Описанный четырёхугольник. Вписанные и описанные около четырехугольника окружности

Для треугольника всегда возможны и вписанная окружность и описанная окружность.

Для четырехугольника окружность можно вписать только в том случае, если суммы его противоположных сторон одинаковы. Из всех параллелограммов только в ромб и квадрат можно вписать окружность. Ее центр лежит на пересечении диагоналей.

Вокруг четырехугольника окружность можно описать только если сумма противоположных углов равна 180°. Из всех параллелограммов только около прямоугольника и квадрата можно описать окружность. Ее центр лежит на пересечении диагоналей.

Вокруг трапеции возможно описать окружность или в трапецию можно вписать окружность если трапеция равнобокая.

Центр описанной окружности

Теорема. Центр описанной около треугольника окружности является точкой пересечениясерединных перпендикуляров к сторонам треугольника.

Центр описанной около многоугольника окружности является точкой пересечения серединных перпендикуляров к сторонам этого многоугольника.

Центр Вписанная окружность

Определение . Вписанная в выпуклый многоугольник окружность - это окружность, которая касается всех сторон этого многоугольника (то есть каждая из сторон многоугольника является для окружностикасательной).

Центр вписанной окружности лежит внутри многоугольника.

Многоугольник, в который вписана окружность, называется описанным.

В выпуклый многоугольник можно вписать окружность, если биссектрисы всех его внутренних углов пересекаются в одной точке.

Центр вписанной в многоугольник окружности - точка пересечения его биссектрис.

Центр вписанной окружности равноудален от сторон многоугольника. Расстояние от центра до любой стороны равно радиусу вписанной окружности По свойству касательных, проведённых из одной точки, любая вершина описанного многоугольника равноудалена от точек касания, лежащих на сторонах, выходящих из этой вершины.

В любой треугольник можно вписать окружность. Центр вписанной в треугольник окружности называется инцентром.

В выпуклый четырехугольник можно вписать окружность тогда и только тогда, когда суммы длин его противолежащих сторон равны. В частности, в трапецию можно вписать окружность, если сумма её оснований равна сумме боковых сторон.

В любой правильный многоугольник можно вписать окружность. Около любого правильного многоугольника можно также описать окружность. Центр вписанной и описанной окружностей лежат в центре правильного многоугольника.



Для любого описанного многоугольника радиус вписанной окружности может быть найден по формуле

Где S - площадь многоугольника, p - его полупериметр.

Правильный n-угольник - формулы

Формулы длины стороны правильного n-угольника

1. Формула стороны правильного n-угольника через радиус вписанной окружности:

2. Формула стороны правильного n-угольника через радиус описанной окружности:

Формула радиуса вписанной окружности правильного n-угольника

Формула радиуса вписанной окружности n-угольника через длину стороны:

4. Формула радиуса описанной окружности правильного треугольника через длину стороны:

6. Формула площади правильного треугольника через радиус вписанной окружности: S = r 2 3√3

7. Формула площади правильного треугольника через радиус описанной окружности:

4. Формула радиуса описанной окружности правильного четырехугольника через длину стороны:

2. Формула стороны правильного шестиугольника через радиус описанной окружности: a = R

3. Формула радиуса вписанной окружности правильного шестиугольника через длину стороны:

6. Формула площади правильного шестиугольника через радиус вписанной окружности: S = r 2 2√3

7. Формула площади правильного шестиугольника через радиус описанной окружности:

S = R 2 3√3

8. Угол между сторонами правильного шестиугольника: α = 120°

Значение числа (произносится «пи» ) - математическая константа, равная отношению

длины окружности к длине её диаметра, оно выражается бесконечной десятичной дробью.

Обозначается буквой греческого алфавита «пи». Чему равно число пи? В простых случаях хватает знать первые 3 знака (3,14).

53. Найдем длину дуги окружности радиуса R, отвечающей центральному углу в n°

Центральный угол, опирающийся на дугу, длина которой равна радиусу окружности, называется углом в 1 радиан.

