Определение множества. Обозначение, запись и изображение числовых множеств


Понятие множества обычно принимается за одно из исходных (аксиоматических) понятий, то есть несводимое к другим понятиям, а значит, и не имеющее определения (так же, как, например, нельзя определить, что такое точка или прямая ).

Теорию множеств создал Георг Кантор. В частности, определил множество как «единое имя для совокупности всех объектов, обладающих данным свойством». Эти объекты он назвал элементами множества. Т.е. элемент множества – это объект, принадлежащий данному множеству.

Бертран Рассел (также основоположник теории множеств) дал такое определение множества: «Множество есть любое собрание определённых и различимых между собою объектов нашей интуиции или интеллекта, мыслимое как единое целое».

Под множеством понимается класс, совокупность, собрание различных между собой абстрактных объектов (элементов), безразлично какой природы. Каждый составляющий его элемент рассматривается лишь с точки зрения некоторых признаков. Эти объекты считаются неразличимыми. Им приписываются одни и те же признаки, отличие их друг от друга определяется не по свойствам и отношениям, а по их именам.

Множества обозначаются большими латинскими буквами (например, А , В , Х , Y и т.д.), а элементы этих множеств – малыми буквами (например, a , b , x , y ).

Если множество содержит конечное число элементов, его называют конечным , если в нём бесконечно много элементов – бесконечным .

Множества могут состоять из объектов самой различной природы. Этим объясняется чрезвычайная широта теории множеств и её применимость в самых различных областях – математике, механике, физике, химии, биологии, лингвистике и т.д.

Знаком Î обозначается отношение принадлежности некоторого элемента тому или иному множеству. Например, выражение означает, что элемент а принадлежит множеству А . Если же а не является элементом множества А , то это записывается .

Если два множества А и В состоят из одних и тех же элементов, то они считаются равными. Если А и В равны, то пишем А=В , в противном случае - . Например, возьмём множество {1,3,5}, состоящее из трёх положительных нечётных чисел. Поскольку {1,3,5} и{1,5,3} состоят из одних и тех же элементов, они являются равными множествами, т.е. {1,3,5}={1,5,3}. По этой же причине {1,3,5}={1,3,3,5,5,5}.

Элементы какого либо множества сами могут быть множествами. Например, {{1,2},{3,4},{5,6}} – множество из трёх элементов {1,2},{3,4},{5,6}.

Множества {{1,2},{2,3}} и {1,2,3} не равны, т.к. элементами первого являются {1,2} и {2,3}, а элементами второго - 1,2 и 3.

Множества {{1,2}} и {1,2} также не равны, т.к. поскольку первое множество состоит из одного и только одного элемента {1,2} (одноэлементное множество), а второе имеет два элемента 1 и 2. Потому, в общем виде, следует различать объект и множество, единственным элементом которого является этот объект.

Задача 1.1. Среди следующих множеств указать равные:

А = {3, 5, x , y }; B = {3, 2, 5, x , y }; C = {y , y , 5, 3, x , x }; D = {3, 4, 5, x , y }.

Решение. A = C , поскольку качественно оба множества состоят из элементов 3, 5, x и y . Количество элементов множества А равно 4. Множество В , на первый взгляд, содержит больше элементов. Однако среди них есть повторяющиеся: 2 раза х и столько же у . Для множества же неважно, сколько раз повторяется один и тот же элемент, важно лишь, чтобы элементы отличались друг от друга. Что же касается множеств B иD , то они не равны, так как содержат разные элементы.

1.2. СПОСОБЫ ЗАДАНИЯ МНОЖЕСТВ

Множество считают заданным (известным), если имеется способ, позволяющий для любого объекта решить, принадлежит ли он этому множеству или нет, т.е. определить истинно или ложно выражение . Существует несколько способов задания множеств. Множество может быть задано:

1) перечислением (полным списком) своих элементов . Если хотим сказать, что данное множество М состоит из элементов , то записываем: . Данный способ применим лишь к конечным множествам, да и то не ко всем. Например, хотя множество птиц конечно, вряд ли его можно задать списком. Тем более, список невозможен в случае бесконечномерного множества. Тогда применимы другие способы;

2) характеристическим свойством (предикатом) , которым должны обладать все его элементы и не должен обладать ни один объект, не являющийся его элементом. Причём необходимо формулировать описание характеристических свойств элементов множества достаточно корректно, для того, чтобы множество было определено вполне однозначно.

Множество M объектов, обладающих свойством , Г. Кантор обозначил - «множество всех x, обладающих свойством », где - характеристическое свойство(предикат) множества М;

3) порождающей процедурой f , то есть указать правило, по которому формируются элементы данного множества: ;

Замечание. Многие числовые множества могут быть заданы всеми тремя указанными способами (например, множество чётных однозначных чисел).

4) геометрическим способом – с помощью графиков или диаграмм. Этот способ применим как к конечным, так и бесконечным множествам;

Пример 1.1. Некоторые примеры множеств, заданных различными способами.

а) M 1 ={1;2;3;4};

б) M 2 ={x| , -4};

в) M 3 ={x|x=2n+1, };

г) M 4 = {(x,y)ôxÎR, yÎR ; £ 4};

Задача 1.2. Выяснить, каким способом заданы следующие множества и перечислить все элементы этих множеств:

1) { xô x есть делитель числа 100};

2) { xô x есть простой делитель числа 100};

3) { xô x есть простой множитель числа 100};

4) { xô x ÎN; – 1 = 0 и – 4 = 0};

5) { xô x есть буква слова «академия»};

6) { xô x ÎN; 2 = 1};

7) { xô x ÎN; }.

Решение.

1. Данное множество состоит из всех делителей числа 100, то есть в него включаются лишь те числа, которые делят число 100 нацело. Очевидно, что налицо задание множества с помощью характеристического предиката «быть делителем числа 100». Перечислим все эти числа: 2, 4, 5, 10, 20, 25, 50. Добавив сюда число 1 и самое 100, получим искомое множество. Обозначим его А. Тогда А = {1, 2, 4, 5, 10, 20, 25, 50, 100}.

2. Множество задано с помощью характеристического предиката «быть простым делителем числа 100». Среди делителей предыдущей задачи отберём лишь простые числа, которыми будут 2 и 5. Все же остальные делители являются составными. Число 1, как известно из курса школьной арифметики, не относится ни к простым, ни к составным числам. Обозначив это множество В, получим: В = {2, 5}.

3. Множество задано с помощью характеристического предиката «быть простым множителем числа 100». Разложим 100 на простые множители. Получим следующее тождество: 100 = 2×2×2×5. Эти числа и будут элементами искомого множества, которое обозначим С = {2, 2, 5, 5}. Ответ можно было бы оставить в таком виде, однако в теории множеств количество одинаковых элементов, как правило, игнорируется. Поэтому будет корректнее ответ представить в виде: С = {2, 5}.

4. Данное множество можно считать заданным с помощью порождающей процедуры, которой является процедура решения квадратных уравнений и отбора корней по признаку принадлежности их к множеству натуральных чисел. Однако, справедливости ради, следует отметить, что часто при определении способа задания множества бывает достаточно трудно утверждать, что множество задано этим и только этим способом. В данном примере вполне можно утверждать, что способ задания множества – с помощью характеристического предиката «отбор корней уравнения по признаку принадлежности к множеству N». Решаем оба уравнения: , его корни +1 и -1; , его корни +2 и -2. Поскольку числа -1 и -2 не являются натуральными, искомое множество, которое мы обозначим D, будет таким: D = {1, 2}.

5. Способ задания – с помощью характеристического предиката. Обозначим множество Е. Получим: Е = {а, к, д, е, м, и, я}, где буква «а» упомянута лишь один раз.

6. Способ задания данного множества аналогичен примеру 4). Решим данное показательно-логарифмическое уравнение 2 = 1. ОДЗ данного уравнения – все х³0. = 1, откуда = 0, корни х равны 2. Натуральным числом является 2. Значит, наше множество, которое обозначим через F, будет состоять только из одного элемента: F = {2}.

