствии концентрированной серной кислоты активно протекает реакция алкилирования изобутана изобутиленом:

3CH 2 = CH 2 + 2KMnO 4 + 4H 2 O ® 3CH 2 OH – CH 2 OH + 2MnO 2 + 2KOH

этен этиленгликоль

(этандиол-1,2)

Расщепление молекулы алкена по месту двойной связи может вести к образованию соответствующей карбоновой кислоты, если используется энергичный окислитель (азотная концентрированная кислота или хромовая смесь).

HNO 3(конц.)

CH 3 – CH = CH – CH 3 ® 2CH 3 COOH

бутен-2 этановая кислота (уксусная кислота)

Окисление этилена кислородом воздуха в присутствии металлического серебра ведёт к образованию этиленоксида.

2CH 2 = CH 2 + O 2 ® 2CH 2 – CH 2

И) Реакция полимеризации алкенов.

n CH 2 = CH 2 ® [–CH 2 – CH 2 –]n

этилен кат.полиэтилен

7.Применение алкенов.

А) Резка и сварка металлов.

Б) Производство красителей, растворителей, лаков, новых органических веществ.

В) Производство пластмасс и других синтетических материалов.

Г) Синтез спиртов, полимеров, каучуков

Д) Синтез лекарственных препаратов.

IV. Диеновые углеводороды (алкадиены или диолефины) – это непредельные сложные органические соединения с общей формулой C n H 2 n -2 , содержащие две двойные связи между атомами углерода в цепи и способные присоединять молекулы водорода, галогенов и других соединений в силу валентной не насыщенности атома углерода.

Первым представителем ряда диеновых углеводородов является пропадиен (аллен). Строение диеновых углеводородов сходно со строением алкенов, разница лишь только в том, что в молекулах диеновых углеводородов две двойные связи, а не одна.

ОПРЕДЕЛЕНИЕ

Алкенами называются ненасыщенные углеводороды, молекулы которых содержат одну двойную связь. Строение молекулы алкенов на примере этилена приведено на рис. 1.

Рис. 1. Строение молекулы этилена.

По физическим свойствам алкены мало отличаются от алканов с тем же числом атомов углерода в молекуле. Низшие гомологи С 2 - С 4 при нормальных условиях - газы; С 5 - С 17 - жидкости; высшие гомологи - твердые вещества. Алкены нерастворимы в воде. Хорошо растворимы в органических растворителях.

Получение алкенов

В промышленности алкены получают при переработке нефти: крекингом и дегидрированием алканов. Лабораторные способы получения алкенов мы разделили на две группы:

  • Реакции элиминирования (отщепления)

— дегидратация спиртов

CH 3 -CH 2 -OH → CH 2 =CH 2 + H 2 O (H 2 SO 4 (conc) , t 0 = 170).

— дегидрогалогенированиемоногалогеналканов

CH 3 -CH(Br)-CH 2 -CH 3 + NaOH alcohol → CH 3 -CH=CH-CH 3 + NaBr + H 2 O (t 0).

— дегалогенированиедигалогеналканов

CH 3 -CH(Cl)-CH(Cl)-CH 2 -CH 3 + Zn(Mg) → CH 3 -CH=CH-CH 2 -CH 3 + ZnCl 2 (MgCl 2).

  • Неполное гидрирование алкинов

CH≡CH + H 2 →CH 2 =CH 2 (Pd, t 0).

Химические свойства алкенов

Алкены - весьма реакционноспособоные органические соединения. Это объясняется их строением. Химия алкенов - это химия двойной связи. Типичные реакции для алкенов - реакции электрофильного присоединения.

Химические превращения алкенов протекают с расщеплением:

1) π-связи С-С (присоединение, полимеризация и окисление)

— гидрирование

CH 3 -CH=CH 2 + H 2 → CH 3 -CH 2 -CH 2 (kat = Pt).

