Основные термодинамические величины. Термодинамические величины

Термодинамическими величинами называют физические величины, применяемые при описании состояний и процессов в термодинамических системах.

Термодинамика рассматривает эти величины как некоторые макроскопические параметры и функции, присущие системе, но не связанные с её микроскопическим устройством. Вопросы микроскопического устройства изучает статистическая физика.

Вну́тренняя эне́ргия тела (обозначается как E или U) - это сумма энергий молекулярных взаимодействий и тепловых движений молекулы. Внутренняя энергия является однозначной функцией состояния системы. Это означает, что всякий раз, когда система оказывается в данном состоянии, её внутренняя энергия принимает присущее этому состоянию значение, независимо от предыстории системы. Следовательно, изменение внутренней энергии при переходе из одного состояния в другое будет всегда равно разности между ее значениями в конечном и начальном состояниях, независимо от пути, по которому совершался переход.

Энтальпи́я, также тепловая функция и теплосодержание - термодинамический потенциал, характеризующий состояние системы в термодинамическом равновесии при выборе в качестве независимых переменныхдавления,энтропиии числа частиц.

Проще говоря, энтальпия - это та энергия, которая доступна для преобразования в теплоту при определенных температуре и давлении.

44.Термодинамические величины. Энтропия и энергия Гиббса. Энтропия

Энтроп и я (от греч. entropía - поворот, превращение), понятие, впервые введенное в термодинамике для определения меры необратимого рассеяния энергии. Э. широко применяется и в других областях науки: встатистической физике как мера вероятности осуществления какого-либо макроскопического состояния; в теории информации как мера неопределенности какого-либо опыта (испытания), который может иметь разные исходы. Эти трактовки Э. имеют глубокую внутреннюю связь. Например, на основе представлений об информационной Э. можно вывести все важнейшие положения статистической физики.

Свободная энергия Гиббса (или просто энергия Гиббса, или потенциал Гиббса, или термодинамический потенциал в узком смысле) - это величина, показывающая изменение энергии в ходе химической реакции и дающая таким образом ответ на принципиальную возможность протекания химической реакции; это термодинамический потенциалследующего вида:

Энергию Гиббса можно понимать как полную химическуюэнергиюсистемы (кристалла, жидкости и т. д.)

45.Растворы. Характеристика растворов.

Общая характеристика растворов.

Растворами называются гомогенные системы переменного состава, в которых растворенное вещество находится в виде атомов, ионов или молекул, равномерно окруженных атомами, ионами или молекулами растворителя. Любой раствор состоит по меньшей мере из двух веществ, одно из которых считается растворителем, а другое - растворенным веществом. Растворителем считается компонент, агрегатное состояние которого такое же, как и агрегатное состояние раствора. Деление это довольно условно, а для веществ, смешивающихся в любых соотношениях (вода и ацетон, золото и серебро), лишено смысла. В этом случае растворителем считается компонент, находящийся в растворе в большем количестве.

45 )Растворы - однородная многокомпонентная система, состоящая из растворителя, растворённых веществ и продуктов их взаимодействия.

По агрегатному состоянию растворы могут быть жидкими (морская вода), газообразными (воздух) или твёрдыми (многие сплавы металлов).

Размеры частиц в истинных растворах - менее 10-9 м (порядка размеров молекул).

Ненасыщенные, насыщенные и перенасыщенные растворы

Если молекулярные или ионные частицы, распределённые в жидком растворе присутствуют в нём в таком количестве, что при данных условиях не происходит дальнейшего растворения вещества, раствор называется насыщенным. (Например, если поместить 50 г NaCl в 100 г H2O, то при 200C растворится только 36 г соли).

Насыщенным называется раствор, который находится в динамическом равновесии с избытком растворённого вещества.

Поместив в 100 г воды при 200C меньше 36 г NaCl мы получим ненасыщенный раствор.

При нагревании смеси соли с водой до 1000C произойдёт растворение 39,8 г NaCl в 100 г воды. Если теперь удалить из раствора нерастворившуюся соль, а раствор осторожно охладить до 200C, избыточное количество соли не всегда выпадает в осадок. В этом случае мы имеем дело с перенасыщенным раствором. Перенасыщенные растворы очень неустойчивы. Помешивание, встряхивание, добавление крупинок соли может вызвать кристаллизацию избытка соли и переход в насыщенное устойчивое состояние.

Ненасыщенный раствор - раствор, содержащий меньше вещества, чем в насыщенном.

Перенасыщенный раствор - раствор, содержащий больше вещества, чем в насыщенном.

В гетерогенных системах растворителем является то вещество которое находится в том же агрегатном состоянии что и раствор.

Например: вода+соль=солевой раствор

В гомогенных системах растворителем является ТО вещество, которого больше.

Например: вода+спирт=спиртовой раствор.

Процессы растворения сопровождаются физическими и химическими явлениями

Физические явления:

выделение или поглощение теплоты

изменение объема

Изменение окраски

Выделение запаха

Изменение агрегатного состояния

Химические явления

Изменение концентрации

Изменение вещества

Изменение рН

Классификация растворов:

по агрегатному состоянию

По концентрации

По размеру частиц растворенного вещества.(По степени десперсности

Истинные растворы(размер частиц раствора вещества меньше 10-7.

Коллоидные растворы (золи)(размер частиц 10-5см.-10-7см.).

