Основы экологии. Живое вещество и его функции

Все экологические процессы протекают в системах, включающих в свой состав живое вещество, поэтому важно уметь отличать живое вещество от других видов веществ (неорганических, косных, биокосных и др.).

Живое вещество - это то, что образует совокупность тел всех независимо от их принадлежности к той или иной систематической группе. Общая масса (в сухом виде) живого вещества на планете Земля составляет (2,4-3,6) * 10 12 тонн.

Живое вещество неотделимо от и является его функцией, а также одной из самых могущественных геологических сил на . Оно представляет собой неразрывное молекулярно-биологическое единство, системное целое с характерными признаками, общими для всей эпохи его существования, а также для каждой отдельной геологической эпохи. Уничтожение отдельных компонентов живого вещества может привести к нарушению системы в целом, т. е. к экологической катастрофе и гибели системы живого вещества в целом.

Рассмотрим некоторые наиболее общие вещества вне зависимости от геологической эпохи его существования.

1. Система, состоящая из живого вещества (организм), способна к росту, т. е. она увеличивается в размерах.

2. Организм (живой) в течение времени своего существования сохраняет свои наиболее типичные признаки и способен передавать эти признаки по наследству, т. е. является носителем и передатчиком .

3. Живой организм в процессе своей жизни способен к развитию, которое делится на два периода - эмбриональное и постэмбриональное.

4. Живое вещество как отдельный организм, способно к размножению, благодаря чему обеспечивается существование данного вида в течение длительного (с исторических позиций) времени.

5. Для живого вещества характерен направленный обмен веществ.

Уровни организации живого вещества

Живое вещество как совокупность всех организмов, живущих на Земле, состоит из нескольких царств (Прокариоты, Животные, Растения, Грибы), которые находятся в сложных взаимоотношениях. Живое вещество имеет сложное строение и разные уровни организации. Рассмотрим некоторые из них в порядке усложнения.

1. Молекулярно-генный (суборганизменный) - особая форма организации живого, присущая всем без исключения организмам, представляющая собой совокупность различных органических и неорганических веществ, связанных между собой определенной структурой и системой биохимических процессов, позволяющих сохранять данную совокупность соединений как целостную систему, способную к росту, развитию, самосохранению и размножению в течение всего времени существования этого организма, т. е. до смерти.

2. Клеточный - все живое (кроме неклеточных форм жизни) образовано особыми структурами - клетками, которые имеют строго определенное строение, присущее как организмам из царства Растения, так и организмам из царств Животные и Грибы; некоторые организмы состоят из одной клетки, поэтому такие организмы при клеточном уровне соответствуют и новому уровню организации - организменному (см. пятый уровень организации).

3. Тканевый - характерен для сложных многоклеточных организмов, у которых произошла специализация клеток по выполняемым функциям, что привело к образованию тканей - совокупности клеток, имеющих одинаковое происхождение, близкое строение и выполняющих одинаковые или близкие по характеру функции; различают растительные и животные так, у растений выделяют покровные, основные, механические, проводящие ткани и меристемы (ткани роста); у животных - покровные, нервные, мышечные и соединительные ткани.

4. Органный - у высокоорганизованных организмов ткани образуют структуры, предназначенные для выполнения определенных функций, которые называются органами, а органы объединяются в системы органов (например, желудок входит в состав пищеварительной системы).

5. Организменный - системы органов объединены в , при функционировании которого реализуется жизнедеятельность конкретного живого существа; известно, что в природе существует большое число одноклеточных организмов.

6. Популяционно-видовой - особи одного вида образуют особые группировки, живущие на данной конкретной территории и занимающие определенную экологическую нишу, которые называются популяциями, а популяции одинаковых организмов образуют подвиды и виды.

7. Биогеоценотический - этот уровень организации живого вещества связан с тем, что на данной территории проживает определенное количество популяций различных видов (как животных, так и растений, грибов, прокариотов и неклеточных форм жизни), которые взаимосвязаны друг с другом различными связями, в том числе и пищевыми.

8. Биосферный - это высший уровень организации живого на планете Земля, представляющий собой всю совокупность живых существ, живущих на ней, которые взаимосвязаны друг с другом планетарным круговоротом химических элементов и химических соединений; нарушение этого круговорота может привести к глобальной катастрофе и даже к гибели всего живого.