— галогенирование

CH 3 -CH 2 -CH=CH 2 + Br 2 → CH 3 -CH 2 -CH(Br)-CH 2 Br.

— гидрогалогенирование (протекает по правилу Марковникова: атом водорода присоединяется преимущественно к более гидрированному атому углерода)

CH 3 -CH=CH 2 + H-Cl → CH 3 -CH(Cl)-CH 3 .

— гидратация

CH 2 =CH 2 + H-OH → CH 3 -CH 2 -OH (H + , t 0).

— полимеризация

nCH 2 =CH 2 → -[-CH 2 -CH 2 -]- n (kat, t 0).

— окисление

CH 2 =CH 2 + 2KMnO 4 + 2KOH → HO-CH 2 -CH 2 -OH + 2K 2 MnO 4 ;

2CH 2 =CH 2 + O 2 → 2C 2 OH 4 (эпоксид) (kat = Ag,t 0);

2CH 2 =CH 2 + O 2 → 2CH 3 -C(O)H (kat = PdCl 2 , CuCl).

2) σ- и π-связей С-С

CH 3 -CH=CH-CH 2 -CH 3 + 4[O] → CH 3 COOH + CH 3 CH 2 COOH (KMnO 4 , H +, t 0).

3) связей С sp 3 -Н (в аллильном положении)

CH 2 =CH 2 + Cl 2 → CH 2 =CH-Cl + HCl (t 0 =400).

4) Разрыв всех связей

C 2 H 4 + 2O 2 → 2CO 2 + 2H 2 O;

C n H 2n + 3n/2 O 2 → nCO 2 + nH 2 O.

Применение алкенов

Алкены нашли применение в различных отраслях народного хозяйства. Рассмотрим на примере отдельных представителей.

Этилен широко используется в промышленном органическом синтезе для получения разнообразных органических соединений, таких как галогенопроизводные, спирты (этанол, этиленгликоль), уксусный альдегид, уксусная кислота и др. В большом количестве этилен расходуется для производства полимеров.

Пропилен используется как сырье для получения некоторых спиртов (например, пропанола-2, глицерина), ацетона и др. Полимеризацией пропилена получают полипропилен.

Примеры решения задач

ПРИМЕР 1

Задание При гидролизе водным раствором гидроксида натрия NaOH дихлорида, полученного присоединением 6,72 л хлора к этиленовому углеводороду, образовалось 22,8 г двухатомного спирта. Какова формула алкена, если известно, что реакции протекают с количественными выходами (без потерь)?
Решение Запишем уравнение хлорирования алкена в общем виде, а также реакцию получения двухатомного спирта:

C n H 2 n + Cl 2 = C n H 2 n Cl 2 (1);

C n H 2 n Cl 2 + 2NaOH = C n H 2 n (OH) 2 + 2HCl (2).

Рассчитаем количество вещества хлора:

n(Cl 2) = V(Cl 2) / V m ;

n(Cl 2) = 6,72 / 22,4 = 0,3 моль,

следовательно, дихлорида этилена тоже будет 0,3 моль (уравнение 1), двухатомного спирта также должно получиться 0,3 моль, а по условию задачи это 22,8 г. Значит молярная масса его будет равна:

M(C n H 2 n (OH) 2) = m(C n H 2 n (OH) 2) / n(C n H 2 n (OH) 2);

M(C n H 2 n (OH) 2) = 22,8 / 0,3 = 76 г/моль.

Найдем молярную массу алкена:

M(C n H 2 n) = 76 - (2×17) = 42 г/моль,

что соответствует формуле C 3 H 6 .

Ответ Формула алкенаC 3 H 6

ПРИМЕР 2

Задание Сколько граммов потребуется для бромирования 16,8 г алкена, если известно, что при каталитическом гидрировании такого же количества алкена присоединилось 6,72 л водорода? Каков состав и возможное строение исходного углеводорода?
Решение Запишем в общем виде уравнения бромирования и гидрирования алкена:

C n H 2 n + Br 2 = C n H 2 n Br 2 (1);

C n H 2 n + H 2 = C n H 2 n +2 (2).