Внутренняя энергия U,кДж/моль Полная энергия системы, равная сумме кинетической, потенциальной и других видов энергии всех частиц этой системы. Это функция состояния, приращение которой равно теплоте, полученной системой в изохорном процессе
Работа А, кДж/моль Энергетическая мера направленных форм движения частиц в процессе взаимодействия системы с окружающей средой
Теплота Q, кДж/моль Энергетическая мера хаотических форм движения частиц в процессе взаимодействия системы с окружающей средой.
Первый закон термодинамики ∆Q =∆ U + A Теплота, подведенная к системе, расходуется на увеличение внутренней энергии системы и на совершение системой работы против внешних сил окружающей среды
Энтропия S , Дж/(моль∙К) ∆S =Q / T, ∆S 0 р -ции =∑n i S i 0 (прод). - ∑ n i S i 0 (исх.) Функция состояния, характеризующая меру неупорядоченности системы
Энтальпия Н, кДж/моль ∆Н =∆U + p∆V Функция состояния, характеризующая энергетическое состояние системы в изобарных условиях
Энтальпия реакции (следствие из закона Гесса) ∆Н 0 р-ции =∑n i Н i 0 (прод). - ∑ n i Н i 0 (исх.)i 0 Тепловой эффект реакции при изобарных условиях зависит от природы и состояния исходных веществ и продуктов реакции, но не зависит от пути по которому протекает реакция
Энергия Гиббса G,кДж/моль ∆G = ∆H- T∆S ∆G 0 р-ции =∑n i G i 0 (прод). - ∑ n i G i 0 (исх.)i 0 Свободная энергия, функция состояния системы, учитывающая энергетику и неупорядоченность системы в изобарных условиях

Решение типовых задач

1. Запишем уравнение

2. Выпишем n

3. Выпишем значения DН 0

4. Проведем расчеты по формуле: DН 0 реак = åDН 0 прод -åD Н 0 исх

Задача 1. Определить тепловой эффект реакции взаимодействия оксида алюминия и оксида серы (VI) с образованием соли – сульфата алюминия.

Al 2 O 3 (т) + 3SO 3 (т) = Al 2 (SO 4) 3 (т) Выпишем n и DН 0

DН 0 298 -1676 -396 -3442

DН 0 реак = å(n ∙DН 0 прод) - å(n∙ D Н 0 исх);

где å- знак суммирования;

n – стехиометрические коэффициенты;

DН 0 - стандартные энтальпии образования химических веществ;

Алгоритм действия по вычислению энтальпии реакции:

1) Составляем уравнение реакции, правым нижним индексом указываем агрегатное состояние веществ.

2) По таблице приложения находим значения DН 0 298 образования Al 2 O 3 , SO 3 , Al 2 (SO 4) 3 и под каждым химическим символом в уравнении реакции подписываем значение DН 0 298 , взятое из таблицы с множителем, равным стехиометрическому коэффициенту;

3) Суммируем все значения энтальпий продуктов реакции и вычитаем из них сумму энтальпий исходных веществ.

4) Расчет: DН= (-3442) – = -578 кДж, т.е. реакция экзотермическая

Ответ: DН= -578 кДж.

Задача 2. Какой знак имеет DН, DS и TDS для экзотермической реакции:

2Н 2 (г) + О 2 (г) = 2Н 2 О (г)

Ответ : реакция экзотермическая, т.е. DН < 0.

При ее протекании объем системы уменьшается (из 3 моль газообразных веществ образуется 2 моль), т.е. DS<0, поэтому TDS<0.

Задача 3. В каком направлении – прямом или обратном – протекает реакция 2Н 2 (г) + О 2 (г) = 2Н 2 О (г)

а) Т=298 0 К (25 0 С), если DН= -484 кДж, TDS= -26 кДж

б) Т=1000 0 К (737 0 С), если DН= -484 кДж, TDS= -890 кДж

Решение:

Реакция возможна, если удовлетворяется условие: DН - TDS < 0

Подставим значения DН и TDS в это выражение.

а) при Т=298 0 К: -484-(-26) = -458 кДж,

т.е. реакция протекает в прямом направлении, ее осуществление обуславливает энтальпийный фактор.

б) Т=1000 0 К: -484-(-890) = 406 кДж,

в прямом направлении реакция невозможна из-за энтропийного фактора TDS (по абсолютной величине) >DН.

Задача 4.

Возможно ли протекание реакции восстановления оксида железа (III) водородом при стандартных условиях, если DS=0,1387 кДж/моль 0 К? При какой температуре будет проходить этот процесс?

Fe 2 O 3 + 3H 2 = 2 Fe + 3H 2 O, DH=96,61 кДж

Решение:

DG = DH-TDS = 96,61-298×0,1387=55,28кДж/моль;

в стандартных условиях эта реакция невозможна, т.к. DG > 0, при этих условиях идет коррозия (реакция окисления железа).

Вычислим температуру, при которой эта реакция становится возможной (Равновесие: DG = 0 Þ DН=ТDS).

Ответ : следовательно, при Т~ 696,5 0 К начинается реакция восстановления оксида железа (III).

Задача 5. Определить направление реакции в системе

CН 4 + СО 2 « 2СО + 2Н 2

Вычислим величину DG 0 298 прямой реакции. В таблице находим, что для СН 4 эта величина равна – 50,85 кДж/ моль, для СО 2 - 394,37 кДж /моль, для СО – 137,15 кДж /моль и для Н 2 0 кДж/моль. Согласно второму следствию из закона Гесса

DG 0 298 = – [(- 50,85) + (- 394,37)] =

170,92 кДж/моль

Ответ : Так как полученная величина больше нуля, то прямая реакция при стандартном состоянии системы протекать не может.

Задача 6.