Градусная мера угла в 1 радиан равна:

Так как дуга длиной π R (полуокружность), стягивает центральный угол в 180° , то дуга длиной R, стягивает угол в π раз меньший, т.е.

И наоборот

Так как π = 3,14, то 1 рад = 57,3°

Если угол содержит a радиан, то его градусная мера равна

И наоборот

Обычно при обозначении меры угла в радианах наименование «рад» опускают.

Например, 360° = 2π рад, пишут 360° = 2π

В таблице указаны наиболее часто встречающиеся углы в градусной и радианной мере.

Вам понадобится

  • - четырехугольник с заданными параметрами;
  • - циркуль;
  • - линейка;
  • - транспортир;
  • - калькулятор;
  • - лист бумаги.

Инструкция

Измерьте все углы данного вам четырехугольника. Найдите суммы противолежащих углов. Вписать четырехугольник в окружность можно только в том случае, если суммы противоположных углов равны 180°. Таким образом, построить описанную окружность всегда можно вокруг квадрата, и трапеции.

Начертите окружность с радиусом R. Определите ее центр. Как , он обозначается О. Найдите на самой окружности произвольную точку и назовите ее любой буквой. Допустим, это будет точка А. Ваши дальнейшие действия от того, именно четырехугольник вам дан. У квадрата диагонали перпендикулярны друг другу и являются радиусами описанной окружности. Поэтому постройте два диаметра, угол между которыми составляет 90°. Точки их пересечения с окружность ю последовательно соедините прямыми линиями.

Чтобы вписать прямоугольник, вам нужно знать угол между диагоналями или же размеры сторон. Во втором случае угол можно будет , использовав теоремы Пифагора, синусов или косинусов. Проведите один из диаметров. Обозначьте его, например, точками А и С. От точки О, которая одновременно является и серединой диагонали, отложите угол между диагоналями. Через центр и новую точку проведите второй диаметр. Точно так же, как и в случае с квадратом, соедините последовательно точки пересечения диаметров с окружность ю.

Для построения равнобедренной трапеции найдите на окружности произвольную точку. Постройте от нее хорду, равную верхнему или нижнему основанию. Найдите ее середину и проведите через нее и центр окружности диаметр, перпендикулярный . Отложите на диаметре высоты трапеции. Через эту точку проведите перпендикуляр в обе стороны до пересечения с окружность ю. Соедините попарно концы .

Полезный совет

При построении вписанных многоугольников в программе AutoCAD сначала найдите в главном меню выпадающее окно "Рисование", а в нем - функцию "Многоугольник". Количество сторон квадрата выставляется сразу. После того, как он появится на экране, перейдите к функции "Вписанный/описанный многоугольник". Нужное построение тут же появится на экране.

Для построения в этой программе трапеции или прямоугольника найдите координаты точки пересечения диагоналей. Она же будет являться и центром описанной окружности.

Трапецией называют плоскую четырехугольную фигуру, две стороны которой (основания) параллельны, а две другие (боковые стороны) обязательно должны быть не параллельны. Если все четыре вершины трапеции лежат на одной окружности, этот четырехугольник называется вписанным в нее. Построить такую фигуру несложно.

Вам понадобится

  • Бумага, карандаш, угольник, циркуль.

Инструкция

Если никаких дополнительных требований к вписанной трапеции нет, вы можете стороны любой длины. Поэтому начните построение с произвольной , например, в нижней левой четверти . Обозначьте ее буквой А - здесь будет одна из вершин вписанной в окружность трапеции.

Проведите горизонтальную линию, начинающуюся в А и заканчивающуюся в месте пересечения с окружность ю в нижней правой . Это место пересечение обозначьте буквой В. Построенный отрезок АВ - это нижнее основание трапеции.

Любым удобным способом начертите параллельный нижнему основанию отрезок, выше центра . Например, если в вашем распоряжении есть , это можно сделать так: приложите его к основанию АВ и начертите вспомогательную перпендикулярную линию. Затем приложите инструмент к вспомогательной линии выше центра круга и начертите перпендикуляры в обе стороны от нее, заканчивая каждый на пересечении с окружность ю. Эти два перпендикуляра должны лежать на одной и тогда они образуют верхнее основание трапеции. Левую крайнюю точку этого основания обозначьте буквой D, а правую - буквой С.