Рассчитаем количество вещества водорода:

n(H 2) = V(H 2) / V m ;

n(H 2) = 6,72 / 22,4 = 0,3 моль,

следовательно, алкена тоже будет 0,3 моль (уравнение 2), а по условию задачи это 16,8 г. Значит молярная масса его будет равна:

M(C n H 2n) = m(C n H 2n) / n(C n H 2n);

M(C n H 2 n) = 16,8 / 0,3 = 56 г/моль,

что соответствует формуле C 4 H 8 .

Согласно уравнению (1) n(C n H 2 n) :n(Br 2) = 1:1, т.е.

n(Br 2) = n(C n H 2 n) = 0,3 моль.

Найдем массу брома:

m(Br 2) = n(Br 2) × M(Br 2);

M(Br 2) = 2×Ar(Br) = 2×80 = 160 г/моль;

m(MnO 2) = 0,3 × 160 = 48 г.

Составим структурные формулы изомеров: бутен-1 (1), бутен-2 (2), 2-метилпропен (3), циклобутан (4).

CH 2 =CH-CH 2 -CH 3 (1);

CH 3 -CH=CH-CH 3 (2);

CH 2 =C(CH 3)-CH 3 (3);

Ответ Масса брома равна 48 г

Алкены - класс органических соединений, имеющий двойную связь между атомами углерода, структурная формула - C n H 2n . Двойная связь в молекулах олефинов - это одна σ- и одна π-связь. Таким образом, если мы представим два атома углерода и разместим их на плоскости, σ-связь будет расположена на плоскости, а π-связь будет распологаться выше и ниже плоскости (если Вы плохо представляете себе, о чём идёт речь, обратитесь к разделу химические связи).

Гибридизация

В алкенах имеет место sp 2 -гибридизация, для которой угол H-C-H составляет 120 градусов, а длина связи C=C равна 0,134 нм.

Строение

Из наличия π-связи следует, и подтверждается экспериментально, что:

  • По своему строению, двойная связь в молекулах алкенов более восприимчива к внешнему воздействию, нежели обычная σ-связь
  • Двойная связь делает невозможным вращение вокруг σ-связи, откуда следует наличие изомеров, данные изомеры называются цис- и транс-
  • π-связь менее прочна, чем σ-связь, поскольку электроны находятся дальше от центров атомов

Физические свойства

Физические свойства алкенов схожи с физическими свойствами алканов. Алкены, имеющие до пяти атомов углерода, находятся в газообразном состоянии при нормальных условиях. Молекулы с содержанием от шести до 16 атомов углерода находятся в жидком состоянии и от 17 атомов углерода - алкены находятся в твёрдом состоянии при нормальных условиях.

Температура кипения алкенов в среднем увеличивается на 30 градусов на каждую CH 2 -группу, как и у алканов, ответвления снижают температуру кипения вещества.

Наличие π-связи делает олефины слаборастворимыми в воде, что обуславливает их небольшую полярность. Алкены - неполярные вещества и растворяются в неполярных растворителях и слабо полярных растворителях.

Плотность алкенов выше, чем у алканов, но ниже чем у воды

Изомерия

  • Изомерия углеродного скелета: 1-бутен и 2-метилпропен
  • Изомерия положения двойной связи: 1-бутен и 2-бутен
  • Межклассовая изомерия: 1-бутен и циклобутан

Реакции

Характерные реакции алкенов - реакции присоединения, π-связь разрывается и образовавшиеся электроны охотно принимают новый элемент. Наличие π-связи означает большее количество энергии, поэтому, как правило, реакции присоединения носят экзотермический характер, т.е. протекают с выделением тепла.