Пользуясь справочными данными (см. приложение) рассчитайте изменение энтропии, энергии Гиббса и энтальпии в процессе усвоения в организме человека сахарозы, который сводится к её окислению:

С 12 Н 22 О 11 (к) + 12 О 2(г) → 12 СО 2(г) + 11Н 2 О (Ж)

n моль 1 12 12 11

∆ Н 0 кДж/моль-2222 0 –393,5 -286

∆ S 0 Д ж/моль360 205 214 70

∆ G 0 кДж/моль-1545 0 –394,4 -237

Решение:

∆ Н 0 реакции = -

[∆ Н 0 исхд. (С 12 Н 22 О 11 (к))+12 ∆ Н 0 исх (О 2(г)) ] = - [ -2222 + 12 0] = -5646 кДж/моль;

∆ S 0 реакции = -

[∆ S 0 исхд. (С 12 Н 22 О 11 (к))+12 ∆ S 0 исх (О 2(г)) ] = - = + 723 Дж/(моль К)

∆ G 0 реакции = -

[∆ G 0 исхд. (С 12 Н 22 О 11 (к))+12 ∆ G 0 исх (О 2(г)) ] = - [ (-1545)- 12 0] = -5794,8 кДж/моль;

Ответ: Н 0 реакции = -5646 кДж/моль;

∆ S 0 реакции = + 723 Дж/(моль К);

∆ G 0 реакции = -5794,8 кДж/моль;

Задания для индивидуальной самостоятельной работы

53. – 77. На основании стандартных энтальпий образования ΔН 0 298 и абсолютных энтропий DS 0 298 , которые даны в приложении, для каждого варианта веществ, определите:

· ΔН 0 298 реакции, DS 0 298 реакции и DG 0 298 реакции.

· Сделайте вывод о термодинамической вероятности протекания реакции при стандартных условиях;

· Сформулируйте законы термохимии, которыми вы пользовались при решении этой задачи.

Вариант Уравнение реакции Вариант Уравнение реакции
CO (г) + H 2 O (ж) → CO 2(г) + H 2(г) 2H 2 S + 3 O 2 → 2 H 2 O +2SO 2
H 2 + Cl 2 → 2HCl CO + Cl 2 → COCl 2
2C 2 H 2 + 5O 2 → 4CO 2 +2H 2 O 4NH 3 +3O 2 → 6H 2 O + 2N 2
H 2 +CO 2 →CO + H 2 O CS 2 + 3O 2 → CO 2 + 2SO 2
CO + 3H 2 → CH 4 + H 2 O Fe 2 O 3 + 3CO→ 2Fe + +3CO 2
C 2 H 4 + 3 O 2 → 2 CO 2 + 2 H 2 O 2H 2 S + SO 2 → 3S + 2H 2 O
4NH 3 +5O 2 → 4 NO + 6 H 2 O 2CH 3 OH+3O 2 → 2 CO 2 + 4H 2 O
NH 3 + HCl →NH 4 Cl CO + H 2 O → H 2 +CO 2
2H 2 O 2 → 2 H 2 O + O 2 2C 2 H 6 +7O 2 → 4CO 2 +6H 2 O
2SO 2 + O 2 →2SO 3 CH 4 +2O 2 →CO 2 + 2H 2 O
SO 2 + NO 2 →SO 3 + NO 4HCl + O 2 → 2 H 2 O +2Cl 2
CH 4 + 4Cl 2 →CCl 4 +4HCl 2PH 3 + 4O 2 → P 2 O 5 + 3H 2 O
SO 2 + 2H 2 S →3S + 2 H 2 O

78. Вычислите изменение энтропии при превращении 1 моля льда при -5 0 С в водяной пар при 105 0 С?

79. Вычислите энергию Гиббса при 373К, если ΔН 0 реакции 13873 Дж/моль, S = 42,2 Дж/(моль∙К)

80. Тепловой эффект реакции сгорания жидкого бензола с образованием паров воды и диоксида углерода равен -3135,58 кДж. Составьте термохимическое уравнение этой реакции и вычислите теплоту образования бензола.

81. – 86. По приведенным в таблице данным рассчитайте температуру (К), при которой равновероятны оба направления реакции:

Вариант Уравнение реакции ΔН 0 , кДж ∆S 0 , Дж/(моль∙К)
СО 2(г) + С (т) ↔ 2СО (г) +173 +176
N 2 (г) + 3H 2(г) ↔ 2NH 3(г) -92 -201
CO (г) + H 2(г) ↔ C (т) + H 2 O (г) -132 -134
2NO (г) + O 2(г) ↔ 2NO (г) -116 -147
PCl 5(г) ↔ PCl 3 (г) + Cl 2(г) +88 +171
2NO 2(г) ↔ N 2 O 4(г) -57 -176

Кинетика

Ответьте на вопросы:

1. В чём заключается кинетическая характеристика химической реакции?

2. Что понимают под скоростью химической реакции?

3. Почему в уравнении мгновенной скорости реакции перед производной стоят два знака?

4. Перечислите факторы, от которых зависит скорость химической реакции.

5. Чем отличается запись кинетического уравнения для гомогенных реакций от гетерогенных?

6. Какая стадия сложной реакции называется лимитирующей?

7. Какая реакция является реакцией первого порядка? Каким уравнением она описывается?

8. В каком случае порядок реакции и молекулярность реакции

а) совпадают, б) не совпадают? Какой случай встречается чаще?

9. Какой физический смысл константы скорости? От каких факторов она зависит?

10. Какова размерность констант скорости реакций первого и второго порядков?

11. Почему в большинстве случаев скорость химической реакции зависит от концентрации реагирующих молекул?

13. Почему при повышении температуры скорость реакций возрастает? Что такое энергия активация? Как и для чего её определяют?

14. Какие Вы знаете теории, объясняющие зависимость скорости реакции от температуры? В чем состоит их сходство и различия?

15. В чем сущность теории Аррениуса, описывающей влияние температуры на скорость реакции?