Следовательно, 1-5 уровни организации характерны для отдельно взятого организма, а 6-8 - для совокупности организмов. Необходимо помнить, что человек - это составная часть живого вещества на планете Земля, но его деятельность из-за наличия разума значительно отличается от деятельности других организмов, и, тем не менее, он составная часть природы, а не ее «царь».

Краткая характеристика химического состава живого вещества

Живое вещество представляет собой сложную систему биоорганических, органических и неорганических соединений. В составе живого вещества обнаружены практически все устойчивые химические элементы, известные человеку, но в разных количествах. Эти подразделяют на биогенные и небиогенные, исходя из их роли в живых организмах.

Основу живого вещества составляют биоорганические и органические соединения. К биоорганическим веществам относят , нуклеиновые кислоты, витамины, и . Эти вещества называют биоорганическими потому, что эти соединения вырабатываются в организмах и без этих веществ жизнь принципиально невозможна (особенно это относится к белкам и нуклеиновым кислотам). Примером органических веществ, входящих в состав живого вещества, являются органические кислоты (яблочная, уксусная, молочная и др.), мочевина и другие химические соединения.

Общая характеристика клеточных организмов, их классификация по наличию ядра в клетке

Клеточные организмы преобладают над неклеточными и имеют сложную классификацию. При изучении строения клетки было обнаружено, что большинство клеточных форм организмов в составе клеток обязательно содержит особый органоид - ядро. Однако в клетках некоторых организмов ядро отсутствует. Поэтому клеточные организмы разделяют на две большие группы - ядерные (или эукариоты) и безъядерные (или прокариоты). В данном подразделе рассмотрим прокариоты.

Прокариотами (безъядерными) называют организмы, клетки которых не имеют отдельно сформированного ядра.

К безъядерным организмам относятся бактерии и сине-зеленые водоросли, которые образуют царство Дробянки, входящее в надцарство Доядерные, или Прокариоты. В практическом отношении наибольшее значение имеют бактерии.

Тело бактерий состоит из одной клетки разной формы, которая имеет оболочку и цитоплазму. Ярко выраженные органоиды отсутствуют; в клетке содержится одна молекула ДНК; она замкнута в кольцо, место ее нахождения в цитоплазме называется нуклеоидом.

По форме клетки бактерии разделяют на кокки (шарообразные), бациллы (палочкообразные), вибрионы (дугообразно изогнутые), спириллы (изогнутые в форме спирали).

Бактерии размножаются обычным делением (в благоприятных условиях каждое деление осуществляется за 20-30 минут). При наступлении неблагоприятных условий клетка бактерии превращается в спору, обладающую высокой устойчивостью к воздействию различных факторов - температуры, влажности, радиации. Попадая в благоприятные условия, споры набухают, их оболочки разрываются и бактериальные клетки становятся жизненно активными.

По отношению к кислороду различают анаэробные (живут в средах, где нет молекулярного кислорода) и аэробные (для их жизни необходим О 2), существуют также бактерии, которые могут жить и в аэробной, и в анаэробной среде.

Вид, его критерии и экологическая характеристика

Живое вещество в природе существует в виде отдельных дискретных таксономических единиц - видов (биологических видов).

Биологический вид (вид) - совокупность особей, обладающих общими морфофизиологическими признаками, биохимическим, генетическим (наследственным) сходством, свободно скрещивающихся друг с другом и дающих плодовитое потомство, приспособленных к сходным условиям существования, занимающих в природе определенный ареал (область распространения), т. е. занимающих одну и ту же экологическую нишу.

Виды образованы популяциями и подвидами (последнее характерно не для всех видов). Биологический вид характеризуется следующими критериями:

1) генетическим, т.е. все особи данного вида обладают одинаковым набором хромосом;

2) биохимическим, т. е. для всех особей этого вида характерны одинаковые химические соединения ( , нуклеиновые кислоты и др.), которые отличаются от аналогичных соединений других видов;

3) морфофизиологическим, т. е. организмы одного вида имеют общие признаки внешнего и внутреннего строения и характеризуются одинаковыми процессами, обеспечивающими их жизнедеятельность;

4) экологическим, т. е. особи данного вида вступают в одинаковые (отличные от других видов) взаимоотношения с природной средой;

5) историческим - особи данного вида имеют одинаковое происхождение и в процессе внутриутробного развития проходят одинаковый цикл этого развития согласно биогенетическому закону;

6) географическим - особи данного вида проживают на определенной территории и приспособлены к существованию на данной территории.

В науке «экология» широко используют следующие разновидности термина «вид».