Реакции присоединения

Присоединение галогенводородов

Галогенводороды легко присоединяются к двойной связи алкенов, формируя галогеналкил ы. Галогенводороды смешивают с уксусной кислотой, либо напрямую, в газообразном состоянии, смешивают с алкеном. Для рассмотрения механизма реакции, необходимо знать правило Марковникова.

Правило Марковникова

При взаимодествии гомологов этилена с кислотами, водород присоединяется к более гидрогенизированному атому углерода.
Исключение из правила, гидроборирование алкинов , будет рассмотрено в статье об алкинах.

Механизм реакции присоединения галогенводородов к алкенам следующий: происходит гомолитический разрыв связи в молекуле галогенводорода, образовывается протон и анион галогена. Протон присоединяется к алкену образуя карбкатион, такая реакция является эндотермической и имеет высокий уровень энергии активации, поэтому реакция происходит медленно. Образованный карбкатион очень реактивен, поэтому легко связывается с галогеном, энергия активации низкая, поэтому этот этап не тормозит реакцию.

При комнатной температуре алкены реагируют с хлором и бромом в присутствии тетрахлорметана. Механизм реакции присоединения галогенов выглядит следующим образом: электроны с π-связи воздействуют на молекулу галогена X 2 . По мере приближения галогена к олефину, электроны в молекуле галогена смещаются к более отдалённому атому, таким образом молекула галогена поляризуется, ближайший атом имеет положительный заряд, более удалённый - отрицательный. Происходит гетеролитический разрыв связи в молекуле галогена, образуется катион и анион. Катион галогена присоединяется к двум атомам углерода посредством электронной пары π-связи и свободной электронной пары катиона. Оставшийся анион галогена воздействует на один из атомов углерода в молекуле галогеналкена разрывая цикл C-C-X и образовывая дигалогеналкен.

Реакции присоединения алкенов находят два основных применения, первое - количественный анализ, определение количества двойных связей количеством поглощенных молекул X 2 . Второе - в промышленности. Производство пластика основано на винилхлориде. Трихлорэтилен и тетрахлорэтилен - отличные растворители ацетиленовых жиров и резин.

Гидрирование

Присоединение газообразного водорода к алкену происходит с катализаторами Pt, Pd или Ni. В результате реакции образуются алканы. Основное применение реакции каталитического присоединения водорода - это, во-первых, количественный анализ. По остатку молекул H 2 можно определить количество двойных связей в веществе. Во-вторых, растительные жиры и жиры рыб являются непредельными углеродами и такое гидрирование приводит к увеличению температуры плавления, преобразуя в твёрдые жиры. На данном процессе основано производство маргарина.

Гидратация

При смешивании алкенов с серной кислотой образуются алкил-гидросульфаты. При разбавлении алкил-гидросульфатов водой и сопутствующем нагревании, образуется спирт. Пример реакции - смешивание этена (этилен) с серной кислотой, последующее смешивание с водой и нагревание, результат - этанол.

Окисление

Алкены легко окисляются различными веществами, такими как, например, KMnO 4 , O 3 , OsO 4 и т.д. Существует два вида окисления алкенов: разрыв π-связи без разрыва σ-связи и разрыв σ- и π-связи. Окисление без разрыва сигма-связи называется мягким окислением, с разрывом сигма-связи - жёстким окислением.

Окисление этена без разрыва σ-связи образует эпоксиды (эпоксиды - это циклические соединения C-C-O) или двухатомные спирты. Окисление с разрывом σ-связи образует ацетоны, альдегиды и карбоновые кислоты.

Окисление перманганатом калия

Реакции окисления алкенов под воздействием перманганата калия называются были открыты Егором Вагнером и носит его имя. В реакции Вагнера, окисление происходит в органическом растворителе (ацетон или этанол) при температуре 0-10°C, в слабом растворе перманганата калия. В результате реакции образуются двуатомные спирты и обесцвечивается перманганат калия.

