Определение кратного интеграла. Кратный интеграл

Скачать с Depositfiles

Лекции 5-6

Тема2. Кратные интегралы.

Двойной интеграл.

Контрольные вопросы.

1. Двойной интеграл, его геометрический и физический смысл

2. Свойства двойного интеграла.

3. Вычисление двойного интеграла в декартовых координатах.

4. Замена переменных в двойном интеграле. Вычисление двойного интеграла в полярных координатах.

Пусть функция z = f (x , y ) определена в ограниченной замкнутой области D плоскости. Разобьём область D произвольным образом на n элементарных замкнутых областей 1 , … , n , имеющих площади  1 , …, n и диаметры d 1 , …, d n соответственно. Обозначим d наибольший из диаметров областей 1 , … , n . В каждой области k выберем произвольную точку P k (x k ,y k ) и составим интегральную сумму функции f (x,y )

S =
(1)

Определение. Двойным интегралом функции f (x,y ) по области D называется предел интегральной суммы


, (2)

если он существует.

Замечание. Интегральная сумма S зависит от способа разбиения области D и выбора точек P k (k =1, …, n ). Однако, предел
, если он существует, не зависит от способа разбиения области D и выбора точек P k .

Достаточное условие существования двойного интеграла. Двойной интеграл (1) существует, если функция f (x,y ) непрерывна в D за исключением конечного числа кусочно-гладких кривых и ограничена в D . В дальнейшем будем считать, что все рассматриваемые двойные интегралы существуют.

Геометрический смысл двойного интеграла.

Если f (x,y ) ≥0 в области D , то двойной интеграл (1) равен объему «цилиндрического” тела, изображенного на рисунке:

V =
(3)

Цилиндрическое тело ограничено снизу областью D , сверху  частью поверхности z = f (x , y ), с боков  вертикальными отрезками прямых, соединяющих границы этой поверхности и области D.

Физический смысл двойного интеграла. Масса плоской пластины.

Пусть задана плоская пластина D с известной функцией плотности γ(х, у ), тогда разбивая пластину D на части D i и выбирая произвольные точки
, получим для массы пластины
, или, сравнивая с формулой (2):




(4)

4. Некоторые свойства двойного интеграла.

    Линейность. Если С числовая константа, то

    Аддитивность. Если область D « разбита” на области D 1 и D 2 , то

3) Площадь ограниченной области D равна


(5)

Вычисление двойного интеграла в декартовых координатах.

Пусть задана область


Рисунок 1

D = { (x , y ): a ≤ x ≤ b , φ 1 (x ) ≤ y≤ φ 2 (x ) } (6)

Область D заключена в полосе между прямыми x = a , y = b , снизу и сверху ограничена соответственно кривыми y = φ 1 (x ) и y = φ 2 (x ) .

Двойной интеграл (1) по области D (4) вычисляется переходом к повторному интегралу:


(7)

Этот повторный интеграл вычисляется следующим образом. Сначала вычисляется внутреннийинтеграл


по переменной y , п ри этомx считаетсяпостоянной. В результате получится функция от переменной x , а затем вычисляется « внешний” интеграл от этой функции по переменной x .

Замечание. Процесс перехода к повторному интегралу по формуле (7) часто называют расстановкой пределов интегрирования в двойном интеграле. При расстановке пределов интегрирования нужно помнить два момента. Во-первых, нижний предел интегрирования не должен превышать верхнего, во-вторых, пределы внешнего интеграла должны быть константами, а внутреннего должны в общем случае зависеть от переменной интегрирования внешнего интеграла.

Пусть теперь область D имеет вид

D = { (x , y ) : c ≤ y ≤ d , ψ 1 (y ) ≤ x ≤ ψ 2 (y ) } . (8)

Тогда


. (9)

Предположим, что область D можно представить в виде (6) и (8) одновременно. Тогда имеет место равенство


(10)

Переход од одного повторного интеграла к другому в равенстве (10) называется изменением порядка интегрирования в двойном интеграле.


Примеры.

1) Изменить порядок интегрирования в интеграле


Решение. По виду повторного интеграла находим область

D = { (x , y ): 0 ≤ x ≤ 1, 2 x ≤ y≤ 2 } .

Изобразим область D . По рисунку видим, что эта область расположена в горизонтальной полосе между прямыми y =0, y =2 и между линиями x =0 и x = D

Иногда для упрощения вычислений делают замену переменных:


,
(11)

Если функции (11) непрерывно дифференцируемы и определитель (Якобиан) отличен от нуля в рассматриваемой области:


(12)

Жордана и - разбиение множества Е, т. е. такая система измеримых по Жордану множеств E i , что Величину

где d(E i ) - диаметр множества Е i , наз. мелкостью разбиения Если определена на множестве Е, то всякую сумму вида

наз. интегральной суммой Римана функции f. Если для функции f существует независящий от разбиения, то этот наз. n-к ратным интегралом Римана и обозначают


Саму функцию fназ. в этом случае интегрируемой по Риману, короче - R-интегрируемой.