1. Вид вредный - наносящий человеку хозяйственный урон или вызывающий заболевания; понятие относительное, так как любой вид, живущий на планете, занимает определенную экологическую нишу и выполняет определенную экологическую роль; например, волк может наносить большой урон хозяйственной деятельности человека, но он является «санитаром» природы, играет большую роль в «отбраковке» нежизнеспособных особей тех видов, которыми он питается.

2. Вымерший вид - это вид, который исчез в результате процессов эволюции, например, птеродактиль.

3. Вымирающий вид - такой вид, свойства которого не соответствуют современным условиям существования и генетические возможности к приспособлению к жизни в новых условиях практически исчерпаны; такие виды могут сохраниться только в результате полного его окультивирования (заносится в Красную книгу).

4. Исчезающий вид - вид организмов, находящихся под угрозой вымирания за счет того, что численность сохранившихся особей недостаточна для воспроизводства вида, но генетически вид имеет благоприятные возможности для приспособления к условиям внешней среды (заносится в Красную книгу как вид, находящийся под угрозой).

5. Охраняемый вид - вид, преднамеренное нанесение вреда особям которого и нарушение среды его обитания запрещено определенными законодательными актами разного ранга (международными, государственными, местными), например соболь и др.

Структура вида состоит в том, что он образован отдельными особями, объединенными в популяции и подвиды. Наличие подвидов характерно только для тех видов, которые имеют большие ареалы, характеризующиеся разнообразными условиями.

Популяция - группа особей данного вида, способных к скрещиванию и производству полноценного потомства, проживающих на данной территории, имеющей естественные границы с другими территориями, что затрудняет скрещивание особей данной популяции с особями другой. Следует помнить, что экологической единицей вида является популяция.

Популяции разных видов, проживающих на данной территории, образуют биоценоз, в котором эти популяции связаны друг с другом различными связями, в том числе и пищевыми.

Неорганические вещества и их роль в живом веществе

Живое вещество, как и любое другое вещество, образовано атомами химических элементов, входящих в состав неорганических и органических соединений, совокупность которых образует живое вещество, качественно отличающееся и от неорганических, и от органических индивидуальных химических соединений.

Неорганическими называют вещества, в составе которых отсутствуют атомы углерода (кроме самого углерода, его оксидов, угольной кислоты, ее солей, родана, родановодорода, роданидов, циана, циановодорода, цианидов).

В состав организмов входят вода, некоторые соли натрия, калия, кальция и других химических элементов.

Краткая характеристика роли некоторых оксидов, гидроксидов и солей в живом веществе

Из оксидов в организмах большое значение имеет углекислый газ (углекислота, оксид углерода (IV), диоксид (двуокись) углерода). Это вещество является одним из продуктов дыхания (для всех организмов!). При растворении в воде (например, в цитоплазме, плазме крови и т. д.) углекислый газ образует угольную кислоту, которая при диссоциации распадается на гидрокарбонат-ионы (НСО 3) и карбонат-ионы (СО 2- 3), образующие (совместно) карбонатную буферную систему, стабилизирующую реакцию среды. Избыток СO 2 удаляется из организма в результате процессов, протекающих при (у всех организмов: и у растений, и у животных).

Важнейшими гидроксидами, содержащимися в живом веществе, являются угольная (Н 2 СO 3), фосфорная (Н 3 РO 4) и некоторые другие кислоты. Как указано выше (на примере угольной кислоты), эти гидроксиды способствуют созданию буферных систем в водных растворах, что приводит к стабилизации реакции среды в протоплазме или в других жидких средах, содержащихся в организме. Фосфорная кислота играет огромную роль в образовании различных фосфорсодержащих соединений (например, в образовании АДФ из АМФ или АТФ из АДФ; АТФ - аденозинтрифосфат, АДФ - аденозиндифосфат, АМФ - аденозинмонофосфат; эти вещества играют большую роль в процессах диссимиляции и ассимиляции).

Важна для организмов и хлороводородная (соляная) кислота (НСI). Она содержится в желудочном соке или в растворах, которые способствуют перевариванию пищи (например, в желудке человека).

В организмах находятся в диссоциированном состоянии, т. е. в виде ионов. Рассмотрим биологическую роль некоторых анионов (отрицательно заряженных ионов) и катионов (положительно заряженных ионов) в живом веществе.

Краткая характеристика биологической роли катионов

В живом веществе наибольшее значение имеют следующие катионы: К + , Са 2+ , Na + , Mg 2+ , Fе 2+ , Мn 2+ и некоторые другие.