Если угольника нет, но есть циркуль, то построение верхнего основания будет еще проще. Поставьте на левой верхней четверти окружности произвольную точку. Единственное условие - она не должна располагаться строго вертикально над точкой А, иначе построенная фигура будет квадратом. Обозначьте точку буквой D и отложите на циркуле расстояние между точками А и D. Затем установите циркуль в точку В и в правой верхней четверти окружности отметьте точку, соответствующую отложенному расстоянию. Обозначьте ее буквой С и начертите верхнее основание, соединив точки D и С.

Начертите боковые стороны вписанной трапеции, проведя отрезки АD и ВС.

Видео по теме

Согласно определению, описанная окружность должна проходить через все вершины углов заданного многоугольника. При этом совершенно неважно, что это за многоугольник - треугольник, квадрат, прямоугольник, трапеция или что-то иное. Также не играет роли, правильный или неправильный это многоугольник. Необходимо лишь учитывать, что существуют многоугольники, вокруг которых окружность описать нельзя. Всегда можно описать окружность вокруг треугольника. Что касается четырехугольников, то окружность можно описать около квадрата или прямоугольника или равнобедренной трапеции.

Вам понадобится

  • Заданный многоугольника
  • Линейка
  • Угольник
  • Карандаш
  • Циркуль
  • Транспортир
  • Таблицы синусов и косинусов
  • Математические понятия и формулы
  • Теорема Пифагора
  • Теорема синусов
  • Теорема косинусов
  • Признаки подобия треугольников

Инструкция

Постройте многоугольник с заданными параметрами и , можно ли описать вокруг него окружность . Если вам дан четырехугольник, посчитайте суммы его противоположных углов. Каждая из них должна равняться 180°.

Для того, чтобы описать окружность , нужно вычислить ее радиус. Вспомните, где лежит центр окружности в разных многоугольниках. В треугольнике он в точке пересечения всех высот данного треугольника. В квадрате и прямоугольники - в точке пересечения диагоналей, для трапеции- в точке пересечения оси симметрии к линии, соединяющей середины боковых сторон, а для любого другого выпуклого многоугольника - в точке пересечения серединных перпендикуляров к сторонам.

Диаметр окружности, описанной вокруг квадрата и прямоугольника, вычислите по теореме Пифагора. Он будет равняться квадратному корню из суммы квадратов сторон прямоугольника. Для квадрата, у которого все стороны равны, диагональ равна квадратному корню из удвоенного квадрата стороны. Разделив диаметр на 2, получаете радиус.

Вычислите радиус описанной окружности для треугольника. Поскольку параметры треугольника заданы в условиях, вычислите радиус по формуле R = a/(2·sinA), где а - одна из сторон треугольника, ? - противолежащий ей угол. Вместо этой стороны можно взять сторону и противолежащий ей угол.

Вычислите радиус окружности, описанной вокруг трапеции. R = a*d*c / 4 v(p*(p-a)*(p-d)*(p-c)) В этой формуле a и b - известные по условиям основания трапеции, h - высота, d - диагональ, p = 1/2*(a+d+c) . Вычислите недостающие значения. Высоту можно вычислить по теореме синусов или косинусов, длины сторон трапеции и углы заданы в условиях . Зная высоту и учитывая подобия треугольников, вычислите диагональ. После этого останется вычислить радиус по указанной выше формуле.

Видео по теме

Полезный совет

Чтобы вычислить радиус окружности, описанной вокруг другого многоугольника, выполните ряд дополнительных построений. Получите более простые фигуры, параметры которых вам известны.

Задача вписать в окружность многоугольник нередко может поставить взрослого человека в тупик. Ребенку-школьнику необходимо объяснить ее решение, поэтому родители отправляются в серфинг по всемирной паутине в поисках решения.