16. В какой зависимости находится скорость реакции от энергии активации? Какие вы знаете источники активации молекул?

17. Перечислите известные Вам виды катализа. В чем состоят особенности каталитических процессов? Покажите на конкретных примерах значение катализа в промышленности и жизни живых существ

18. В чем проявляется специфичность и избирательность катализаторов? Покажите это на примерах.

19. Почему катализаторы не влияют на смещение равновесия?

20. Как различные теории объясняют каталитическое действие? В чем особенности гетерогенного катализа?

21. Какой катализ называется ферментативным? В чем состоят особенности ферментативного катализа? Приведите примеры процессов, протекающих под действием ферментов.

22. Приведите примеры веществ, являющихся ингибиторами нитрификации, ингибиторами окислительно-восстановительных процессов, протекающих при хранении продуктов.

23. Приведите пример химической реакции, для которой была бы желательно, сравнительно низкая энергия активации. В каких случаях желательно иметь более высокую энергию активации?

24. Известно, что в почвах, где произрастают бобовые культуры, происходит превращение азота из воздуха в химически связанную форму, а в зеленых растениях протекает непосредственный синтез белков из нитратов и аммонийных соединений. Почему, при тех же температурах, концентрациях и давлениях перечисленные процессы неосуществимы чисто химическим путем в лабораторных или производственных условиях?

25. Какие реакции называются фотохимическими? Какими количественными закономерностями описываются эти процессы?

26. В чем состоит действие света в фотохимических реакциях?

27. В чем сущность фотосинтеза? Из каких стадий состоит фотохимический процесс?

28. Что такое квантовый выход?

29. В чем сущность закона Гротгуса? Как количество прореагировавшего при фотосинтезе вещества зависит от мощности света и от времени облучения растения?

30. В чем сущность закона фотохимической эквивалентности Эйнштейна?

Задания с выбором ответа

31. В ходе химической реакции тепловая энергия реакционной системы:

а) не изменяется; б) поглощается

в) выделяется; г) может поглощаться и выделяться.

32. Скорость химической реакции характеризует:

а) изменение количеств веществ за единицу времени в единице объёма или единице площади;

б) время, за которое заканчивается химическая реакция;

в) число структурных единиц вещества, вступивших в химическую реакцию;

г) движение молекул или ионов реагирующих веществ относительно друг друга.

33. Скорость химической реакции между цинком и кислотой зависит от:

а) понижения давления;

б) природы кислоты;

в) повышения давления;

г) присутствия катализатора.

34. При увеличении температуры на 30 0 скорость реакции возрастет в 8 раз. Чему равен температурный коэффициент реакции?

а) 8; б) 2; в) 3; г) 4

35. Скорость прямой реакции N 2 + 3H 2 = 2NH 3 + Q возрастает при:

а) увеличение концентрации азота;

б) уменьшение концентрации азота;

в) увеличение концентрации аммиака;

г) уменьшение концентрации аммиака

36. Во сколько раз изменится скорость реакции 2 А + Б = 2С, если концентрацию вещества А уменьшить в 2 раза?

а) увеличится в 4 раза; б) уменьшится в 2 раза

в) уменьшится в 4 раза; г) увеличится в 2 раза.

37. Химическое равновесие – это состояние обратимой реакции, при котором:

а) константы скоростей прямой и обратной реакции равны

б) концентрации реагентов и продуктов реакции равны

в) скорости прямой и обратной реакций равны

г) скорость обратной реакции равна нулю

38. Катализатор:

а) увеличивает число столкновений молекул реагентов в единицу времени

б) увеличивает скорости движения молекул реагентов

в) уменьшает энергию активации реакции

г) увеличивает тепловой эффект реакции

39. Во сколько раз изменится скорость реакции 2А + В = 2С, если концентрации веществ А и Б увеличить в 2 раза?

а) увеличится в 8 раза; б) уменьшится в 8 раза;

в) уменьшится в 4 раза; г) увеличится в 4 раза.

40. Что характеризует изменение концентрации реагирующих частиц:

а) скорость реакции; б) порядок реакции;

в) молекулярность; г) энергию активации.

Текущая версия страницы пока не проверялась

Текущая версия страницы пока не проверялась опытными участниками и может значительно отличаться от, проверенной 30 мая 2015; проверки требуют.

Единая терминология, относящаяся к термодинамическим величинам, отсутствует. Одна и та же физическая величина может называться термодинамической координатой, величиной, переменной, параметром, функцией или просто свойством в зависимости от контекста и роли, которую она выполняет в том или ином термодинамическом соотношении . Для некоторых понятий и терминов имеются рекомендации ИЮПАК и сборник определений, рекомендованных АН СССР для применения в научно-технической литературе, учебном процессе, стандартах и технической документации .

Схема, основанная на сборнике определений и книге , демонстрирует один из возможных вариантов классификации термодинамических величин:

Под состоянием термодинамической системы понимают совокупность её свойств . Все физические и физико-химические переменные, используемые для описания макроскопических свойств термодинамической системы, не зависящие от предыстории системы (от того, каким путём система пришла в текущее состояние), то есть полностью определяемые состоянием системы в данный момент времени, называют термодинамическими переменными состояния (параметрами состояния , функциями состояния ).

Состояние системы называют стационарным , если параметры системы с течением времени не изменяются. Состояние термодинамического равновесия представляет собой частный случай стационарного состояния. Всякое изменение состояния системы называют термодинамическим процессом . В любом процессе обязательно изменяется хотя бы одна переменная состояния. Непрерывную последовательность состояний, сменяющих друг друга при переходе системы из исходного состояния в конечное, называют путём процесса .