Полимеризация

Большинство простых алкенов могут испытывать реакции самоприсоединения, формируя таким образом большие молекулы из структурных единиц. Такие большие молекулы называются полимерами, реакция, которая позволяет получить полимер называется полимеризацией. Простые структурные единицы, образующие полимеры, называются мономерами. Полимер обозначается заключением повторяющейся группы в скобках с указанием индекса "n", что означает большое количество повторений, например: "-(CH 2 -CH 2) n -" - полиэтилен. Процессы полимеризации - основа производства пластика и волокон.

Радикальная полимеризация

Радикальная полимеризация инициируется при помощи катализатора - кислорода или пероксида. Реакция состоит из трёх этапов:

Инициация
ROOR → 2RO .
CH 2 = CH-C 6 H 5 → RO- CH 2 C . H-C 6 H 5
Рост цепи
RO- CH 2 C . H-C 6 H 5 + CH 2 =CH-C 6 H 5 → RO-CH 2 -CH(C 6 H 5)-CH 2 -C . -C 5 H 6
Обрыв цепи рекомбинацией
CH 2 -C . H-C 6 H 5 + CH 2 -C . H-C 6 H 5 → CH 2 -CH-C 6 H 5 -CH 2 -CH-C 6 H 5
Обрыв цепи диспропорционированием
CH 2 -C . H-C 6 H 5 + CH 2 -C . H-C 6 H 5 → CH=CH-C 6 H 5 + CH 2 -CH 2 -C 6 H 5

Ионная полимеризация

Другой способ полимеризации алкенов - это ионная полимеризация. Реакция протекает с образованием промежуточных продуктов - карбкатионов и карбанионов. Образование первого карбкатиона, как правило, осуществляется при помощи кислоты Льюиса, образование карбаниона происходит, соответственно, при реакции с основанием Льюиса.

A + CH 2 =CH-X → A-CH 2 -C + H-X → ... → A-CH 2 -CHX-CH 2 -CHX-CH 2 C + HX ...
B + CH 2 =CH-X → B-CH 2 -C - H-X → ... → B-CH 2 -CHX-CH 2 -CHX-CH 2 C - HX ...

Распространённые полимеры

Наиболее распространёнными полимерами являются:

Номенклатура

Название алкенов, аналогично алканам, состоит из первой части - префикса, обозначающего количество атомов углерода в главной цепи, и суффикса -ен. Алкен - соединение с двойной связью, поэтому молекулы алкена начинаются с двух атомов углерода. Первый в списке - этен, эт- - два атома углерода, -ен - наличие двойной связи.

Если в молекуле более трёх атомов углерода, то необходимо указывать позицию двойной связи, например, бутен может быть двух видов:

CH 2 =CH—CH 2 —CH 3
CH 3 —CH=CH—CH 3

Для обозначения позиции двойной связи, необходимо добавить цифру, для примера выше это будут 1-бутен и 2-бутен соответственно (также применяются названия 1-бутен и 2-бутен, но они не являются систематическими).

Наличие двойной связи влечёт за собой изомерию, когда молекулы могут находится по разные стороны от двойной связи, например:

Данная изомерия именуется цис- (Z-zusammen, с немецкого вместе) и транс- (E-entgegen, с немецкого напротив), в первом случае цис-1,2-дихлорэтен (или (Z)-1,2-дихлорэтен), во втором - транс-1,2-дихлорэтен (или (E)-1,2-дихлорэтен).

НЕПРЕДЕЛЬНЫЕ, ИЛИ НЕНАСЫЩЕННЫЕ, УГЛЕВОДОРОДЫ РЯДА ЭТИЛЕНА

(АЛКЕНЫ, ИЛИ ОЛЕФИНЫ)

Алкены , или олефины (от лат. olefiant - масло - старое название, но широко используемое в химической литературе. Поводом к такому названию послужил хлористый этилен, полученный в XVIII столетии, - жидкое маслянист вещество.) - алифатические непредельные углеводороды, в молекулах которых между углеродными атомами имеется одна двойная связь.