В случае n=1 в качестве множества Е, по к-рому производится , обычно берется , а в качестве его разбиений t рассматриваются разбиения, состоящие также только из отрезков (см. Римана интеграл ). Таким образом, в этом случае как множество, по к-рому производится интегрирование, так и элементы разбиения представляют собой измеримые по Жордану множества весьма специального вида --отрезки. Поэтому не все свойства R-интегрируемых на отрезке функций справедливы для функций Д-интегрируемых на произвольных измеримых по Жордану множествах. Напр., из того, что любая функция, определенная на множестве жордановой меры , Д-интегрируема на нем, следует, что Д-интегрируемые функции могут быть неограниченными, это невозможно для Д-интегрируемых функций на отрезках. Чтобы из Д-интегрируемости функции на нек-ром множестве следовала ограниченность функции, на рассматриваемое множество налагают дополнительные условия, напр, чтобы у него существовали сколь угодно мелкие разбиения, все элементы к-рых имеют положительную меру Жордана. К таким множествам относятся все измеримые по Жордану открытые множества и их замыкания, в частности измеримые по Жордану области и их замыкания. Имеь-но для таких множеств большей частью и используется кратный интеграл Римана.

В случае n=2 (n=3) К. и. наз. двойным (т р о й н ы м). Поскольку кратный интеграл Римана можно брать только по множествам, измеримым по Жордану (в случае n=2 они наз. также квадрируемыми, а при n=3 - кубируемыми множествами), то двойной (тройной) интеграл Римана рассматривают только на множествах (обычно областях или их замыканиях), границы к-рых имеют площади (объемы) в смысле Жордана, равные нулю.

Интеграл Римана от ограниченных функций n переменных обладает обычными свойствами интеграла (линейность, относительно множеств, по к-рым производится интегрирование, сохранение при интегрировании нестрогих неравенств, интегрируемость произведения интегрируемых функций и т. п.).

Кратный интеграл Римана может быть сведен к повторному интегралу. Пусть

Е- измеримое в R n по Жордану множество, = - сечение множества Е(n-m)-мерной гиперплоскостью - проекция Ена причем измеримы соответственно в смысле (n-m)-мерной и m-мер-ной меры Жордана. Тогда, если функция f Д-интегрируема на множестве Еи для всех существуют (n-m)-кратные интегралы от ее сужения на множестве то существует

где внешний интеграл является m-кратным интегралом Римана, и

Для случая n=3 отсюда следуют формулы: 1) Если - проекция Eна а функции таковы, что множество Еограничено в направлении оси z их графиками, т. е.


2) Пусть проекцией множества Ена ось Ох является отрезок - сечение множества Еплоскостью, параллельной плоскости и проходящей через точку х, тогда

В случае, когда Gявляется измеримой по Жордану областью в пространстве - взаимно однозначное G на измеримую Г пространства причем непрерывно дифференцируемо на замыкании области G, для интегрируемой на = функции f (х).справедлива замены переменного в интеграле

где J(t) - отображения j.

Геометрический смысл кратного интеграла Римана от функции ппеременных связан с понятием ( п+ 1)-мерной меры Жордана если функция f (х).интегрируема на множестве на Еи

Кратным интегралом Лебега наз, Лебега интеграл от функций многих переменных, его определение базируется на понятии Лебега меры в n-мерном евклидовом пространстве. Кратный интеграл Лебега может быть сведен к повторному интегралу (см. Фубини теорема ). Для непрерывно дифференцируемых взаимно однозначных отображений областей справедлива формула замены переменного (1), а также формула (2), выражающая геометрии, смысл кратного интеграла Лебега, в к-рой под мерой следует понимать (n+1)-мерную меру Лебега.

Понятие К. и. переносится на функции, интегрируемые по множеству А, принадлежащему произведению пространств Xи У, в каждом из к-рых заданы -конечные полные неотрицательные меры, соответственно при этом интегрирование по множеству Апроизводится по мере являющейся произведением мер

Для функций многих переменных существует также понятие несобственного К. и. (см. Несобственный интеграл ). Понятие К. и. применяется также к неопределенным интегралам функций многих переменных. Под неопределенным К. и. понимают функцию множества

где Е - измеримое множество. Если, напр., f(x).интегрируема по Лебегу на нек-ром множестве, то ее F(Е). на этом множестве имеет функцию f(x).своей симметричной производной. В этом смысле (аналогично случаю функций одной переменной) взятие неопределенного К. и. является операцией, обратной к операции дифференцирования функции множества.