Инструкция

Начертите окружность . Поставьте иголку циркуля на сторону окружности, при этом радиус не изменяйте. Проводите две дуги, перекрещивающие окружность , поворачивая циркуль вправо и влево.

Переместите иголку циркуля по окружности в точку пересечения с ней дуги. Снова поворачиваете циркуль и прочерчиваете еще две дуги, пересекая контур окружности. Данную процедуру повторяете до пересечения с первой точкой.

Нарисуйте окружность . Проведите диаметр через ее центр, линии должна быть горизонтальной. Постройте перпендикуляр к через центр окружности, получите вертикальную линию (СВ, например).

Разделите радиус пополам. Отметьте эту точку на линии диаметра (обозначьте ее А). Постройте окружность с центром в точке А и радиусом АС. При пересечении с горизонтальной линией вы получите еще одну точку (D, например). В результате отрезок СD будет являться стороной пятиугольника, который требуется вписать.

Откладывайте полуокружности, радиус которых равен CD, по контуру окружности. Таким образом, исходная окружность будет поделена на пять равных частей. Соедините точки линейкой. Задача по вписыванию пятиугольника в окружность также выполнена.

Далее описывается по вписыванию в окружность квадрата. Проведите линию диаметра . Возьмите транспортир. Поставьте его в точку пересечения диаметра со стороной окружности. Растворите циркуль на длину радиуса.

Проведите две дуги до пересечения с окружность ю, поворачивая циркуль в одну и другую сторону. Переставьте ножку циркуля в противоположную точку и проведите еще две дуги тем же раствором. Соедините полученные точки.

Возведите диаметр в квадрат, разделите на два и извлеките корень. В итоге получите сторону квадрата, который легко впишется в окружность . Растворите циркуль на эту длину. Ставьте его иголку на окружность и рисуйте дугу, пересекающую одну сторону окружности. Перемещайте ножку циркуля в полученную точку. Снова проведите дугу.

Повторите процедуру и нарисуйте еще две точки. Соедините все четыре точки. Это более простой способ вписать квадрат в окружность .

Рассмотрите задачу по вписыванию в окружность . Нарисуйте окружность . Возьмите точку произвольно на окружности - она будет вершиной треугольника. От этой точки, сохраняя циркуля, проведите дугу до пересечения с окружность ю. Это будет вторая вершина. Из нее аналогичным способом постройте третью вершину. Соедините точки линейкой. Решение найдено.

Видео по теме

Вписать квадрат в окружность легко можно с помощью чертежных инструментов. Но эта задача решается даже при полном их отсутствии. Необходимо только помнить некоторые свойства квадрата.

Вам понадобится

  • -циркуль
  • -карандаш
  • -угольник
  • -ножницы

Инструкция

Нарисуйте к задаче. Очевидно, что диаметр окружности является диагональю вписанного в эту . Вспомните известное свойство квадрата: его диагонали взаимно перпендикулярны. Используйте эту взаимосвязь диагоналей при построении заданного квадрата.

Начертите в окружности диаметр. Из центра с помощью угольника проведите второй диаметр под углом 90 градусов к первому. Соедините точки пересечения перпендикулярных диаметров с окружностью и получите вписанный в эту окружность квадрат.

Если из чертежных инструментов у вас имеется только циркуль, начертите окружность. Отметьте на окружности произвольную точку и проведите через нее диаметр с помощью с ровным краем. Теперь нужно с помощью циркуля разделить половину окружности между концами диаметра на две равные части. Из точек пересечения диаметра с окружностью сделайте две засечки, сохраняя неизменным раствор циркуля. Через точку пересечения этих засечек и центр окружности проведите второй диаметр. Очевидно, что он будет перпендикулярен первому.