1. Катионы натрия (Nа +). Эти ионы создают определенное осмотическое давление (Осмотическое давление возникает в водных растворах и является силой, под воздействием которой осуществляется осмос, т.е. односторонняя диффузия веществ через полупроницаемую мембрану). Кроме того, совместно с катионами калия (К+) за счет различной проницаемости клеточной мембраны, они создают мембранное равновесие, при котором возникает разность биохимических потенциалов, что обеспечивает проводимость клеток и тканей организма; участвуют в водном и ионном обмене организма в целом. В организм (клетку) поступают в виде водного раствора хлорида натрия. У животных и человека в результате потоотделения может теряться большое количество хлорида натрия, что резко снижает их работоспособность. Данные ионы совместно с некоторыми органическими и неорганическими анионами регулируют кислотно-щелочное равновесие (например, с ионами НСO — 3 , СН 3 СОО — и др.).

2. Катионы К + . Эти ионы совместно с ионами Nа + создают мембранное равновесие. Они активизируют белкового синтеза, а в организмах высших животных и человека влияют на биоритмы сердца. Ионы К + входят в состав макроудобрений - калийных и существенно влияют на продуктивность сельскохозяйственных растений.

3. Катионы Са 2+ . Данные ионы являются антагонистами ионов К + (т. е. проявляют противоположное действие по сравнению с последними). Они входят в состав мембранных структур, образуют пектиновые вещества, которые образуют межклеточное вещество в растительных организмах. Эти ионы в составе солей кальция участвуют в образовании важнейшей соединительной ткани - костной, которая образует скелет позвоночных животных и человека и некоторых др. организмов (например, кишечнополостных и др.). Осуществляют регуляцию процессов образования клеток, участвуют в реализации мышечных сокращений, играют большую роль в свертывании крови и в др. процессах.

4. Катионы Мg 2+ . Роль этих ионов аналогична (в ряде случаев) роли ионов Са 2+ и они содержатся в организмах в определенных соотношениях. Кроме того, ионы Мg 2+ входят в состав важнейшего фотосинтезирующего пигмента растений - хлорофилла, активизируют синтез ДНК и участвуют в реализации энергетического обмена.

5. Ионы Fе 2+ . Играют большую роль в жизни многих животных, так как входят в состав важнейшего дыхательного пигмента - гемоглобина, участвующего в процессе дыхания. Они входят в состав мышечного белка - миоглобина, принимают участие в синтезе хлорофилла, т.е. ионы Fе 2+ являются основой соединений, посредством которых реализуются многие окислительно-восстановительные процессы.

6. Ионы Си 2+ , Мn 2+ , Сг 3+ и ряд других ионов также принимают участие в окислительно-восстановительных процессах, реализующихся в различных организмах (эти ионы входят в состав сложных металлоорганических соединений).

Краткая характеристика биологической роли некоторых анионов

Наибольшее значение имеют анионы Н 2 РО — 4 , НРО 2- 4 , Сl — , I — , РО 3- 4 , Вг — , F — , НСО — 3 , NO — 3 , SО 2- 4 и ряд др. Кратко рассмотрим роль некоторых из этих ионов в различных организмах.

1. Нитрат- и нитрит-ионы (NO — 3 , NO — 2 , соответственно).

Ионы, содержащие азот, играют большую роль в организмах растений, так как в своем составе содержат связанный азот и используются (наряду с катионами аммония - NH + 4) для синтеза азотсодержащих «веществ жизни» - белков и нуклеиновых кислот. При поступлении избытка этих ионов в организм растения они накапливаются в них и, попадая (в составе пищи) в организм человека и животных, могут вызывать нарушения в обмене веществ этих организмов («нитратное и нитритное отравление»). Это делает необходимым оптимальное использование азотных удобрений при их внесении в почву.

2. Гидро- и дигидрофосфат-ионы (НРО 2- 4 , Н 2 РО 4 - соответственно).

Эти ионы участвуют в обмене веществ и являются необходимыми при синтезе нуклеиновых кислот, моно-, ди- и триаденозин-фосфатов, играющих большую роль в энергетическом обмене и синтезе органических веществ в различных организмах (растительных, животных и др.). Данные ионы участвуют в поддержании кислотно-основного равновесия, сохраняя в определенных пределах постоянство реакции среды.