7. Способ задания данного множества аналогичен примеру 4). Решаем данное иррациональное неравенство . ОДЗ – все х ³ 1. Обе части возведём в квадрат: х – 1 ³ 4, откуда х ³ 5. Это не противоречит ОДЗ, поэтому область решения данного неравенства х ³ 5. Другими словами, х Î . Очевидно, что натуральных чисел на данном интервале будет бесчисленное множество. Поэтому данное множество G будет бесконечным: G = {5, 6, 7, … n,…}.

Задача 1.3. Записать множества с помощью свойстваP (х ):

2) {1, 3, 9, 27, 81, 243};

3) {s, t, u, d, e, n, t}.

Решение.

1) подобрать характеристический предикат можно, например, так. Перемножим все числа. Получим: 2×3×11 = 66. Тогда

А = {aôa – простой делитель числа 66};

2) все представленные числа являются степенями числа 3 (30=1, 31=3, 32=9 и т.д.). Поэтому множество В можно задать с помощью свойства: В = {bôb – степень числа 3 с показателем от 0 до 5};

3) C = {côc – буква слова «student»}.

Задача 1.4. Изобразить следующие множества графически:

1) А = {(x,y)ôxÎR, yÎR ; £ 4};

2) B = {(x,y)ôxÎR, yÎR ; x + y >0, x + y – 2 £ 0};

3) C = {(x,y)ôxÎR, yÎR ; |x | £ 1 и |y + 2| £ 4};

4) D = {(x,y)ôxÎR, yÎR и };

5) E = {(x,y)ôxÎR, yÎR и y £ |sin x|};

6) F = {(x,y)ôxÎR, yÎR и }.

Решение. Все заданные множества состоят из пар действительных чисел, которые удовлетворяют некоторым условиям. Изображая точки, соответствующие данным парам в декартовой системе координат на плоскости, получим некоторые области, которые и будут геометрическим (графическим) изображением исследуемого множества.

1. Построим границу множества А. Для этого от неравенства перейдём к равенству: = 4. Из курса аналитической геометрии известно, что это уравнение есть уравнение окружности с центром в начале координат и радиусом 2. Она и будет являться границей множества. Далее следует выяснить, какую часть плоскости нам следует выбрать: ту, что лежит внутри окружности либо ту, что лежит извне. Для этого зададимся координатами какой-либо точки, которая явно находится в выбранной области. Например, точка начала координат О(0;0). Подставим значения х = 0 и у = 0 в неравенство £ 4. Получим: £ 4, то есть в точке О (0;0) данное неравенство справедливо. Следовательно, нам нужно выбрать часть плоскости внутри окружности. Если взять координаты других точек внутри окружности и подставить их в неравенство, результат будет таким же. Напротив, для точек извне неравенство будет ложным. Например, точка Q(10;10): = 200, а это никак не меньше 4! Подытоживая всё сказанное, можем утверждать, что множество А – это круг радиуса 2 с центром в начале координат.

2. Для построения границ множества В рассмотрим равенства: x + y =0, x + y – 2 = 0. Первая прямая (её уравнение можно записать как у = - х) есть биссектриса 2-го и 4-го координатных углов. Она разделяет координатную плоскость на две части: ту, которая лежит выше (или правее) прямой и ту, которая ниже (или левее) прямой. Чтобы выбрать нужную часть, возьмем пробную точку с координатами, например, Q(10;10) и подставим её координаты в неравенство x + y > 0. Получим: 10 +10 > 0 то есть неравенство справедливо для части плоскости выше (правее) прямой x + y =0. Вторая прямая (её уравнение x + y – 2 = 0 может быть записано в отрезках на осях ) отсекает на обеих осях отрезки длиной по 2 единицы и проходит параллельно первой прямой через 2-й, 1-й и 3-й квадранты. Она также разделяет координатную плоскость на две части: одна выше (правее) и вторая ниже (левее). Для выбора нужной нам части можно использовать, например, точку О(0;0). Подставляем х = 0 и у = 0 в неравенство x + y – 2 £ 0. Получим: 0 + 0 – 2 £ 0 - справедливо. Следовательно выбираем ту часть плоскости по отношению ко второй прямой, где лежит точка О(0;0). В итоге получаем область, координаты точек которой удовлетворяют обоим неравенствам (например, это точки (1;1), (0;1), (1;0); (2;-1) и т.д.). Это полоса, лежащая между двумя параллельными прямыми, включая и точки, принадлежащие второй прямой (поскольку неравенство нестрогое). Данная область и определяет искомое множество В.

3. Неравенство |x | £ 1 эквивалентно двум: -1 £ х £ 1. Казалось бы, что это множество точек отрезка [-1; 1]. Если бы мы рассматривали множество из одного элемента, это было бы так. Однако наше множество С состоит из пар действительных чисел (х; у). Поэтому геометрически неравенство -1 £ х £ 1 представляет собой множество точек, лежащих внутри вертикальной полосы между прямыми х = 1 и х = -1. Неравенство |y + 2| £ 4 также эквивалентно двум: -4 £ y + 2 £ 4. Перенося 2 влево и вправо, получаем: -6 £ y £ 2. Геометрически это будет множество точек, лежащих внутри горизонтальной полосы между прямыми y = -6 и y = 2. Итак, мы получили две пересекающиеся полосы. Какую же часть необходимо выбрать для искомого множества С? В условии задачи оба неравенства соединены союзом «и». А это значит, что необходимо выбрать те точки из обеих полос, координаты которых одновременно удовлетворяют обоим неравенствам. В результате получаем прямоугольник. Это и есть наше множество С.

4. Рассмотрим неравенство . Чтобы оно стало «узнаваемым», возведём в квадрат левую и правую его части. Это можно сделать потому, что справа - неотрицательная величина арифметического корня. Слева величина у также неотрицательна, ибо в противном случае неравенство теряло бы всякий смысл. После возведения во вторую степень обеих частей и некоторого преобразования получаем: Это неравенство описывает часть координатной плоскости, лежащей вне эллипса Однако исходное неравенство имеет вид , причём, как было сказано, величина у неотрицательна. Значит, описываемая область будет включать лишь верхнюю часть координатной плоскости, лежащей вне эллипса. Рассмотрим последнее неравенство х ³ 0, которое описывает правую часть координатной плоскости. Сопоставляя все выкладки, получим множество точек, расположенных в первом квадранте вне эллипса. Это и будет искомое множество D.

5. Построим график функции у = sin x, а затем ту его часть, которая находится ниже оси абсцисс, зеркально отразим на верхнюю полуплоскость. Получим график у = |sin x|. Неравенство же y £ |sin x| определит искомое множество Е, точки которого будут находиться между осью абсцисс и дугами отраженной вверх синусоиды.

6. В отличие от предыдущих задач, здесь имеем равенство x2 = y2 , которое, как известно, определяет некоторую линию. Для «узнавания» данной линии сделаем ряд тождественных преобразований: = 0, (х – у) (х + у) = 0. Далее приходим к совокупности х – у = 0 и х + у = 0. Получаем пару пересекающихся прямых - биссектрис 1− 3-го и 2 – 4-го квадрантов. Множество F и представляет собой точки этих прямых.

Задачи для самостоятельного решения.

1. Перечислить все элементы следующих множеств:

а) { x ô x есть делитель чисел 6 и 8}; (ответ: 2);

б) { x ô x ÎN; x 3 - 5x 2 + 4 = 0}; (ответ: 1);

в) { x ô x ÎR; x + 1/x > 2; x > 0}; (ответ: х Î(0, ¥));

г) { x ô x – буква слова «университет»};

д) { x ô x ÎZ; sin x < 0; cos x > 0}; (ответ: -1).

2. Изобразить следующие множества графически:

а) { (x , y y £ 2x 2 };

б) { (x , y y ³ |x | + 1};

в) { (x , y x 2 + y 2 – 25 > 0}.

Два первые способа задания множества предполагают, что мы имеем возможность отождествлять и различать объекты. Но такая возможность существует не всегда, в этом случае мы сталкиваемся с различного рода осложнениями. Так, может быть, что два различных характеристических свойства задают одно и то же множество, т.е. каждый элемент, обладающий одним свойством, обладает и другим, и наоборот. Например, в арифметике свойство «целое число делится на 2» задаёт то же множество, что и свойство «последняя цифра делится на 2». Во многих случаях речь идёт о совпадении двух множеств (например, множества равносторонних треугольников с множеством равноугольных треугольников). Кроме того, при задании множеств характеристическими свойствами (предикатами) трудности возникают из-за недостаточной чёткости, неоднозначности формулировки. Разграничение объектов на принадлежащие и не принадлежащие данному множеству затрудняется наличием большого числа промежуточных форм.