Лит. : И л ь и н В. А., Лозняк Э. Г., Основы математического анализа, 2 изд., ч. 2, М., 1980; К о л м о г о р о в А. Н., Фомин С. В., Элементы теории функций и функционального анализа, 5 изд., М., 1981: , симметричному относительно точки 0, то внутренний интеграл равен 0. Очевидно, что внешний интеграл по переменной y от нулевой функции также равен 0, т.е.

Аналогичные рассуждения для второго повторного интеграла приводят к тому же результату:

Итак, для рассматриваемой функции f(x, y) повторные интегралы существуют и равны друг другу. Однако двойной интеграл от функции f(x, y) не существует. Чтобы убедиться в этом, обратимся к геометрическому смыслу вычисления повторных интегралов.

Для вычисления повторного интеграла

используется разбиение квадрата Е специального вида, равно как и специальным образом проводимый подсчет интегральных сумм. Именно, квадрат Е разбивается на горизонтальные полосы, (см. рис.2.7), а каждая полоса – на маленькие прямоугольники. Каждая полоска соответствует некоторому значению переменной y; например, это может быть ордината горизонтальной оси полосы.


Подсчет интегральных сумм производится так: сначала подсчитывается суммы для каждой полосы в отдельности, т.е. при фиксированном y для разных x, а затем эти промежуточные суммы суммируются для разных полос, т.е. для разных y. Если мелкость разбиения устремить к нулю, то в пределе мы получим указанный выше повторный интеграл.

Ясно, что для второго повторного интеграла

множество Е разбивается вертикальными полосами, соответствующими разным x. Промежуточные суммы подсчитываются внутри каждой полосы по маленьким прямоугольникам, т.е. по y, а затем они суммируются для разных полос, т.е. по х. В пределе, при мелкости разбиения, стремящейся к нулю, получаем соответствующий повторный интеграл.

Чтобы доказать, что двойной интеграл не существует, достаточно привести один пример разбиения, расчет интегральных сумм по которому в пределе при мелкости разбиения, стремящейся к нулю, дает результат, отличный от значения повторных интегралов. Приведем пример такого разбиения, соответствующего полярной системе координат (r, j) (см. рис. 2.8).

В полярной системе координат положение любой точки на плоскости М 0 (x 0 , y 0), где x 0 ,y 0 – декартовы координаты точки М 0 – определяется длиной r 0 радиуса, соединяющего ее с началом координат и углом j 0 , образуемым этим радиусом с положительным направлением оси x (угол отсчитывается против часовой стрелки). Связь между декартовыми и полярными координатами очевидна:

y 0 = r 0 × sinj 0 .


Разбиение строится следующим образом. Сначала квадрат Е разбивается на сектора радиусами, исходящими из центра координат, а затем каждый сектор – на маленькие трапеции линиями, перпендикулярными оси сектора. Подсчет интегральных сумм проводится так: сначала по маленьким трапециям внутри каждого сектора вдоль его оси (по r), а затем – по всем секторам (по j) . Положение каждого сектора характеризуется углом его оси j, а длина его оси r(j) зависит от этого угла:

если или , то ;

если , то ;

если , то

если , то .

Переходя к пределу интегральных сумм полярного разбиения при мелкости разбиения, стремящейся к нулю, получим запись двойного интеграла в полярных координатах. Такую запись можно получить и чисто формальным образом, заменяя декартовы координаты (x, y) на полярные (r, j).

По правилам перехода в интегралах от декартовых координат к полярным следует писать, по определению:

В полярных координатах функция f(x, y) запишется так:

Окончательно имеем

Внутренний интеграл (несобственный) в последней формуле

где функция r(j) указана выше, 0 £ j £ 2p , равен +¥ для любого j, ибо

Следовательно, подынтегральная функция во внешнем интеграле, вычисляемом по j, не определена ни для какого j . Но тогда не определен и сам внешний интеграл, т.е. не определен исходный двойной интеграл.

Отметим, что для функции f(x, y) не выполнено достаточное условие существования двойного интеграла по множеству Е. Покажем, что интеграл

не существует. Действительно,

Аналогично устанавливается такой же результат для интеграла



Последние материалы раздела:

Изменение вида звездного неба в течение суток
Изменение вида звездного неба в течение суток

Тема урока «Изменение вида звездного неба в течение года». Цель урока: Изучить видимое годичное движение Солнца. Звёздное небо – великая книга...

Развитие критического мышления: технологии и методики
Развитие критического мышления: технологии и методики

Критическое мышление – это система суждений, способствующая анализу информации, ее собственной интерпретации, а также обоснованности...

Онлайн обучение профессии Программист 1С
Онлайн обучение профессии Программист 1С

В современном мире цифровых технологий профессия программиста остается одной из самых востребованных и перспективных. Особенно высок спрос на...