Поскольку одна и та же переменная состояния в разных задачах может выступать и как независимая переменная, и как функция других независимых переменных, термины «функция состояния», «параметр состояния» и «переменная состояния» иногда рассматривают как синонимы и называют функцией состояния любую переменную состояния, не проводя требуемого математикой разграничения между функцией , её аргументами и входящими в дефиницию функции числовыми коэффициентами.

Переменные состояния связаны между собой уравнениями состояния (термическим и калорическим) и другими соотношениями (например, уравнением Гиббса - Дюгема), поэтому для однозначной характеристики состояния системы оказывается достаточным знания только немногих величин, называемых независимыми переменными состояния . Остальные переменные состояния представляют собой функции независимых переменных - функции состояния - и определены однозначно, если заданы значения их аргументов . При этом для многих задач не имеет значения, известны ли конкретные уравнения состояния изучаемой системы; важно только, что соответствующие зависимости всегда реально существуют. Число независимых переменных состояния зависит от природы конкретной системы, а выбор их достаточно произволен и связан с соображениями целесообразности . После того, как выбор сделан, используемый набор переменных уже нельзя произвольно менять по ходу задачи. Значительная часть математического аппарата классической термодинамики (в том числе применение якобианов и преобразования Лежандра ) как раз посвящена решению проблемы замены переменных и перехода от одного набора независимых переменных к другому .

а в термическом уравнении состояния фотонного газа объём вообще не фигурирует:

Справедливо и обратное утверждение: если изменение термодинамической величины в цикле равно нулю, то эта величина - переменная состояния .

Пространство состояний, термодинамическая поверхность, диаграммы состояния

Абстрактное пространство, образуемое для закрытой термодеформационной системы тремя переменными состояния, две из которых независимы, а третья представляет собой их функцию, называют термодинамическим пространством состояний (термодинамическим пространством ). Переменные P-V-T -пространства состояний связаны термическим уравнением состояния

соответствующим термодинамической поверхности - геометрическому месту фигуративных точек , отображающих состояние системы в термодинамическом пространстве . Процессу в пространстве состояний соответствует линия, лежащая на этой поверхности .

Некоторые авторы подразумевают, что термодинамическое пространство образуют только независимые переменные , то есть оно в рассматриваемом нами случае не трёхмерно, а двумерно и представляет собой термодинамическую диаграмму состояния - плоскую проекцию трёхмерной термодинамической поверхности на одну из трёх координатных плоскостей. Каждому состоянию системы обратимо и однозначно соответствует точка на диаграмме состояния , а термодинамическому процессу - линия, которая на P-V -диаграмме носит название изотермы , P-T -диаграмме - изохоры , на V-T -диаграмме - изобары . Если на диаграмму состояния нанесены изолинии , то процесс изображают отрезком изотермы, изохоры или изобары.

Трёхмерное изображение термодинамической поверхности гетерогенной системы носит название объёмной фазовой диаграммы (пространственной фазовой диаграммы , трёхмерной фазовой диаграммы , трёхмерной диаграммы состояния ):

Проекция термодинамической поверхности гетерогенной системы на P-T -координатную плоскость представляет собой фазовую диаграмму , то есть диаграмму состояния с нанесёнными на неё линиями фазового равновесия :

В термодинамике переменные состояния разбивают на два класса - на те, которые имеют определённое значение в каждой точке , и те, которые имеют смысл только для системы в целом или её частей конечных размеров и обладают свойством аддитивности по размеру . Аддитивность переменной состояния означает, что её значения можно суммировать, так что значение переменной для системы равно сумме значений этой переменной для всех частей системы.

Переменные состояния однородной системы, не зависящие от её размеров, называют интенсивными . Термодинамика рассматривает любую интенсивную величину как локальную макроскопическую переменную , имеющую вполне определенное значение в каждой точке системы . Интенсивными термодинамическими переменными являются, например, давление, температура, химический потенциал, концентрация , плотность , мольные и удельные величины.

Экстенсивной называют переменную состояния, задаваемую глобально , то есть зависящую от размеров системы и характеризующую не заданную точку пространства, а некоторую конечных размеров часть системы или систему в целом . Поскольку экстенсивные переменные обладают свойством аддитивности, термины «экстенсивный» и «аддитивный» применительно к переменным состояния обычно рассматривают как синонимы . Аддитивность экстенсивной переменной означает, что эта переменная допускает дефиницию для любых термодинамических систем, включая неоднородные (которые всегда можно разбить на однородные части, если изначально требование однородности рассматривалось как необходимое при введении рассматриваемой переменной).

Примерами экстенсивных параметров являются объём, массы веществ, внутренняя энергия, энтропия, термодинамические потенциалы.

На свойстве аддитивности экстенсивных величин основан метод их измерения путём сравнения с эталоном . Измерение интенсивной величины покоится на использовании связи между изменениями интенсивной величины, с одной стороны, и изменениями подходящей экстенсивной величины, с другой стороны . Для измерения температуры жидкостным термометром в качестве такой экстенсивной величины можно использовать объём спирта или .

С точки зрения терминологии о любом растворе одинаково правильно говорить как о гомогенной системе и как об однофазной системой, а о кубиках льда в воде - как о гетерогенной системе и как о двухфазной системе. Выбор наиболее подходящего термина зависит от постановки рассматриваемой задачи, поскольку различие в терминах «термодинамическая система» и «термодинамическая фаза» отражает разницу в подходах к описанию системы и фазы. Под состоянием фазы понимают набор используемых для её описания интенсивных переменных . Такие интенсивные величины, как плотность, теплоёмкость, коэффициент термического расширения и др. характеризуют термодинамические свойства индивидуального вещества или раствора, образующего фазу. Само понятие термодинамической фазы было введено Гиббсом с целью «иметь термин, который относится только к составу и термодинамическому состоянию […] тела и для которого не имеет значения его величина или его форма» .