Особо выделяется универсальное (или фундаментальное ) множество , т.е. такое множество, которое состоит из всех элементов исследуемой предметной области (обозначается буквой U и читается «универсум», а в геометрической интерпретации изображается множеством точек внутри некоторого прямоугольника).

Отметим, что «универсальное множество» понятие относительное: оно выбирается для какого-нибудь определенного раздела науки и при том часто даже явно не определяется, а просто подразумевается.

Так, например, в элементарной планиметрии в качестве универсального множества принято рассматривать множество всех точек плоскости.

В элементарной арифметике универсальным множеством считается множество Z всех целых рациональных чисел и т. д.

1.3. ПУСТОЕ МНОЖЕСТВО

Пустое множество – множество, которое не содержит ни одного элемента (обозначается символом ). Пустое множество можно определить любым противоречивым свойством, например Y не является множеством.

Рассмотрим теперь кратко простые теоретико-множественные понятия и теоретико-множественные операции: пересечение, объединение, дополнение, декартово произведение и др. Для случая конечных множеств они лежат в основе арифметических действий над натуральными числами и поэтому очень важны для школьной математики. Мы ограничимся совсем краткими определениями и пояснениями.

Множество не содержащее ни одного элемента называют пустым множеством. Его обозначается знаком. Пустое множество можно определить любым противоречивым свойством, например= {х | xх}, в области множеств оно играет как бы роль нуля.

Множество N называется подмножеством множества М тогда и только тогда, когда каждый элемент множества N принадлежит множеству М. Отношение между множеством М и любым его подмножеством N называется включением и обозначается символом: МN.

Отметим следующие элементарные утверждения о понятиях подмножества и включения, прямо вытекающих из определения.

а) Каждое множество М является подмножеством самого себя: ММ. Любое подмножество N множества М, отличное от М, называется собственным подмножеством множества М; соответствующее включение также называется собственным и обозначается: МN. Принято считать, что пустое множествоявляется подмножеством любого множества М.

б) Отношение включения транзитивино, т. е. из NМ и РN следует, что РМ. Транзитивно также отношение собственного включения.

в) Очень важно не смешивать отношения принадлежностии включения: если {а}М, то аМ, и наоборот; но из {a}М не следует {а}М. Так, например, если М = {1, 2}, то это означает, что 1М и 2М, но для всех других объектов х справедливо хМ; для включения же правильны следующие утверждения:

М, {1}М, {2}М., {1, 2}М.

Другой пример. Пустое множествоне имеет элементов хM для любого объекта х. Между темсодержит одно подмножество, а именно само себя.

Введем несколько операций над множествами.

а) Пересечением множеств М и N называют множество тех объектов, которые принадлежат множествам М и N одновременно.

Обозначение: МN = {х|хМ и хN}.

б) Объединением множеств М и N называют множество тех элементов, которые содержатся по крайней мере в одном из множеств М или N. Обозначение: MN = {х | хМ или хN }.

в) Разностью множеств М и N называют множество тех элементов, которые принадлежат множеству М и не принадлежат множеству N. Обозначение: М \ N. = {х | хМ и хN}.

г)Симметрической разностью множеств М и N называют множество тех элементов, которые принадлежат только множеству М - или только множеству N.

Обозначение: MN ={ x | (xМ и хN) или (хN и хМ)}.

Введенные теоретико-множественные операции наглядно иллюстрируются рисунком 2, где множества М и N изобрансены пересекающимися кругами:

МN - точки области II;

МN - точки областей I, II, III;

М \ N - точки области I;

N \ М - точки области III;

MN - точки областей I и III.

д) В конкретных математических областях бывает полезно ввести в рассмотрение столь обширное множество U, что все рассматриваемые множества окажутся его подмножествами. Такое множество U принято называть универсальным множеством или универсумом. Отметим, что "универсальное множество" понятие относительное: оно выбирается для какого-нибудь определенного раздела науки и притом часто даже явно не определяется, а просто подразумевается.

Так, например, в элементарной планиметрии в качестве универсального множества принято рассматривать множество всех точек плоскости. Различные фигуры, изучаемые в планиметрии, можно считать множествами точек, т. е. подмножествами так выбранного универсального множества.

В элементарной арифметике универсальным множеством считается множество Z всех целых рациональных чисел и т. д.

е) Если выбрано некоторое универсальное множество U , то возникает новая теоретико-множественная операция - дополнение. Для всякого множества М (при этом подразумевается, что М - подмножество универсального множества U его дополнение, обозначаемое через М , - это множество всех элементов универсума, которые не принадлежат множеству М:

М = {х | хU и xM}

Таким образом, дополнение - это частный случай разности:

M = U \ M,
все отличие здесь состоит в том, что разность берется относительно фиксированного множества, содержащего все множества, которые в данной связи рассматриваются.

Рассмотрим теперь операции декартового произведения множеств. Пусть A и B - два множества. Тогда множество C = {(a, b) | aA, bB}
всех пар (a, b), где a и b независимо друг от друга принимают все значения соответственно из множеств A и B называется декартовым произведением множеств А и В и обозначается через А х В. Если А и В - конечные множества, содержащие соответственно m и n элементов, то сразу видно, что множество А х В содержит mn элементов.

Самостоятельный интерес представляет тот частный случай, когда множества А и В совпадают: А = В. Чтобы его рассмотреть, вы введем новый термин.

Упорядоченной парой элементов множества А будем называть объект (а 1 , а 2), состоящий из двух (не обязательно различных) элементов а 1 , а 2 А, с указанием, какой из них следует считать первым, а какой - вторым. Так, например, если А = {1, 2, 3, 4., 5}, то упорядоченные пары (2, 3) и (3, 2) следует считать по определению различными. Упорядоченными парами элементов из А считаются также объекты (1, 1), (2, 2), (3, 3), (4, 4), (5, 5). Упорядоченные пары мы будем заключать в круглые скобки и обозначать жирными строчными латинскими буквами: a = (а 1 а 2), в отличие от неупорядоченных пар, которые, как и множества элементов, записываются в фигурных скобках: {а 1 а 2 }.

Назовем множество

С = {(а 1 , а 2) | a 1 А, a 2 А}
всех упорядоченных пар (а 1 а 2) элементов из А декартовым квадратом множества А и будем обозначать его через A 2 .

Рассмотренные свойства множеств и операции над ними в неявном, виде присутствуют в начальном преподавании арифметики. Мы особенно подчеркиваем, что речь идет об их неявном присутствии: бессмысленно было бы в I или II классе давать явные определения арифметических действий. Само слово «действие» для арифметических операций указывает на то, что на начальном уровне развития детей сложение, вычитание, умножение и деление возникают как действия над конкретными множествами из мира, свойственного школьникам. Вековой опыт обучения на всех уровнях показывает, что человек обычно сначала делает нечто, а лишь затем задумывается над тем, какими же общими свойствами обладают его действия.

Теоретико-множественное обоснование арифметических действий над натуральными числами дается довольно элементарно, так как более строгое обоснование оказывается достаточно трудоемким и мы не имеем возможности провести его здесь со всей необходимой тщательностью. Как мы уже говорили, с точки зрения теории множеств натуральные кардинальные числа отвечают классам равнамощных конечных множеств, к ним, естественно, присоединяется и число нуль как кардинальное число, соответствующее пустому множеству. Тогда элементарные отношения и действия над натуральными числами вводятся следующим образом.

1.Отношение «равно», «больше», «меньше» . Пусть m и n - два натуральных числа и пусть М и N - два множества, кардинальные числа которых суть соответственно m и n. Тогда m меньше n (а n больше m), если множество М равномощно некоторому собственному подмножеству множества N. Как видно из этого же определения, m = n означает, что множества М и N равномощны. Для оправдания такого определения необходимо, конечно, показать, что оно не зависит от выбранных множеств М и N. Иначе говоря, надо доказать, что если М" и N" - два других множества с числом элементов m и n соответственно и если при этом М равномощно собственному подмножеству множества N", то и М" равномощно собственному подмножеству множества N", и наоборот. Это доказательство мы предоставим читателю. Отметим, что определение неравенства для бесконечных кардинальных чисел получается более сложным.