Если чертежных инструментов у вас нет, можно вырезать круг, ограниченный заданной окружностью. Сложите вырезанную фигуру точно пополам. Повторите операцию. Нужно совместить концы линии сгиба, тогда криволинейные участки совпадут без дополнительных усилий. Зафиксируйте линии сложения. Теперь разверните круг. Линии сгибов отчетливо видны. Загните сегменты круга между точками пересечения линий сгибов с окружностью и отрежьте эти сегменты. Линии отреза являются сторонами искомого квадрата. Поместите вырезанный квадрат в заданную окружность, совместив ее центр с точкой пересечения линий сгиба круга. Вершины квадрата окажутся лежащими на окружности, что и требовалось выполнить.

Окружность называется вписанной в многоугольник, если она полностью размещается внутри этого многоугольника. Каждая сторона описанной фигуры имеет с окружностью общую точку.

Материал из Википедии - свободной энциклопедии

  • В евклидовой геометрии , вписанный четырехугольник - это четырехугольник, у которого все вершины лежат на одной окружности. Эта окружность называется описанной окружностью четырехугольника, а вершины, как говорят, лежат на одной окружности. Центр этой окружности и ее радиус называются соответственно центром и радиусом описанной окружности. Другие термины для этого четырехугольника: четырехугольник лежит на одной окружности , стороны последнего четырехугольника являются хордами окружности. Обычно предполагается, что выпуклый четырехугольник является выпуклым четырехугольником. Формулы и свойства, приведенные ниже, действительны в выпуклом случае.
  • Говорят, что если около четырёхугольника можно описать окружность , то четырёхугольник вписан в эту окружность , и наоборот.

Общие критерии вписанности четырехугольника

  • Около выпуклого четырёхугольника \pi радиан), то есть:
\angle A+\angle C = \angle B + \angle D = 180^\circ

или в обозначениях рисунка:

\alpha + \gamma = \beta + \delta = \pi = 180^{\circ}.

  • Можно описать окружность около любого четырехугольника, у которого пересекаются в одной точке четыре серединных перпендикуляра его сторон (или медиатрисы его сторон, то есть перпендикуляры к сторонам, проходящие через их середины).
  • Можно описать окружность около любого четырехугольника, у которого один внешний угол, смежный с данным внутренним углом , точно равен другому внутреннему углу, противолежащему данному внутреннему углу . По сути это условие есть условие антипараллельности двух противоположных сторон четырехугольника. На рис. ниже показан внешний и смежный с ним внутренний углы зеленого пятиугольника.
\displaystyle AX\cdot XC = BX\cdot XD.
  • Пересечение X может быть внутренним или внешним по отношению к кругу. В первом случае получим вписанный четырехугольник является ABCD , а в последнем случае получим вписанный четырехугольник ABDC . При пересечении внутри круга, равенство гласит, что произведение длин сегментов, в котором точка X делит одну диагональ, равна произведению длин сегментов, в котором точка X делит другую диагональ. Это условие известно, как "теорема о пересекающихся хордах". В нашем случае диагонали вписанного четырехугольника являются хордами окружности.
  • Еще один критерий вписанности. Выпуклый четырехугольник ABCD вписан круг тогда и только тогда, когда
\tan{\frac{\alpha}{2}}\tan{\frac{\gamma}{2}}=\tan{\frac{\beta}{2}}\tan{\frac{\delta}{2}}=1.

Частные критерии вписанности четырехугольника

Вписанный простой (без самопересечений) четырёхугольник является выпуклым . Около выпуклого четырёхугольника можно описать окружность тогда и только тогда, когда сумма его противоположных углов равна 180° (\pi радиан). Можно описать окружность около:

  • любого антипараллелограмма
  • любого прямоугольника (частный случай квадрат)
  • любой равнобедренной трапеции
  • любого четырехугольника, у которого два противоположных угла прямые.

Свойства

Формулы с диагоналями

ef=ac+bd; \frac{e}{f} = \frac{a\cdot d+b\cdot c}{a\cdot b+c\cdot d}.

В последней формуле пары смежных сторон числителя a и d , b и c опираются своими концами на диагональ длиной e . Аналогичное утверждение имеет место для знаменателя.