Алкены содержат в своей молекуле меньшее число водородных атомов, чем соответствующие им алканы (с тем же числом углеродных атомов), поэтому такие углеводороды называют непредельными или ненасыщенными.

Алкены образуют гомологический ряд с общей формулой C n H 2n

1. Гомологический ряд алкенов

С n H 2 n

алкен

Названия, суффикс ЕН, ИЛЕН

C 2 Н 4

этен , этилен

C 3 H 6

пропен

C 4 H 8

бутен

C 5 H 10

пентен

C 6 H 12

гексен

Гомологи:

С H 2 = CH 2 этен

С H 2 = CH - CH 3 пропен

С H 2 =CH-CH 2 -CH 3 бутен -1

С H 2 =CH-CH 2 -CH 2 - СН 3 пентен -1

2. Физические свойства

Этилен (этен) – бесцветный газ с очень слабым сладковатым запахом, немного легче воздуха, малорастворим в воде.

С 2 – С 4 (газы)

С 5 – С 17 (жидкости)

С 18 – (твёрдые)

· Алкены не растворяются в воде, растворимы в органических растворителях (бензин, бензол и др.)

· Легче воды

· С увеличением Mr температуры плавления и кипения увеличиваются

3. Простейшим алкеном является этилен - C 2 H 4

Структурная и электронная формулы этилена имеют вид:

В молекуле этилена подвергаются гибридизации одна s - и две p -орбитали атомов C (sp 2 -гибридизация).

Таким образом, каждый атом C имеет по три гибридных орбитали и по одной негибридной p -орбитали. Две из гибридных орбиталей атомов C взаимно перекрываются и образуют между атомами C

σ - связь. Остальные четыре гибридных орбитали атомов C перекрываются в той же плоскости с четырьмя s -орбиталями атомов H и также образуют четыре σ - связь. Две негибридные p -орбитали атомов C взаимно перекрываются в плоскости, которая расположена перпендикулярно плоскости σ - связь, т.е. образуется одна П - связь.



По своей природе П - связь резко отличается от σ - связь; П - связь менее прочная вследствие перекрывания электронных облаков вне плоскости молекулы. Под действием реагентов П - связь легко разрывается.

Молекула этилена симметрична; ядра всех атомов расположены в одной плоскости и валентные углы близки к 120°; расстояние между центрами атомов C равно 0,134 нм.

Если атомы соединены двойной связью, то их вращение невозможно без того, чтобы электронные облака П - связь не разомкнулись.

4. Изомерия алкенов

Наряду со структурной изомерией углеродного скелета для алкенов характерны, во-первых, другие разновидности структурной изомерии - изомерия положения кратной связи и межклассовая изомерия .

Во-вторых, в ряду алкенов проявляется пространственная изомерия , связанная с различным положением заместителей относительно двойной связи, вокруг которой невозможно внутримолекулярное вращение.

Структурная изомерия алкенов

1. Изомерия углеродного скелета (начиная с С 4 Н 8):

2. Изомерия положения двойной связи (начиная с С 4 Н 8):

3. Межклассовая изомерия с циклоалканами, начиная с С 3 Н 6:

Пространственная изомерия алкенов

Вращение атомов вокруг двойной связи невозможно без ее разрыва. Это обусловлено особенностями строения p-связи (p-электронное облако сосредоточено над и под плоскостью молекулы). Вследствие жесткой закрепленности атомов поворотная изомерия относительно двойной связи не проявляется. Но становится возможной цис -транс -изомерия.

Алкены, имеющие у каждого из двух атомов углерода при двойной связи различные заместители, могут существовать в виде двух пространственных изомеров, отличающихся расположением заместителей относительно плоскости p-связи. Так, в молекуле бутена-2 СН 3 –СН=СН–СН 3 группы СН 3 могут находиться либо по одну сторону от двойной связи в цис -изомере, либо по разные стороны в транс -изомере.

ВНИМАНИЕ! цис-транс - Изомерия не проявляется, если хотя бы один из атомов С при двойной связи имеет 2 одинаковых заместителя.