2.Сложение. Для определения суммы кардинальных чисел поступают так. Пусть m и n - два натуральных числа. Выбираем опять произвольно два непересекающихся множества М с m N с n элементами соответственно, и пусть S - их объединение: S = MN. Тогда по определению сумма s = m + n - это кардинальное число множества S. Покажем, что сумма s от выбора множеств M и N не зависит, а зависит только от их мощностей. Пусть М" и N"- другие множества, равномощные множествам М и N соответственно, и пусть при этом также M"N" =; тогда S" = М"N" равномощно множеству S = МN. Следует все время иметь в виду, что кардинальное число объединения есть сумма кардинальных чисел объединяемых множеств, только если последние не имеют общих элементов (имеют пустое пересечение). В случае пересекающихся множеств имеет место более общее, правило.

Данная тема содержит немало терминологии, поэтому я добавлю содержание темы, которое позволит легче ориентироваться в материале.

Начнём с того, что же, собственно, понимать под словом "множество". На интуитивном уровне под множеством понимают некую совокупность объектов, именуемых элементами множества . Например, можно говорить о множестве груш на столе, множестве букв в слове "множество" и так далее. Георг Кантор (немецкий математик, основатель современной теории множеств) писал, что под "множеством я понимаю вообще всё то многое, которое возможно мыслить как единое, т.е. такую совокупность определённых элементов, которая посредством одного закона может быть соединена в одно целое". Некоторое время понятие множества, введённое Кантором, полагалось довольно очевидным и не требующим дополнительных пояснений. Казалось, что появление работ Больцано, а затем и Кантора в конце 19 - начале 20 века, положит конец многим вопросам (например, окончательно разрешит апории Зенона, разрешит проблему бесконечности и т.д.) и станет началом новой математики. Гениальный немецкий математик Давид Гильберт отмечал, что "Никто не изгонит нас из рая, созданного Кантором".

Однако появление парадоксов (Рассел, Бурали-Форти) положило конец "канторовскому раю". Одна из формулировок парадокса Рассела, известная под названием "парадокс брадобрея" звучит так: в некотором селе брадобрей бреет тех и только тех жителей села, которые не бреются сами. Кто же тогда бреет самого брадобрея? Допустим, он бреет себя самостоятельно. Т.е. он принадлежит к тем жителям села, которые бреются сами, - а ведь согласно условию этих жителей брадобрей не имеет права брить. Следовательно, допущение о том, что брадобрей бреется сам, приводит к противоречию. Попробуем иначе: пусть брадобрей не бреется сам. Если он сам не бреется, то согласно условию его обязан брить брадобрей - вновь противоречие! Были предприняты попытки разрешить противоречия теории множеств, предложенной Кантором. Саму канторовскую теорию множеств математики назвали "наивной". Целью многих математических трудов стало построение такой системы аксиом, в которой подобные парадоксы были бы невозможны. Но задача оказалась не столь уж проста. На данный момент, насколько мне известно, единой аксиоматики теории множеств нет. Наиболее распространенной считается система аксиом Цермело-Френкеля (ZFC), в которой особняком стоит так называемая "аксиома выбора". Есть и вариации этой системы: например, автор B-метода Жан-Раймонд Абриал предложил типизированную теорию множеств, на основании которой создал формальный метод разработки программ.

Обозначение множеств. Принадлежность элемента множеству. Пустое множество.

Обычно множества записываются в фигурных скобках. Например, множество всех гласных букв русского алфавита будет записано так:

$$\{а, е, ё, и, о, у, ы, э, ю, я \} $$

А множество всех целых целых чисел, больших 8, но меньших 15, будет таким:

$$\{9,10,11,12,13,14 \} $$

Множество может вообще не содержать ни одного элемента. В этом случае его именуют пустым множеством и обозначают как $\varnothing$.

Чаще всего в математической литературе множества обозначаются с помощью больших букв латинского алфавита. Например:

$$A=\{0, 5, 6, -9 \},\; B=\{\Delta, +, -5, 0\}.$$

Есть и устоявшиеся обозначения определённых множеств. Например, множество натуральных чисел принято обозначать буквой $N$; множество целых чисел - буквой $Z$; множество рациональных чисел - буквой $Q$; множество всех действительных чисел - буквой $R$. Есть и иные устоявшиеся обозначения, но к ним мы станем обращаться по мере необходимости.

Множество, которое содержит конечное количество элементов, именуют конечным множеством . Если множество содержит бесконечное количество элементов, его называют бесконечным .

Например, указанное выше множество $A=\{0, 5, 6, -9 \}$ - конечное множество, ибо содержит 4 элемента (т.е. конечное число элементов). Множество натуральных чисел $N$ является бесконечным. Вообще говоря, мы не всегда можем сразу с уверенностью сказать, бесконечно некое множество или нет. Например, пусть $F$ - множество простых чисел.

Что такое простое число : показать\скрыть

Простыми числами именуют такие натуральные числа большие 1, которые делятся лишь на 1 или на самое себя. Например, 2, 3, 5, 7 и так далее. Для сравнения: число 12 не является простым числом, так как оно делится не только на 12 и 1, а ещё и на иные числа (например, на 3). Число 12 является составным.

Возникает вопрос: бесконечно множество $F$ или нет? Существует ли наибольшее простое число? Для ответа на этот вопрос понадобилась целая теорема, доказанная Эвклидом, о том, что множество простых чисел - бесконечно.

Под мощностью множества для конечных множеств понимают количество элементов данного множества. Мощность множества $A$ обозначается как $|A|$.

Например, так как конечное множество $A=\{0, 5, 6, -9 \}$ содержит 4 элемента, то мощность множества $A$ равна 4, т.е. $|A|=4$.

Если нам известно, что некий объект $a$ принадлежит множеству $A$, то записывают это так: $a\in A$. Например, для вышеуказанного множества $A$ можно записать, что $5\in A$, $-9\in A$. Если же объект $a$ не принадлежит множеству $A$, то обозначается это следующим образом: $a\notin A$. Например, $19\notin A$. Кстати, сказать, элементами множеств могут быть и иные множества, например:

$$ M=\{-9,1,0, \{ a, g\}, \varnothing \} $$

Элементами множества $M$ являются числа -9, 1, 0, а также множество $ \{ a,\; g\}$ и пустое множество $\varnothing$. Вообще, для упрощения восприятия множество можно представлять как портфель. Пустое множество - пустой портфель. Эта аналогия пригодится чуть далее.

Подмножество. Универсальное множество. Равенство множеств. Булеан.

Множество $A$ называют подмножеством множества $B$, если все элементы множества $A$ являются также элементами множества $B$. Обозначение: $A\subseteq B$.

Например, рассмотрим множества $K=\{ -9,5\}$ и $T=\{8,-9,0,5,p, -11\}$. Каждый элемент множества $K$ (т.е. -9 и 5) является также элементом множества $T$. Следовательно, множество $K$ есть подмножество множества $T$, т.е. $K\subseteq T$.

Так как все элементы любого множества $A$ принадлежат самому множеству $A$, то множество $A$ является подмножеством самого множества $A$. Пустое множество $\varnothing$ является подможеством любого множества. Т.е. для произвольного множества $A$ верно следующее:

$$A\subseteq A; \; \varnothing\subseteq A.$$

Введём ещё одно определение - универсальное множество.

Универсальное множество (универсум) $U$ обладает тем свойством, что все иные множества, рассматриваемые в данной задаче, являются его подмножествами.

Иными словами, универсум содержит в себе элементы всех множеств, которые рассматриваются в рамках некоей задачи. Например, рассмотрим такую задачу: проводится опрос студентов некоей академгруппы. Каждому студенту предлагается указать мобильных операторов РФ, сим-карты которых он использует. Данные этого опроса можно представить в виде множеств. Например, если студент Василий использует сим-карты от МТС и Life, то можно записать следующее:

$$ Vasilij=\{MTC, Life \} $$

Подобные множества можно составить для каждого студента. Универсумом в этой модели будет множество, в котором перечислены все операторы России. В принципе, в качестве универсума можно взять также множество, в котором перечислены все операторы СНГ, а также множество всех мобильных операторов мира. И это не будет противоречием, ибо любой оператор России входит в множество операторов как СНГ, так и всего мира. Итак, универсум определяется только в рамках некоей конкретной задачи, при этом зачастую можно рассмотреть несколько универсальных множеств.