  • Формулы для длин диагоналей (следствия ):
e = \sqrt{\frac{(ac+bd)(ad+bc)}{ab+cd}} и f = \sqrt{\frac{(ac+bd)(ab+cd)}{ad+bc}}

Формулы с углами

Для вписанного четырехугольника с последовательностью сторон a , b , c , d , с полупериметром p и углом A между сторонами a и d , тригонометрические функции угла A даются формулами

\cos A = \frac{a^2 + d^2 - b^2 - c^2}{2(ad + bc)}, \sin A = \frac{2\sqrt{(p-a)(p-b)(p-c)(p-d)}}{(ad+bc)}, \tan \frac{A}{2} = \sqrt{\frac{(p-a)(p-d)}{(p-b)(p-c)}}.

Угол θ между диагоналями есть :p.26

\tan \frac{\theta}{2} = \sqrt{\frac{(p-b)(p-d)}{(p-a)(p-c)}}.

  • Если противоположные стороны a и c пересекаются под углом φ , то он равен
\cos{\frac{\varphi}{2}}=\sqrt{\frac{(p-b)(p-d)(b+d)^2}{(ab+cd)(ad+bc)}},

где p есть полупериметр . :p.31

Радиус окружности, описанной около четырёхугольника

Формула Парамешвара (Parameshvara)

Если четырехугольник с последовательными сторонами a , b , c , d и полупериметром p вписан окружность, то ее радиус равен по формуле Парамешвара :p. 84

R= \frac{1}{4} \sqrt{\frac{(ab+cd)(ad+bc)(ac+bd)}{(p-a)(p-b)(p-c)(p-d)}}.

Она была получена индийским математиком Парамешваром в 15 веке (ок. 1380–1460 гг.)

  • Выпуклый четырёхугольник (см. рис. справа), образованный четырьмя данными прямыми Микеля , вписан в окружность тогда и только тогда, когда точка Микеля M четырёхугольника лежит на прямой, соединяющей две из шести точек пересечения прямых (те, которые не являются вершинами четырёхугольника). То есть, когда M лежит на EF .

Критерий того, что четырехугольник, составленный из двух треугольников, вписан в некоторую окружность

f^2 = \frac{(ac+bd)(ad+bc)}{(ab+cd)}.
  • Последнее условие дает выражение для диагонали f четырёхугольника, вписанного в окружность, через длины четырех его сторон (a , b , c , d ). Эта формула немедленно следует при перемножении и при приравнивании друг другу левых и правых частей формул, выражающих суть первой и второй теорем Птолемея (см.выше).

Критерий того, что четырехугольник, отрезанный прямой линией от треугольника, вписан в некоторую окружность

  • Прямая, антипараллельная стороне треугольника и пересекающая его, отсекает от него четырёхугольник, около которого всегда можно описать окружность.
  • Следствие. Около антипараллелограмма , у которого две противоположные стороны антипараллельны, всегда можно описать окружность.

Площадь вписанного в окружность четырёхугольника

Варианты формулы Брахмагупты

S=\sqrt{(p-a)(p-b)(p-c)(p-d)}, где p - полупериметр четырёхугольника. S= \frac{1}{4} \sqrt{- \begin{vmatrix}

a & b & c & -d \\ b & a & -d & c \\ c & -d & a & b \\ -d & c & b & a \end{vmatrix}}

Другие формулы площади

S = \tfrac{1}{2}(ab+cd)\sin{B} S = \tfrac{1}{2}(ac+bd)\sin{\theta},

где θ любой из углов между диагоналями. При условии, что угол A не является прямым, площадь также может быть выражена как :p.26

S = \tfrac{1}{4}(a^2-b^2-c^2+d^2)\tan{A}. \displaystyle S=2R^2\sin{A}\sin{B}\sin{\theta},

где R есть радиус описанной окружности . Как прямое следствие имеем неравенство

S\le 2R^2,

где равенство возможно тогда и только тогда, когда этот четырехугольник является квадратом.