Например,

бутен-1 СН 2 =СН–СН 2 –СН 3 не имеет цис - и транс -изомеров, т.к. 1-й атом С связан с двумя одинаковыми атомами Н.

Изомеры цис - и транс - отличаются не только физическими

,

но и химическими свойствами, т.к. сближение или удаление частей молекулы друг от друга в пространстве способствует или препятствует химическому взаимодействию.

Иногда цис-транс -изомерию не совсем точно называют геометрической изомерией . Неточность состоит в том, что все пространственные изомеры различаются своей геометрией, а не только цис - и транс -.

5. Номенклатура

Алкены простого строения часто называют, заменяя суффикс -ан в алканах на -илен: этан - этилен, пропан - пропилен и т.д.

По систематической номенклатуре названия этиленовых углеводородов производят заменой суффикса -ан в соответствующих алканах на суффикс -ен (алкан - алкен, этан - этен, пропан - пропен и т.д.). Выбор главной цепи и порядок названия тот же, что и для алканов. Однако в состав цепи должна обязательно входить двойная связь. Нумерацию цепи начинают с того конца, к которому ближе расположена эта связь. Например:


Непредельные (алкеновые) радикалы называют тривиальными названиями или по систематической номенклатуре:

(Н 2 С=СН-)винил или этенил

(Н 2 С=CН-СН 2) аллил

Алкены вступают в разнообразные реакции, в которых образуются соединения других классов. Поэтому алкены являются важными интер-медиатами в органическом синтезе. При синтезе многих типов веществ бывает полезно получить вначале алкен и уже его превращать в требуемое соединение.

Все реакции алкенов можно условно разделить на две группы. Одну из них образуют протекающие в две стадии реакции электрофильного присоединения, другую - все прочие реакции. Мы начнем ниже рассмотрение со второй группы реакций.

Гидрирование

Алкены реагируют с газообразным водородом в присутствии катализаторов (как правило, благородных металлов). Два атома водорода присоединяются при этом по двойной связи алкена и образуется алкан. Эта реакция подробно разбиралась в гл. 3. Приведем еще два примера:

Озонолиз

Эта реакция необычна в том отношении, что в ней происходит полный разрыв двойной углерод-углеродной связи и расщепление углеродного скелета молекулы на две части. Алкен обрабатывают озоном, а затем цинковой пылью. В результате молекула алкена расщепляется по двойной связи и образуется две молекулы альдегида и (или) кетона. Из циклоалкенов образуются ациклические соединения с двумя альдегидными (или кетонными) группами:

Например:

Заметьте, что в последних двух примерах при раскрытии кольца циклоалкена образуется одна ациклическая молекула, а не две, как из ациклических алкенов.

Реакция озонолиза используется как для синтеза альдегидов и кетонов, так и для установления строения алкенов. Например, пусть при озонолизе неизвестного алкена образуется смесь двух альдегидов:

В этом случае строение алкена может быть логически установлено следующим образом. Атомы углерода, связанные в молекулах альдегидов двойными связями с атомами кислорода, были в молекуле исходного алкена связаны двойной связью между собой:

Другой пример:

Структура алкена должна быть циклической, поскольку мы должны соединить два конца одной и той же молекулы:

Окисление

Разбавленный водный раствор перманганата калия превращает алкены в диолы (гликоли). В результате этой реакции две гидроксильные группы присоединяются с одной стороны двойной связи (цис- или син-присоединение).

Поэтому из циклоалкенов образуются цис-диолы. В общем виде уравнение реакции выглядит так:

Например:

Наилучшим образом синтез диолов протекает в слабощелочной среде и мягких условиях (невысокая температура и разбавленный раствор перманганата калия). В более жестких условиях (кислый катализ, нагревание) происходит расщепление молекулы по двойной связи и образуются карбоновые кислоты.