Для задания термодинамического состояния системы, то есть всей совокупности её свойств, недостаточно знания свойств фаз, образующих эту систему: в наборе независимых переменных системы должна быть представлена хотя бы одна экстенсивная величина, например объём или масса системы .

Число независимых интенсивных переменных, необходимых для задания состояния всех фаз системы, называют вариантностью системы . Число независимых переменных, необходимых для задания состояния системы с учётом масс всех её фаз, называют полной (общей) вариантностью системы . Вариантность и полную вариантность системы находят с помощью правила фаз Гиббса.

Ниже перечислены некоторые обобщённые координаты и силы :

Запишем для равновесной однородной термодинамической системы без разделения естественных независимых переменных внутренней энергии на энтропию, обобщённые координаты и массы компонентов

назовём термодинамическими потенциалами взаимодействия . С использованием координат состояния и потенциалов получаем дифференциальную форму фундаментального уравнения Гиббса в энергетическом выражении в следующем виде :

Принимая во внимание, что термическая координата есть энтропия , термический потенциал - абсолютная термодинамическая температура , деформационная координата флюида - объём , деформационный потенциал флюида - давление с отрицательным знаком , для закрытой термодеформационной системы получаем основное уравнение термодинамики в традиционном виде :

Термины «термодинамические координаты состояния» и «термодинамические потенциалы взаимодействия» использует предложенная А. А. Гухманом система построения и изложения термодинамики . Отказ от традиционной терминологии и обращение к новому понятийному аппарату позволяет системе Гухмана избежать коллизий, связанных с нетрадиционным использованием устоявшихся терминов.

Иногда переменные состояния делят на внешние , характеризующие окружающую среду и не зависящие от состояния рассматриваемой системы, и внутренние , характеризующие изучаемую систему . Другая дефиниция отождествляет внешние переменные с обобщёнными термодинамическими координатами . Следующая дефиниция отождествляет внешние переменные (объём, энтропию и массу системы) с термодинамическими координатами состояния . Согласно очередной дефиниции внешние переменные (объём, напряжённость силового поля и др.) есть переменные состояния, характеризующие систему, но оцениваемые через состояние внешней среды . Иначе говоря, они представляют собой функции характеристик окружающей среды (функции координат внешних тел ), зависящие от того, где проведена граница между системой и внешней средой (внешними телами), и от условий, в которых находится система, так что в разных ситуациях одна и та же величина может выступать в роли как внешней, так и внутренней переменной. Например, при фиксированном положении стенок сосуда объём флюида является внешней переменной, а давление - внутренней; в других условиях, когда система находится в цилиндре с подвижным поршнем под постоянным давлением, то уже давление будет внешней, а объём - внутренней переменной (объём твёрдого тела - внутренняя переменная, ибо он не зависит от свойств окружающих тел ). Условность деления переменных состояния на внешние и внутренние очевидна: рассматриваемую систему и окружающую её среду всегда можно рассматривать как часть единой расширенной системы, состоящей из изучаемой системы и окружающей её среды, и для такой расширенной системы все интересующие нас переменные состояния можно считать внутренними .

Известны и другие, помимо перечисленных, трактовки термина «внешняя переменная» . Отсутствие общепринятого истолкования затрудняет использование представления о внешних переменных.

Температуру системы обычно относят к внутренним переменным , но иногда её причисляют к переменным внешним .

Внешние переменные важны для тех способов построения/изложения термодинамики , в которых термодинамическую систему рассматривают как чёрный ящик : изменяя внешние переменные (напрямую связанные с совершаемой системой - или над системой - работой

Для чего нужен наш ресурс?

Главная цель нашего сайта - помощь ученикам и студентам, у которых возникают трудности с решением того или иного задания, или пропустившим какую-либо школьную тему. Также наш ресурс придет на помощь родителям учеников, сталкивающихся со сложностями проверки домашних работ детей.

На нашем ресурсе можно найти готовые домашние задания для любых классов от 1-го до 11-го по всем учебным предметам. Например, можно найти ГДЗ по математике, иностранным языками, физике, биологии, литературе и т.д. Для этого требуется просто выбрать нужный класс, требуемый предмет и решебники ГДЗ подходящих авторов, после чего нужно найти необходимый раздел и получить ответ на поставленное задание. ГДЗ позволяют максимально быстро проверить заданную ученику на дом задачу, а также подготовить ребенка к контрольной.

Как получить пятерку за домашнее задание?

Для этого необходимо зайти на наш ресурс, где размещены готовые домашние задания по всем дисциплинам школьной программы. При этом не нужно переживать за ошибки, опечатки и другие недочеты в ГДЗ, потому что все размещенные у нас пособия проверяли опытные специалисты. Все ответы к домашним заданиям правильные, поэтому мы можем уверенно сказать, что за любое из них вы получите 5-ку! Но не стоит бездумно все переписывать в свою тетрадь, наоборот нужно делать задания самим, после чего проверять их при помощи ГДЗ и только после этого переписывать их в чистовик. Это позволит вам получить нужные знания и высокую оценку.

ГДЗ онлайн

Сейчас никто не испытывает проблем с доступом к ГДЗ, потому что наш интернет-ресурс приспособлен под все современные устройства: ПК, ноутбуки, планшетники и смартфоны, у которых есть выход в интернет. Теперь даже на перемене можно зайти с телефона на наш сайт и узнать ответ абсолютно на любые задания. Удобная навигация и быстрая загрузка сайта, позволяет искать и просматривать ГДЗ максимально быстро и комфортно. Доступ к нашему ресурсу бесплатный, при этом регистрация проходит очень быстро.