Четырехугольники Брахмагупты

Четырехугольник Брахмагупты является четырехугольником, вписанным в окружность, с целыми значениями длин сторон, целыми значениями его диагоналей и с целым значением его площади. Все возможные четырехугольники Брахмагупты со сторонами a , b , c , d , с диагоналями e , f , с площадью S , и радиусом описанной окружности R могут быть получены путем освобождения от знаменателей следующих выражений, включающих рациональные параметры t , u , и v :

a= b=(1+u^2)(v-t)(1+tv) c=t(1+u^2)(1+v^2) d=(1+v^2)(u-t)(1+tu) e=u(1+t^2)(1+v^2) f=v(1+t^2)(1+u^2) S=uv 4R=(1+u^2)(1+v^2)(1+t^2).

Примеры

  • Частными четырёхугольниками, вписанными в окружность, являются: прямоугольник , квадрат , равнобедренная или равнобочная трапеция , антипараллелограмм .

Четырехугольники, вписанные в окружность с перпендикулярными диагоналями (вписанные ортодиагональные четырехугольники)

Свойства четырехугольников, вписанных в окружность с перпендикулярными диагоналями

Радиус описанной окружности и площадь

У четырехугольника, вписанного в окружность с перпендикулярными диагоналями, предположим, что пересечение диагоналей делит одну диагональ на отрезки длины p 1 и p 2 , а другую диагональ делит на отрезки длины q 1 и q 2 . Тогда (Первое равенство является Предложением 11 у Архимеда " Книга лемм )

D^2=p_1^2+p_2^2+q_1^2+q_2^2=a^2+c^2=b^2+d^2,

где D - диаметр cокружности . Это справедливо, потому что диагонали перпендикулярны хорды окружности . Из этих уравнений следует, что радиус описанной окружности R может быть записан в виде

R=\tfrac{1}{2}\sqrt{p_1^2+p_2^2+q_1^2+q_2^2}

или в терминах сторон четырехугольника в виде

R=\tfrac{1}{2}\sqrt{a^2+c^2}=\tfrac{1}{2}\sqrt{b^2+d^2}.

Отсюда также следует, что

a^2+b^2+c^2+d^2=8R^2.

  • Для вписанных ортодиагональных четырехугольников справедлива теорема Брахмагупты :

Если вписанный четырёхугольник имеет перпендикулярные диагонали, пересекающиеся в точке M, то две пары его антимедиатрис проходят через точку M.

Замечание . В этой теореме под антимедиатрисой понимают отрезок FE четырехугольника на рисунке справа (по аналогии с серединным перпендикуляром (медиатрисой) к стороне треугольника). Он перпендикулярен одной стороне и одновременно проходит через середину противоположной ей стороны четырехугольника.

Напишите отзыв о статье "Четырехугольники, вписанные в окружность"