Реакция с перманганатом калия используется не только для получения диолов, Но и служит простым тестом, позволяющим легко определять алкены. Раствор перманганата имеет интенсивную фиолетовую окраску. Если в исследуемом образце содержится алкен, то при добавлении к нему нескольких капель раствора перманганата фиолетовая окраска последнего немедленно переходит в коричневую. Такое же изменение окраски вызывают только алкины и альдегиды. Соединения большинства других классов в этих условиях не реагируют. Описанная выше процедура называется пробой Байера. Ниже показано отношение соединений различных классов к пробе Байера: положительная проба (фиолетовая окраска исчезает), отрицательная проба (фиолетовая окраска сохраняется).

Аллильное галогенирование

Если алкены подвергать свободнорадикальному галогенированию, легче всего замещаются на галоген атомы водорода при углеродном атоме, соседствующем с двойной связью. Это положение в молекуле алкена называется аллильным:

Специфическим реагентом для аллильного бромирования является -бромсукцинимид Он представляет собой твердое вещество,

с которым удобно работать в лаборатории, тогда как молекулярный бром - летучая, высокотоксичная и опасная в обращении жидкость При нагревании (иногда необходим катализ пероксидами) N-бромсукцинимид становится источником атомов брома.

Галогенирование идет в аллильное положение, так как промежуточно образующийся при этом аллильный радикал стабильнее, чем любой другой свободный радикал, который может получиться из молекулы алкена. Поэтому именно этот радикал образуется легче других. Повышенная устойчивость аллильного радикала объясняется его резонансной стабилизацией, в результате которой неспаренный электрон оказывается делокализован по двум углеродным атомам. Ниже показан механизм аллильного хлорирования:

Алкены расщепляются озоном с образованием альдегидов и кетонов, что позволяет устанавливать строение алкенов. Алкены подвергаются гидрированию с образованием алканов и окислению с образованием диолов. Кроме зтих реакций с участием двойной связи для алкенов характерно селективное галогенирование в положение, соседнее с двойной связью. Сама двойная связь при этом не затрагивается.

Электр офильное присоединение к алкенам

Реакции электрофильного присоединения, отличаясь друг от друга природой присоединяющихся по двойной связи групп, имеют одинаковый двухстадийный механизм. На первой его стадии электрофильная (обладающая сродством к электрону) частица (например, катион) притягивается -электронным облаком и присоединяется по двойной связи:

В большинстве случаев выполняется правило Марковникова - электрофил присоединяется к наиболее гидрогенизированному концу двойной связи, а нуклеофил к противоположному. Подробнее об этих реакциях идет речь в тех главах, где рассматривается образование соответствующих функциональных групп. Например, присоединение бромоводорода обсуждается в гл. 5 (там, где идет речь о синтезе галогеналканов) присоединение воды рассмотрено в гл. 7 (синтез спиртов). Здесь мы только еще раз подчеркнем роль положительно заряженных частиц, имеющих незаполненную внешнюю электронную оболочку, и их взаимодействия с -электронами. Приведем также несколько примеров:

Алкены реагируют с электрофильными реагентами, которые присоединяются по двойной связи. Реакция протекает в две стадии. Таким путем получают соединения различных классов, например галогеналканы и спирты.

Схема 6-1. Реакции электрофильного присоединения к алкенам



Последние материалы раздела:

Изменение вида звездного неба в течение суток
Изменение вида звездного неба в течение суток

Тема урока «Изменение вида звездного неба в течение года». Цель урока: Изучить видимое годичное движение Солнца. Звёздное небо – великая книга...

Развитие критического мышления: технологии и методики
Развитие критического мышления: технологии и методики

Критическое мышление – это система суждений, способствующая анализу информации, ее собственной интерпретации, а также обоснованности...

Онлайн обучение профессии Программист 1С
Онлайн обучение профессии Программист 1С

В современном мире цифровых технологий профессия программиста остается одной из самых востребованных и перспективных. Особенно высок спрос на...