ГДЗ новой программы

Школьная программа периодически изменяется, поэтому учащимся нужны постоянно новые учебные пособия, учебники и ГДЗ. Наши специалисты постоянно следят за нововведениями и после их внедрения сразу же размещают на ресурсе новые учебники и ГДЗ, чтобы у пользователей были в наличие последние издания. Наш ресурс является своеобразной библиотекой для школьников, которая требуются любому ученику для успешной учебы. Практически каждый год школьная программа становится сложнее, при этом вводятся новые предметы и материалы. Обучаться становится все труднее, но наш сайт позволяет упростить жизнь родителей и учеников.

Помощь студентам

Мы не забываем и про сложную загруженную жизнь студентов. Каждый новые учебный год поднимает планку в отношении знаний, поэтому не все студенты способны справиться с такой высокой нагрузкой. Длительные занятия, разнообразные рефераты, лабораторные и дипломные работы занимают почти все свободное время студентов. С помощью нашего сайта любой студент может облегчить свою повседневную жизнь. Для этого практически каждый день наши специалисты размещают на портале новые работы. Теперь студен можешь найти у нас шпаргалки для любого задания, причем совершенно бесплатно.

Теперь не нужно носить каждый день в школу огромное количество учебников

Чтобы позаботиться о школьниках, наши специалисты разместили на сайте в открытом доступе все учебники школьной программы. Поэтому сегодня любой ученик или родитель может воспользоваться ими, причем учащимся теперь не нужно ежедневно нагружать спину из-за ношения в школу тяжелых учебников. Достаточно скачать необходимые учебники на планшетник, телефон и другое современное устройство, и учебники будут всегда с вами в любом месте. Их можно читать и в режиме онлайн прямо на сайте - это очень комфортно, быстро и совершенно бесплатно.

Готовые школьные сочинения

Если от вас вдруг потребуют написать сочинение про какую-нибудь книгу, то помните, что на нашем сайте всегда можно найти огромное количество готовых школьных сочинений, которые написали мастера слова и одобрили преподаватели. Мы ежедневно расширяем перечень сочинений, пишем новые сочинения на многие темы и принимаем во внимание рекомендации пользователей. Это позволяет нам удовлетворять повседневные запросы всех школьников.

Для самостоятельного написания сочинений мы предусмотрели сокращенные произведения, их можно посмотреть и скачать тоже на сайте. В них находится основной смысл школьных литературных произведений, что значительно сокращает изучение книг и экономит силы ученика, которые требуются ему для изучения остальных предметов.

Презентации на разные темы

Если вам срочно требуется сделать какую-либо школьную презентацию на определенную тему, о которой вы не знаете ничего, то с помощью нашего сайта вы сможете это сделать. Теперь не стоит расходовать много времени на поиск изображений, фотографий, печатной информации и консультации по теме со специалистами и т.д., потому что наш ресурс создаёт качественных презентаций с мультимедийным контентом на любую тематику. Наши специалисты разместили на сайте большое количество авторских презентаций, которые можно бесплатно посмотреть и скачать. Поэтому обучение будет для вас более познавательным и комфортным, потому что у вас будет больше времени на отдых и на другие предметы.

Наши достоинства:

* большая база книг и ГДЗ;

* ежедневно обновляются материалы;

* доступ с любого современного гаджета;

* учитываем пожелания пользователей;

* делаем жизнь учеников, студентов и родителей более свободной и радостной.

Мы постоянно улучшаем свой ресурс, чтобы сделать жизнь своих пользователей более комфортной и беззаботной. С помощью gdz.host вы будете отличниками, поэтому перед вами откроются большие перспективы во взрослой жизни. В результате ваши родители будут гордиться вами, потому что вы будете хорошим примером для всех людей.

Исходные понятия. Термодинамические величины

Любое тело в природе находится в постоянном движении, которое количественно оценивается энергией - мерой форм движения. Энергия тела обусловлена суммой механической и внутренней энергии. Положение тела в пространстве и его скорость определяют механическую энергию, а скорости движения частиц (атомов и молекул) и их взаимное расположение - внутреннюю энергию. Эти величины позволяют оценить роль тела в протекании тепловых процессов. По аналогии с механической энергией тел внутреннюю энергию принято разделять на кинетическую энергию теплового движения и потенциальную энергию взаимодействия молекул тела. Необходимо отметить, что отдельно взятая молекула в каждый момент времени обладает некоторой мгновенной скоростью и положением среди других частиц, т. е. определенными значениями кинетической и потенциальной энергии, которые ее отличают от других молекул. Поэтому, оценивая состояние вещества, говорят о средних значениях кинетической и потенциальной энергий молекул.

При нагревании тела внутренняя энергия увеличивается, так как возрастает средняя скорость движения молекул. При охлаждении тела движение молекул замедляется и его внутренняя энергия уменьшается.

Степень нагрева тела характеризуется его температурой, которая является мерой средней кинетической энергии теплового движения молекул. Состояние тела, при котором тепловое движение атомов и молекул прекращается, соответствует абсолютному нулю температуры. Температура T, определенна по шкале с абсолютным нулем, называется абсолютной температурой и измеряется в Кельвинах (К). На практике, как правило, пользуются температурной шкалой в градусах Цельсия, в которой за нулевую точку условно принято состояние таяния льда при атмосферном давлении tв. Абсолютная температура в Кельвинах (К) и температура в градусах Цельсия (°С) связаны соотношением

В отличие от средней кинетической энергии теплового движения молекул, их средняя потенциальная энергия связана с удельным объемом тела. При изменении объема меняются расстояния между молекулами, что приводит к изменению средней потенциальной энергии и взаимодействия.