Примечания

  1. Bradley, Christopher J. (2007), The Algebra of Geometry: Cartesian, Areal and Projective Co-Ordinates , Highperception, с. 179, ISBN 1906338000 , OCLC
  2. . Вписанные четырёхугольники.
  3. Siddons, A. W. & Hughes, R. T. (1929), Trigonometry , Cambridge University Press, с. 202, OCLC
  4. Durell, C. V. & Robson, A. (2003), , Courier Dover, ISBN 978-0-486-43229-8 ,
  5. Alsina, Claudi & Nelsen, Roger B. (2007), "", Forum Geometricorum Т. 7: 147–9,
  6. Johnson, Roger A., Advanced Euclidean Geometry , Dover Publ., 2007 (orig. 1929).
  7. Hoehn, Larry (March 2000), "Circumradius of a cyclic quadrilateral", Mathematical Gazette Т. 84 (499): 69–70
  8. .
  9. Altshiller-Court, Nathan (2007), College Geometry: An Introduction to the Modern Geometry of the Triangle and the Circle (2nd ed.), Courier Dover, сс. 131, 137–8, ISBN 978-0-486-45805-2 , OCLC
  10. Honsberger, Ross (1995), , Episodes in Nineteenth and Twentieth Century Euclidean Geometry , vol. 37, New Mathematical Library, Cambridge University Press, сс. 35–39, ISBN 978-0-88385-639-0
  11. Weisstein, Eric W. (англ.) на сайте Wolfram MathWorld .
  12. Bradley, Christopher (2011), ,
  13. .
  14. Coxeter, Harold Scott MacDonald & Greitzer, Samuel L. (1967), , Geometry Revisited , Mathematical Association of America, сс. 57, 60, ISBN 978-0-88385-619-2
  15. .
  16. Andreescu, Titu & Enescu, Bogdan (2004), , Mathematical Olympiad Treasures , Springer, сс. 44–46, 50, ISBN 978-0-8176-4305-8
  17. .
  18. Buchholz, R. H. & MacDougall, J. A. (1999), "", Bulletin of the Australian Mathematical Society Т. 59 (2): 263–9, DOI 10.1017/S0004972700032883
  19. .
  20. Johnson, Roger A., Advanced Euclidean Geometry , Dover Publ. Co., 2007
  21. , с. 74.
  22. .
  23. .
  24. .
  25. Peter, Thomas (September 2003), "Maximizing the area of a quadrilateral", The College Mathematics Journal Т. 34 (4): 315–6
  26. Prasolov, Viktor, ,
  27. Alsina, Claudi & Nelsen, Roger (2009), , , Mathematical Association of America, с. 64, ISBN 978-0-88385-342-9 ,
  28. Sastry, K.R.S. (2002). «» (PDF). Forum Geometricorum 2 : 167–173.
  29. Posamentier, Alfred S. & Salkind, Charles T. (1970), , Challenging Problems in Geometry (2nd ed.), Courier Dover, сс. 104–5, ISBN 978-0-486-69154-1
  30. .
  31. .
  32. .

См. также

Видеокурс «Получи пятерку» включает все темы, необходимые для успешной сдачи ЕГЭ по математике на 60-65 баллов. Полностью все задачи 1-13 Профильного ЕГЭ по математике. Подходит также для сдачи Базового ЕГЭ по математике. Если вы хотите сдать ЕГЭ на 90-100 баллов, вам надо решать часть 1 за 30 минут и без ошибок!

Курс подготовки к ЕГЭ для 10-11 класса, а также для преподавателей. Все необходимое, чтобы решить часть 1 ЕГЭ по математике (первые 12 задач) и задачу 13 (тригонометрия). А это более 70 баллов на ЕГЭ, и без них не обойтись ни стобалльнику, ни гуманитарию.

Вся необходимая теория. Быстрые способы решения, ловушки и секреты ЕГЭ. Разобраны все актуальные задания части 1 из Банка заданий ФИПИ. Курс полностью соответствует требованиям ЕГЭ-2018.

Курс содержит 5 больших тем, по 2,5 часа каждая. Каждая тема дается с нуля, просто и понятно.

Сотни заданий ЕГЭ. Текстовые задачи и теория вероятностей. Простые и легко запоминаемые алгоритмы решения задач. Геометрия. Теория, справочный материал, разбор всех типов заданий ЕГЭ. Стереометрия. Хитрые приемы решения, полезные шпаргалки, развитие пространственного воображения. Тригонометрия с нуля - до задачи 13. Понимание вместо зубрежки. Наглядное объяснение сложных понятий. Алгебра. Корни, степени и логарифмы, функция и производная. База для решения сложных задач 2 части ЕГЭ.



Последние материалы раздела:

Изменение вида звездного неба в течение суток
Изменение вида звездного неба в течение суток

Тема урока «Изменение вида звездного неба в течение года». Цель урока: Изучить видимое годичное движение Солнца. Звёздное небо – великая книга...

Развитие критического мышления: технологии и методики
Развитие критического мышления: технологии и методики

Критическое мышление – это система суждений, способствующая анализу информации, ее собственной интерпретации, а также обоснованности...

Онлайн обучение профессии Программист 1С
Онлайн обучение профессии Программист 1С

В современном мире цифровых технологий профессия программиста остается одной из самых востребованных и перспективных. Особенно высок спрос на...