Множества $A$ и $B$ называются равными , если они состоят из одних и тех же элементов. Иными словами, если каждый элемент множества $A$ является также элементом множества $B$, и каждый элемент множества $B$ является также элементом множества $A$, то $A=B$.

Определение равенства множеств можно записать и по-иному: если $A\subseteq B$ и $B\subseteq A$, то $A=B$.

Рассмотрим пару множеств: первое будет $\{\Delta, k \}$, а второе - $\{k, \Delta\}$. Каждый элемент первого множества (т.е. $\Delta$ и $k$) является также элементом второго множества. Каждый элемент второго множества (т.е. $k$ и $\Delta$) является также элементом второго множества. Вывод: $\{\Delta, k \}=\{k, \Delta\}$. Как видите, порядок записи элементов в множестве роли не играет.

Рассмотрим ещё пару множеств: $X=\{k, \Delta, k, k,k \}$ и $Y=\{\Delta, k \}$. Каждый элемент множества $X$ является также элементом множества $Y$; каждый элемент множества $Y$ является также элементом множества $X$. Следовательно, $\{k, \Delta, k, k, k \}=\{\Delta, k \}$. С учётом подобных равенств в теории множеств принято одинаковые элементы не повторять в записи дважды. Например, множество цифр числа 1111111555559999 будет таким: $\{1,5,9\}$. Есть, конечно, исключения: так называемые мультимножества . В записи мультимножеств элементы могут повторяться, однако в классической теории множеств повторения элементов не допускаются.

Используя понятие равенства множеств, можно классифицировать подмножества.

Если $A\subseteq B$, при этом $A\neq B$, то множество $A$ называют собственным (строгим) подмножеством множества $B$. Также говорят, что множество $A$ строго включено в множество $B$. Записывают это так: $A \subset B$.

Если же некое подмножество множества $A$ совпадает с самим множеством $A$, то это подмножество называют несобственным . Иными словами, множество $A$ является несобственным подмножеством самого множества $A$.

Например, для рассмотренных выше множеств $K=\{ -9,5\}$ и $T=\{8,-9,0,5,p, -11\}$ имеем: $K\subseteq T$, при этом $K\neq T$. Следовательно, множество $K$ является собственным подмножеством множества $T$, что записывается как $K\subset T$. Можно сказать и так: множество $K$ строго включено в множество $T$. Запись $K\subset T$ более конкретна, нежели $K\subseteq T$. Дело в том, что записывая $K\subset T$ мы гарантируем, что $K\neq T$. В то время как запись $K\subseteq T$ не исключает случая равенства $K=T$.

Примечание относительно терминологии : показать\скрыть

Вообще говоря, тут есть некая путаница в терминологии. Приведённое выше определение несобственных множеств принято в американской и части отечественной литературы. Однако в другой части отечественной литературы есть несколько иная трактовка понятия несобственных множеств.

Если $A\subseteq B$, при этом $A\neq B$ и $A\neq \varnothing$, то множество $A$ называют собственным (строгим) подмножеством множества $B$. Также говорят, что множество $A$ строго включено в множество $B$. Записывают это так: $A \subset B$. Множества $B$ и $\varnothing$ именуются несобственными подмножествми множества $B$.

Иными словами, пустое множество в такой трактовке исключается из собственных подмножеств и переходит в разряд несобственных. Выбор терминологии - дело вкуса.

Множество всех подмножеств некоего множества $A$ называют булеаном или степенью множества $A$. Обозначается булеан как $P(A)$ или $2^A$.

Пусть множество $A$ содержит $n$ элементов. Булеан множества $A$ содержит $2^n$ элементов, т.е.

$$ \left| P(A) \right|=2^{n},\;\; n=|A|. $$

Рассмотрим пару примеров на использование введённых выше понятий.

Пример №1

Из предложенного списка выберите те утверждения, которые являются верными. Ответ аргументируйте.

  1. $\{-3,5, 9 \}\subseteq \{-3, 9, 8, 5, 4, 6 \} $;
  2. $\{-3,5, 9 \}\subset \{-3, 9, 8, 5, 4, 6 \} $;
  3. $\{-3,5, 9 \}\in \{-3, 9, 8, 5, 4, 6 \} $;
  4. $\varnothing \subseteq \varnothing$;
  5. $\varnothing=\{\varnothing \}$;
  6. $\varnothing \in \varnothing$;
  7. $A=\{9, -5, 8 \{7, 6 \} \};\; |A|=5$.
  1. Нам заданы два множества: $\{-3,5, 9 \}$ и $\{-3, 9, 8, 5, 4, 6 \}$. Каждый элемент первого множества является также элементом второго множества. Следовательно, первое множество есть подмножество второго, т.е. $\{-3,5, 9 \}\subseteq \{-3, 9, 8, 5, 4, 6 \}$. Утверждение первого пункта - верное.
  2. В первом пункте мы выяснили, что $\{-3,5, 9 \}\subseteq \{-3, 9, 8, 5, 4, 6 \}$. При этом данные множества не равны между собой, т.е. $\{-3,5, 9 \}\neq \{-3, 9, 8, 5, 4, 6 \}$. Значит, множество $\{-3,5, 9 \}$ является собственным (в иной терминологии строгим) подмножеством множества $\{-3, 9, 8, 5, 4, 6 \}$. Этот факт записывается как $\{-3,5, 9 \}\subset \{-3, 9, 8, 5, 4, 6 \} $. Итак, утверждение второго пункта истинно.
  3. Множество $\{-3,5, 9 \}$ не является элементом множества $\{-3, 9, 8, 5, 4, 6 \}$. Утверждение третьего пункта ложно. Для сравнения: утверждение $\{-3,5, 9 \}\in \{9, 8, 5, 4, \{-3,5,9\}, 6 \}$ истинно.
  4. Пустое множество является подможеством любого множества. Поэтому утверждение $\varnothing \subseteq \varnothing$ истинно.
  5. Утверждение ложно. Множество $\varnothing$ не содержит элементов, а множество $\{\varnothing \}$ содержит один элемент, посему равенство $\varnothing=\{\varnothing \}$ неверно. Чтобы это было нагляднее, можно обратиться к той аналогии, что я описал выше. Множество - это портфель. Пустое множество $\varnothing$ - пустой портфель. Множество $\{\varnothing \}$ - портфель, внутри которого лежит пустой портфель. Естественно, что пустой портфель и непустой портфель, внутри которого нечто есть - разные портфели:)
  6. Пустое множество не содержит элементов. Ни единого. Поэтому утверждение $\varnothing \in \varnothing$ ложно. Для сравнения: утверждение $\varnothing\in\{\varnothing \}$ истинно.
  7. Множество $A$ содержит 4 элемента, а именно: 9, -5, 8 и $\{7, 6 \}$. Поэтому мощность множества $A$ равна 4, т.е. $|A|=4$. Следовательно, утверждение о том, что $|A|=5$ - ложно.

Ответ : Утверждения в пунктах №1, №2, №4 - истинны.

Пример №2

Записать булеан множества $A=\{-5,10,9\}$.

Множество $A$ содержит 3 элемента. Иными словами: мощность множества $A$ равна 3, $|A|=3$. Следовательно, множество $A$ имеет $2^3=8$ подмножеств, т.е. булеан множества $A$ будет состоять из восьми элементов. Перечислим все подмножества множества $A$. Напомню, что пустое множество $\varnothing$ является подмножеством любого множества. Итак, подмножества таковы:

$$ \varnothing, \{-5 \}, \{ 10\}, \{ 9\}, \{-5,10 \}, \{-5, 9 \}, \{-10, 9 \}, \{-5, 10, 9 \} $$

Напомню, что подмножество $\{-5, 10, 9 \}$ является несобственным, так как совпадает с множеством $A$. Все остальные подмножества - собственные. Все записанные выше подмножества являются элементами булеана множества $A$. Итак:

$$ P(A)=\left\{\varnothing, \{-5 \}, \{ 10\}, \{ 9\}, \{-5,10 \}, \{-5, 9 \}, \{-10, 9 \}, \{-5, 10, 9 \} \right\} $$

Булеан найден, остаётся лишь записать ответ.