На практике часто объем V, м 3 занимаемый веществом, относят к его массе m, кг, и называют удельным объемом ν, м 3 /кг:

Величина р, обратная удельном объему, называется плотностью вещества. Она численно равна массе вещества, содержащемуся в единице объема, кг/м 3:

Молекулы газа при хаотическом движении сталкиваются с ограничивающими его стенками. При каждом соударении возникает импульс силы, действующей на ограничивающую поверхность. Среднее по времени значение силы, обусловленное ударами о стенку всех молекул, определяет давление газа р. Чем выше средняя скорость молекул, т. е. средняя кинетическая энергия, и чем больше молекул в единице объема, тем чаще и с большей энергией будут происходить на единице площади удары молекул и тем выше давление газа. Таким образом, давление р есть сила, равномерно действующая на поверхность, отнесенная к единице площади этой поверхности. За единицу измерения принят паскаль (Па): 1 Па = 1 Н/м 2 . Эта единица мала и неудобна для пользования, поэтому для измерения давлений применяют кратные единицы: килопаскаль (1 кПа =10 3 Па), мегапаскаль (1 МПа =10 6 Па).

Температура, объем, и давление характеризуют внутреннюю энергию вещества. Абсолютное значение внутренней энергии оценить невозможно, так как для нее не определена абсолютная нулевая точка отсчета. Поэтому оценивают только изменения этой энергии, связанные с переходом вещества из одного состояния в другое, т. е. разность энергии в конечном и начальном его состояниях. Изменение внутренней энергии при переходе тела из одного состояния в другое равно работе внешних сил плюс количество переданной теплоты - так формулируется первый закон термодинамики.

Характерным примером увеличения внутренней энергии только за счет работы внешних сил служит сжатие газа в цилиндре, в результате чего повышается давление, температура, изменяется объем газа. Расширение сжатого газа в цилиндре вызывает перемещение поршня, который совершает работу. Температура и давление газа падают, увеличивается его объем - это приводит к уменьшению внутренней энергии. Примером изменения внутренней энергии без совершения работы служит нагрев тела на плите либо охлаждение в холодильнике.

Процесс изменения внутренней энергии, при котором над телом не совершается работа, а энергия передается между двумя теплоносителями через разделяющую их твердую стенку, называют теплопередачей.

Количество внутренней энергии, которое тело получает или теряет при теплопередаче, называют количеством теплоты. Количество теплоты измеряют в джоулях (Дж), и оно показывает, на сколько изменилась внутренняя энергия вещества при подводе или отводе теплоты. 1 Дж равен работе, совершаемой силой в 1 H при перемещении тела на расстояние 1 м в направлении действия силы. На практике применяют и другую единицу для измерения количества теплоты - калорию.

Количество теплоты, переданное телу при нагревании, зависит от состава вещества, из которого состоит тело, его массы и степени нагрева. Одинаковое изменение температуры у разных веществ равной массы требует различное количество подведенной теплоты.

Для оценки свойства тела аккумулировать подведенную теплоту вводят понятие удельной теплоемкости. Удельная теплоемкость - это количество теплоты, которое необходимо для нагревания 1 кг вещества на 1 К. Удельная теплоемкость показывает, на сколько джоулей увеличивается внутренняя энергия 1 кг тела при нагревании на 1 °С. Например, удельная теплоемкость свинца 130 Дж/(кг*К), а воды - 4200 Дж/(кг*К).

Таким образом, общее количество подведенной к телу теплоты Q, Дж, для различных температур

Q =С р m(T кон -Т нач)

где С р - удельная теплоемкость,

m - масса, кг;

T кон,Т нач - температуры соответственно конечная и начальная, К.

Отметим, что Q и С р характеризуют только изменение, а не саму внутреннюю энергию вещества.

Количество подведенной к телу теплоты можно определить и другим способом. Немецкий физик Клаузиус открыл, что подобно энергии, давлению, температуре существует некоторая величина s - энтропия, которая также характеризует состояние тела. Энтропия устанавливает связь между температурой тела и количеством переданной теплоты и измеряется в джоулях на кельвин (Дж/К).

Энтропия, отнесенная к единице массы, называется удельной и выражается в джоулях на килограмм-кельвин.



Количество подведенной (отведенной) теплоты к 1 кг массы тела, выраженное через удельную энтропию,

Q=Tm(S кон -S нач)

где Т - средняя температура тела, К; m - масса, кг;

S кон,S нач - удельные энтропии соответственно в конце и начале теплообмена, Дж/(кг.К).

Энтропия обладает замечательным свойством оценивать необратимые потери в термодинамических процессах.

Для оценки количества теплоты, которым располагают тела в различных состояниях, используется термодинамическая величина - энтальпия, значение которой отсчитывают от некоторого условного состояния вещества, принятого за нулевое. Энтальпия - это количество энергии (тепловой и механической), которое необходимо подвести к телу, чтобы оно перешло из условного начального в конечное состояние. Единица энтальпии джоуль (Дж). Энтальпия, отнесеная к единице массы, называет удельной и измеряется в джоулях на килограмм (Дж/кг).



Последние материалы раздела:

Изменение вида звездного неба в течение суток
Изменение вида звездного неба в течение суток

Тема урока «Изменение вида звездного неба в течение года». Цель урока: Изучить видимое годичное движение Солнца. Звёздное небо – великая книга...

Развитие критического мышления: технологии и методики
Развитие критического мышления: технологии и методики

Критическое мышление – это система суждений, способствующая анализу информации, ее собственной интерпретации, а также обоснованности...

Онлайн обучение профессии Программист 1С
Онлайн обучение профессии Программист 1С

В современном мире цифровых технологий профессия программиста остается одной из самых востребованных и перспективных. Особенно высок спрос на...