Ответ : $P(A)=\left\{\varnothing, \{-5 \}, \{ 10\}, \{ 9\}, \{-5,10 \}, \{-5, 9 \}, \{-10, 9 \}, \{-5, 10, 9 \} \right\}$.

Способы задания множеств.

Первый способ - это простое перечисление элементов множества. Естественно, такой способ подходит лишь для конечных множеств. Например, с помощью данного способа множество первых трёх натуральных чисел будет записано так:

$$ \{1,2,3\} $$

Часто в литературе можно встретить обозначения такого характера: $T=\{0,2,4,6,8, 10, \ldots \}$. Здесь множество задаётся не перечислением элементов, как кажется на первый взгляд. Перечислить все чётные неотрицательные числа, которые и составляют множество $T$, невозможно, ибо этих чисел бесконечно много. Запись вида $T=\{0,2,4,6,8, 10, \ldots \}$ допускается только тогда, когда не вызывает разночтений.

Второй способ - задать множество с помощью так называемого характеристического условия (характеристического предиката) $P(x)$. В этом случае множество записывается в таком виде:

$$\{x| P(x)\}$$

Запись $\{x| P(x)\}$ читается так: "множество всех элементов $x$, для которых высказывание $P(x)$ истинно". Что именно значит словосочетание "характеристическое условие" проще пояснить на примере. Рассмотрим такое высказывание:

$$P(x)="x\; - \;натуральное\; число,\; последняя\; цифра\; которого \;равна\; 7"$$

Подставим в это высказывание вместо $x$ число 27. Мы получим:

$$P(27)="27\; - \;натуральное\; число,\; последняя\; цифра\; которого \;равна\; 7"$$

Это истинное высказывание, так как 27 действительно является натуральным числом, последняя цифра которого равна 7. Подставим в это высказывание число $\frac{2}{5}$:

$$P\left(\frac{2}{5}\right)="\frac{2}{5}\; - \;натуральное\; число,\; последняя\; цифра\; которого \;равна\; 7"$$

Это высказывание ложно, так как $\frac{2}{5}$ не является натуральным числом. Итак, для некоторых объектов $x$ высказывание $P(x)$ может быть ложно, для некоторых - истинно (а для некоторых вообще не определено). Нас будут интересовать лишь те объекты, для которых высказывание $P(x)$ будет истинно. Именно эти объекты и образуют множество, заданное с помощью характеристического условия $P(x)$ (см. пример №3).

Третий способ - задать множество с помощью так называемой порождающей процедуры. Порождающая процедура описывает, как получить элементы множества из уже известных элементов или неких иных объектов (см. пример №4).

Пример №3

Записать множество $A=\{x| x\in Z \wedge x^2 < 10\}$ перечислением элементов.

Множество $A$ задано с помощью характеристического условия. Характеристическое условие в данном случае выражено записью "$x\in Z \wedge x^2 < 10$" (знак "$\wedge$" означает "и"). Расшифровывается эта запись так: "$x$ - целое число, и $x^2 < 10$". Иными словами, в множество $A$ должны входить лишь целые числа, квадрат которых меньше 10. Таких чисел всего 7, т.е.

$$ A=\{0,-1,1,-2,2,-3,3\} $$

Множество $A$ теперь задано с помощью перечисления элементов.

Ответ : $A=\{0,-1,1,-2,2,-3,3\}$.

Пример №4

Описать элементы множества $M$, которое задано такой порождающей процедурой:

  1. $3\in M$;
  2. Если элемент $x\in M$, то $3x\in M$.
  3. Множество $M$ - является подмножеством любого множества $A$, удовлетворяющего условиям №1 и №2.

Давайте пока оставим в покое условие №3 и посмотрим, какие элементы входят в множество $M$. Число 3 туда входит согласно первому пункту. Так как $3\in M$, то согласно пункту №2 имеем: $3\cdot 3\in M$, т.е. $9\in M$. Так как $9\in M$, то согласно пункту №2 получим: $3\cdot 9\in M$, т.е. $27\in M$. Так как $27\in M$, то по тому же пункту №2 имеем: $81\in M$. Короче говоря, построенное множество 3, 9, 27, 81 и так далее - это натуральные степени числа 3.

$$3^1=1; \; 3^2=9; \; 3^3=27; \; 3^4=81;\; \ldots$$

Итак, кажется, что искомое множество задано. И выглядит оно так: $\{3,9,27,81,\ldots \}$. Однако действительно ли условия №1 и №2 определяют только это множество?

Рассмотрим множество всех натуральных чисел, т.е. $N$. Число 3 - натуральное, посему $3\in N$. Вывод: множество $N$ удовлетворяет пункту №1. Далее, для любого натурального числа $x$ множество $N$ содержит также и число $3x$. Например, 5 и 15, 7 и 21, 13 и 39 и так далее. Значит, множество $N$ удовлетворяет условию №2. И, кстати сказать, не только множество $N$ удовлетворяет условиям №1 и №2. Например, множество всех нечётных натуральных чисел $N_1=\{1,3,5,7,9,11, \ldots\}$ тоже подходит под условия пунктов №1 и №2. Как же указать, что нам нужно именно множество $\{3,9,27,81,\ldots \}$?

Множество - это совокупность объектов, рассматриваемая как одно целое. Понятие множества принимается за основное, т. е. не сводимое к другим понятиям. Объекты, составляющие данное множество, называются его элементами. Основное отношение между элементом a и содержащим его множеством A обозначается так (a есть элемент множества A ; или a принадлежит A , или A содержит a ). Если a не является элементом множества A , то пишут (a не входит в A , A не содержит a ). Множество можно задать указанием всех его элементов, причем в этом случае употребляются фигурные скобки. Так {a , b , c } обозначает множество трех элементов. Аналогичная запись употребляется и в случае бесконечных множеств, причем невыписанные элементы заменяются многоточием. Так, множество натуральных чисел обозначается {1, 2, 3, ...}, а множество четных чисел {2, 4, 6, ...}, причем под многоточием в первом случае подразумеваются все натуральные числа, а во втором - только четные.

Два множества A и B называются равными , если они состоят из одних и тех же элементов, т. е. A принадлежит B и, обратно, каждый элемент B принадлежит A . Тогда пишут A = B . Таким образом, множество однозначно определяется его элементами и не зависит от порядка записи этих элементов. Например, множество из трех элементов a , b , c допускает шесть видов записи:

{a , b , c } = {a , c , b } = {b , a , c } = {b , c , a } = {c , a , b } = {c , b , a }.

Из соображений формального удобства вводят еще так называемое "пустое множество", а именно, множество, не содержащее ни одного элемента. Его обозначают , иногда символом 0 (совпадение с обозначением числа нуль не ведет к путанице, так как смысл символа каждый раз ясен).

Если каждый элемент множества A входит во множество B , то A называется подмножеством B , а B называется надмножеством A . Пишут (A входит в B или A содержится в B , B содержит A ). Очевидно, что если и , то A = B . Пустое множество по определению считается подмножеством любого множества.

Если каждый элемент множества A входит в B , но множество B содержит хотя бы один элемент, не входящий в A , т. е. если и , то A называется собственным подмножеством B , а B - собственным надмножеством A . В этом случае пишут . Например, запись и означают одно и то же, а именно, что множество A не пусто.

Заметим еще, что надо различать элемент a и множество {a }, содержащее a в качестве единственного элемента. Такое различие диктуется не только тем, что элемент и множество играют неодинаковую роль (отношение не симметрично), но и необходимостью избежать противоречия. Так, пусть A = {a , b } содержит два элемента. Рассмотрим множество {A }, содержащее своим единственным элементом множество A . Тогда A содержит два элемента, в то время как {A } - лишь один элемент, и потому отождествление этих двух множеств невозможно. Поэтому рекомендуется применять запись , и не пользоваться записью .

Людям постоянно приходится иметь дело с различными совокупностями предметов, что повлекло за собой возникновение понятия числа, а затем и понятия множества, которое является одним из основных простейших математических понятий и не поддается точному определению. Нижеследующие замечания имеют своей целью пояснить, что такое множество , но не претендуют на то, чтобы служить его определением.

Множеством называется собрание, совокупность, коллекция вещей, объединенных по какому-либо признаку или по какому-либо правилу. Понятие множества возникает путем абстракции. Рассматривая какую-либо совокупность предметов как множество, отвлекаются от всех связей и соотношений между различными предметами, составляющими множества, но сохраняют за предметами их индивидуальные черты. Таким образом, множество, состоящее из пяти монет, и множество, состоящее из пяти яблок, - это разные множества. С другой стороны, множество из пяти монет, расположенных по кругу, и множество из тех же монет, положенных одна на другую, - это одно и то же множество.

Приведем несколько примеров множеств. Можно говорить о множестве песчинок, составляющих кучу песка, о множестве всех планет нашей солнечной системы, о множестве всех людей, находящихся в данный момент в каком-либо доме, о множестве всех страниц этой книги. В математике тоже постоянно встречаются различные множества, например множество всех корней заданного уравнения, множество всех натуральных чисел, множество всех точек на прямой и т. д.

Математическая дисциплина, изучающая общие свойства множеств, т. е. свойства множеств, не зависящие от природы составляющих их предметов, называется теорией множеств. Эта дисциплина начала бурно развиваться в конце XIX и начале XX в. Основатель научной теории множеств - немецкий математик Г. Кантор.

Работы Кантора по теории множеств выросли из рассмотрения вопросов сходимости тригонометрических рядов. Это весьма обычное явление: очень часто рассмотрение конкретных математических задач ведет к построению весьма абстрактных и общих теорий. Значение таких абстрактных построений определяется тем, что они оказываются связанными не только с той конкретной задачей, из которой они выросли, но имеют приложения и в ряде других вопросов. В частности, именно так обстоит дело и с теорией множеств. Идеи и понятия теории множеств проникли буквально во все разделы математики и существенно изменили ее лицо. Поэтому нельзя получить правильного представления о современной математике, не познакомившись с элементами теории множеств. Особенно большое значение имеет теория множеств для теории функций действительного переменного.

Множество считается заданным, если относительно любого предмета можно сказать, принадлежит он множеству или не принадлежит. Иными словами, множество вполне определяется заданием всех принадлежащих ему предметов. Если множество \(M\) состоит из предметов \(a,\,b,\,c,\,\ldots\) и только из этих предметов, то пишут

\(M=\{a,\,b,\,c,\,\ldots\}\)

Предметы, составляющие какое-либо множество, принято называть его элементами. Тот факт, что предмет т является элементом множества \(M\) , записывается в виде

\(\Large{m\in M}\)


и читается: " \(m\) принадлежит \(M\) ", или " \(m\) есть элемент \(M\) ". Если же предмет \(m\) не принадлежит множеству \(M\) , то пишут: \(m\notin M\) . Каждый предмет может служить лишь одним элементом заданного множества; иными словами, все элементы (одного и того же множества отличны
друг от друга.

Элементы множества \(M\) могут сами быть множествами, однако, во избежание противоречий, приходится требовать, чтобы само множество \(M\) не было одним из своих собственных элементов: \(M\notin M\) .

Множество, не содержащее ни одного элемента, называется пустым множеством . Например, множество всех действительных корней уравнения

\(x^2+1=0\)


есть пустое множество. Пустое множество в дальнейшем будем обозначать через \(\varnothing\) .

Если для двух множеств \(M\) и \(N\) каждый элемент \(x\) множества \(M\) является также элементом множества \(N\) , то говорят, что \(M\) входит в \(\) , что \(M\) есть часть \(N\) , что \(M\) есть подмножество \(M\) или что \(M\) содержится в \(N\) ; это записывается в виде

\(M\subseteq N\) или \(N\supseteq M\)

Например, множество \(M=\{1,2\}\) есть часть множества \(N=\{1,2,3\}\) .

Ясно, что всегда \(M\subseteq M\) . Удобно считать, что пустое множество есть часть любого множества.

Два множества равны , если они состоят из одних и тех же элементов. Например, множество корней уравнения \(x^2-3x+2=0\) и множество \(M=\{1,2\}\) между собою равны.

Определим правила действий над множествами .

Объединение или сумма множеств

Пусть имеются множества \(M,N,P,\ldots\) . Объединением или суммой этих множеств называется множество \(X\) , состоящее из всех элементов, принадлежащих хотя бы одному из "слагаемых"

\(X=M+N+P+\ldots\) или \(X=M\cup N\cup P\cup\ldots\)

При этом, даже если элемент \(x\) принадлежит нескольким слагаемым, то он входит в сумму \(M\) лишь один раз. Ясно, что

\(M+M=M\cup M=M\)


и если \(M\subseteq N\) , то

\(M+N=M\cup N=N\)

Пересечение множеств

Пересечением или общей частью множеств \(M,N,P,\ldots\) . называется множество \(Y\) , состоящее из всех тех элементов, которые принадлежат одновременно всем множествам \(M,N,P,\ldots\) .

Ясно, что \(M\cdot M=M\) , и если \(M\subseteq N\) , то \(M\cdot N=M\) .

Если пересечение множеств \(M\) и \(N\) пусто: \(M\cdot N=\varnothing\) , то говорят, что эти множества не пересекаются .

Для обозначения операции суммы и пересечения множеств употребляют также знаки \(\textstyle{\sum}\) и \(\textstyle{\prod}\) . Таким образом,

\(E=\sum E_i\) есть сумма множеств \(E_i\) , a \(F=\prod E_i\) - их пересечение.

\(M(N+P)=MN+MP,\)


а также законом

\(M+NP=(M+N)(M+P).\)

Разность множеств

Разностью двух множеств \(M\) и \(N\) называется множество \(Z\) всех тех элементов из \(Z\) , которые не принадлежат \(N\) :

\(Z=M-N\) или \(Z=M\setminus N\) .

Если \(N\subseteq M\) , то разность \(Z=M\setminus N=M-N\) называют также дополнением к множеству \(N\) относительно \(M\) .

Нетрудно показать, что всегда

\(M(N-P)=MN-MP\) и \((M-N)+MN=M.\)

Таким образом, правила действий над множествами значительно отличаются от обычных правил арифметики.

Конечные и бесконечные множества

Множества, состоящие из конечного числа элементов, называются конечными множествами. Если же число элементов множества неограниченно, то такое множество называется бесконечным. Например, множество всех натуральных чисел бесконечно.

Рассмотрим два каких-либо множества \(M\) и \(N\) и поставим вопрос о том, одинаково или нет количество элементов в этих множествах.

Если множество \(M\) конечно, то количество его элементов характеризуется некоторым натуральным числом - числом его элементов. В этом случае для сравнения количества элементов множеств \(M\) и \(N\) достаточно сосчитать число элементов в \(M\) , число элементов в \(N\) и сравнить полученные числа. Естественно также считать, что если одно из множеств \(M\) и \(N\) конечно, а другое бесконечно, то бесконечное множество содержит больше элементов, чем конечное.

Однако, если оба множества \(M\) и \(N\) бесконечны, то путь простого счета элементов ничего не дает. Поэтому сразу возникают такие вопросы: все ли бесконечные множества имеют одинаковое количество элементов, или же существуют бесконечные множества с большим и меньшим количеством элементов? Если верно второе, то каким способом можно сравнивать между собой количество элементов в бесконечных множествах? Этими вопросами мы теперь и займемся.

Взаимно однозначное соответствие множеств

Пусть снова \(M\) и \(N\) - два конечных множества. Как узнать, какое из этих множеств содержит больше элементов, не считая числа элементов в каждом множестве? Для этого будем составлять пары, объединяя в пару один элемент из \(M\) и один элемент из \(N\) . Тогда, если какому-нибудь элементу из \(M\) не найдется парного к нему элемента из \(N\) , то в \(M\) больше элементов, чем в \(N\) . Поясним это рассуждение примером.

Пусть в зале находится некоторое число людей и некоторое число стульев. Чтобы узнать, чего больше, достаточно попросить людей занять места. Если кто-нибудь остался без места, значит, людей больше, а если, скажем, все сидят и заняты все места, то людей столько же, сколько стульев. Описанный способ сравнения количества элементов во множествах имеет то преимущество перед непосредственным счетом элементов, что он без особых изменений применяется не только к конечным, но и к бесконечным множествам.

Рассмотрим множество всех натуральных чисел

\(M=\{1,\,2,\,3,\,4,\,\ldots\}\)


и множество всех четных чисел

\(N=\{2,\,4,\,6,\,8,\,\ldots\}\)

Какое множество содержит больше элементов? На первый взгляд кажется, что первое. Однако мы можем образовать из элементов этих множеств пары, как указано ниже.


Таблица 1

\({\color{blue}\begin{array}{c|c|c|c|c|c} {\color{black}M} &{\color{black}1} &{\color{black}2} &{\color{black}3} &{\color{black}4} &{\color{black}\cdots}\\\hline {\color{black}N} &{\color{black}2} &{\color{black}4} &{\color{black}6} &{\color{black}8} &{\color{black}\cdots} \end{array}}\)


Ни один элемент \(M\) и ни один элемент \(N\) не остается без пары. Правда, мы могли бы также образовать пары и так:

Таблица 2

\({\color{blue}\begin{array}{c|c|c|c|c|c|c} {\color{black}M}&{\color{black}1}&{\color{black}2}&{\color{black}3}&{\color{black}4}&{\color{black}5}&{\color{black}\cdots}\\\hline {\color{black}N}&{\color{black}-}&{\color{black}2}&{\color{black}-}&{\color{black}4}&{\color{black}-}&{\color{black}\cdots} \end{array}}\)


Тогда многие элементы из \(M\) остаются без пар. С другой стороны, мы могли бы составить пары и так:

Таблица 3

\({\color{blue}\begin{array}{c|c|c|c|c|c|c|c|c} {\color{black}M}&{\color{black}-}&{\color{black}1}&{\color{black}-}&{\color{black}2}&{\color{black}-}&{\color{black}3}&{\color{black}-}&{\color{black}\cdots}\\\hline {\color{black}N}&{\color{black}2}&{\color{black}4}&{\color{black}6}&{\color{black}8}&{\color{black}10}&{\color{black}12}&{\color{black}14}&{\color{black}\cdots} \end{array}}\)


Теперь многие элементы из \(M\) остаются без пар.

Таким образом, если множества \(A\) и \(B\) бесконечны, то различным способам образования пар соответствуют разные результаты. Если существует такой способ образования пар, при котором у каждого элемента \(A\) и каждого элемента \(B\) имеется парный к нему элемент, то говорят, что между множествами \(A\) и \(B\) можно установить взаимно однозначное соответствие . Например, между рассмотренными выше множествами \(M\) и \(N\) можно установить взаимно однозначное соответствие, как
это видно из табл. 1.

Если между множествами \(A\) и \(B\) можно установить взаимно однозначное соответствие, то говорят, что они имеют одинаковое количество элементов или равномощны . Если же при любом способе образования пар некоторые элементы из \(A\) всегда остаются без пар, то говорят, что множество \(A\) содержит больше элементов, чем \(B\) , или что множество \(A\) имеет большую мощность, чем \(B\) .

Таким образом, мы получили ответ на один из поставленных выше вопросов: как сравнивать между собой количество элементов в бесконечных множествах. Однако это нисколько не приблизило нас к ответу на другой вопрос: существуют ли вообще бесконечные множества. имеющие различные мощности? Чтобы получить ответ на этот вопрос, исследуем некоторые простейшие типы бесконечных множеств.

Счетные множества. Если можно установить взаимно однозначное соответствие между элементами множества \(A\) и элементами множества всех натуральных чисел

\(Z=\{1,\,2,\,3,\,\ldots\},\)


то говорят, что множество \(A\) счетно . Иными словами, множество \(A\) счетно, если все его элементы можно занумеровать посредством натуральных чисел, т. е. записать в виде последовательности

\(a_1,~a_2,~\ldots,~a_n,~\ldots\)

Таблица 1 показывает, что множество всех четных чисел счетно (верхнее число рассматривается теперь как номер соответствующего нижнего числа).

Счетные множества это, так сказать, самые маленькие из бесконечных множеств: во всяком бесконечном множестве содержится счетное подмножество.

Если два непустых конечных множества не пересекаются, то их сумма содержит больше элементов, чем каждое из слагаемых. Для бесконечных множеств это правило может и не выполняться. В самом деле, пусть \(G\) есть множество всех четных чисел, \(H\) - множество всех нечетных чисел и \(Z\) - множество всех натуральных чисел. Как показывает таблица 4, множества \(G\) и \(H\) счетны. Однако множество \(Z=G+H\) вновь счетно.


Таблица 4

\({\color{blue}\begin{array}{c|c|c|c|c|c} {\color{black}G}&{\color{black}2}&{\color{black}4}&{\color{black}6}&{\color{black}8}&{\color{black}\cdots}\\\hline {\color{black}H}&{\color{black}1}&{\color{black}3}&{\color{black}5}&{\color{black}7}&{\color{black}\cdots}\\\hline {\color{black}Z}&{\color{black}1}&{\color{black}2}&{\color{black}3}&{\color{black}4}&{\color{black}\cdots} \end{array}}\)

Нарушение правила "целое больше части" для бесконечных множеств показывает, что свойства бесконечных множеств качественно отличны от свойств конечных множеств. Переход от конечного к бесконечному сопровождается в полном согласии с известным положением диалектики - качественным изменением свойств.

Докажем, что множество всех рациональных чисел счетно . Для этого расположим все рациональные числа в такую таблицу:


Таблица 5

\(\)

Здесь в первой строке помещены все натуральные числа в порядке их возрастания, во второй строке 0 и целые отрицательные числа в порядке их убывания, в третьей строке - положительные несократимые дроби со знаменателем 2 в порядке их возрастания, в четвертой строке - отрицательные несократимые дроби со знаменателем 2 в порядке их убывания и т. д. Ясно, что каждое рациональное число один и только один раз находится в этой таблице. Перенумеруем теперь
все числа этой таблицы в том порядке, как это указано стрелками. Тогда все рациональные числа разместятся в порядке одной последовательности:

Номер места, занимаемого
рациональным числом 1 2 3 4 5 6 7 8 9 . . .
Рациональное число 1. 2, О, 3, - 1, 4 -2 _

Этим установлено взаимно однозначное соответствие между всеми рациональными числами и всеми натуральными числами. Поэтому множество всех рациональных чисел счетно.

Множества мощности континуума

Если можно установить взаимно однозначное соответствие между элементами множества \(M\) и точками отрезка \(0\leqslant x\leqslant1\) , то говорят, что множество \(M\) имеет мощность континуума . В частности, согласно этому определению, само множество точек отрезка \(0\leqslant x\leqslant1\) имеет мощность континуума.

Из рис. 1 видно, что множество точек любого отрезка \(AB\) имеет мощность континуума. Здесь взаимно однозначное соответствие устанавливается геометрически, посредством проектирования.

Нетрудно показать, что множества точек любого интервала \(x\in\) и всей числовой прямой \(x\in[-\infty,+\infty]\) - имеют мощность континуума.

Значительно более интересен такой факт: множество точек квадрата \(0\leqslant x\leqslant1,\) \(0\leqslant y\leqslant1\) имеет мощность континуума. Таким образом, грубо говоря, в квадрате «столько же» точек, сколько и в отрезке.

В вашем браузере отключен Javascript.
Чтобы произвести расчеты, необходимо разрешить элементы ActiveX!


Последние материалы раздела:

Онлайн обучение профессии Программист 1С
Онлайн обучение профессии Программист 1С

В современном мире цифровых технологий профессия программиста остается одной из самых востребованных и перспективных. Особенно высок спрос на...

Пробный ЕГЭ по русскому языку
Пробный ЕГЭ по русскому языку

Здравствуйте! Уточните, пожалуйста, как верно оформлять подобные предложения с оборотом «Как пишет...» (двоеточие/запятая, кавычки/без,...

Математические, статистические и инструментальные методы в экономике: Ключ к анализу и прогнозированию
Математические, статистические и инструментальные методы в экономике: Ключ к анализу и прогнозированию

В современном мире, где экономика становится все более сложной и взаимосвязанной, невозможно переоценить роль аналитических инструментов в...