3. Сульфат-ионы (SO 2 4) - источник серы, необходимый для синтеза серосодержащих природных альфа-аминокислот, используемых при получении белков. Необходимы для процессов синтеза некоторых витаминов, ферментов (в организмах растений). В организмах животных сульфат-ионы являются продуктом реакций обезвреживания химических соединений, образующихся в печени.

4. Галогенид-ионы (Сl — - хлорид-ионы, Вг - бромид-ионы, I — - иодид-ионы, F — - фторид-ионы). Они являются противоионами для катионов (особенно Сl —), то есть создают нейтральную систему с катионами. Система ионов (катионов и анионов) создает вместе с водой осмотическое давление и тургор; хлорид-ионы относятся к макроэлементам для животных, а остальные галогенид-ионы являются микроэлементами, т.е. необходимы любым организмам в небольших (микро-) количествах. Значение иодид-ионов состоит в том, что они входят в состав важнейшего гормона - тироксина, а избыток и недостаток этих ионов приводит к появлению различных заболеваний у человека (миксидема и базедова болезнь). Фторид-ионы влияют на обмен в костной ткани зубов, бромид-ионы входят в состав химических соединений, содержащихся в гипофизе.

Общая характеристика и классификация органических соединений, входящих в состав живого вещества, и их экологическая роль

Вещества, в состав которых входят атомы углерода (исключая углерод, его оксиды, угольную кислоту, ее соли, родан, родано-водород, роданиды, циан, циановодород, цианиды, карбонилы и карбиды), называются органическими.

Органические вещества имеют очень сложную классификацию. Некоторые из этих веществ не содержатся в организмах (ни в живых, ни в мертвых). Они были получены искусственным путем и в природе не встречаются. Ряд органических соединений не «усваивается» организмами, т.е. не разлагается в природе под воздействием редуцентов и детритофагов. К таким соединениям относят полиэтилен, СМС (синтетические моющие средства), некоторые ядохимикаты и др. Поэтому при использовании органических веществ, полученных человеком химическим путем, необходимо учитывать их способность подвергаться различным превращениям в природных условиях, т. е. «усвоение» этих веществ биосферой.

Органические вещества, содержащиеся в организме, имеют большое экологическое значение, недостаток, избыток или отсутствие того или иного вещества приводят либо к различным заболеваниям, либо к гибели данного организма. Наибольшее значение имеют , нуклеиновые кислоты, углеводы, жиры и витамины.

«На земной поверхности нет химической силы , более постоянно действующей , а потому и более могущест­венной по своим конечным последствиям , чем живые организ­мы , взятые в целом» , - писал В. И. Вернадский о живом ве­ществе биосферы.

Живое вещество, по словам Вернадского, выполняет косми­ческую функцию, связывая Землю с космосом и осуществляя процесс фотосинтеза. Используя солнечную энергию, живое ве­щество выполняет гигантскую химическую работу.

По Вернадскому, который впервые рассмотрел функции жи­вого вещества в своей знаменитой книге «Биосфера», таких функций девять: газовая, кислородная, окислительная, кальцие­вая, восстановительная, концентрационная, функция разруше­ния органических соединений, функция восстановительного раз­ложения, функция метаболизма и дыхания организмов.

В настоящее время с учетом новых исследований различают следующие функции.

Энергетическая функция

Поглощение солнечной энергии при фотосинтезе и химической энергии при разложении энергонасыщенных ве­ществ, передача энергии по пищевым цепям.

В результате осуществляется связь биосферно-планетарных явлений с космическим излучением, преимущественно с солнечной радиацией. За счет накопленной солнечной энергии протекают все жизненные явления на Земле. Недаром Вернадский назвал зеле­ные хлорофилльные организмы главным механизмом биосферы.

Поглощенная энергия распределяется внутри экосистемы между живыми организмами в виде пищи. Частично энергия рассеивается в виде тепла, а частично накапливается в отмер­шем органическом веществе и переходит в ископаемое состоя­ние. Так образовались залежи торфа, каменного угля, нефти и других горючих полезных ископаемых.

Деструктивная функция

Эта функция состоит в разложении, минерализа­ции мертвого органического вещества, химическом разложении горных пород, вовлечении образовавшихся минералов в биоти­ческий круговорот, т.е. обусловливает превращение живого ве­щества в косное. В результате образуются также биогенное и биокосное вещество биосферы.

Особо следует сказать о химическом разложении горных по­род. «Мы не имеем на Земле более могучего дробителя мате­рии , чем живое вещество» , - писал Вернадский. Пионеры

жизни на скалах - бактерии, синезеленые водоросли, грибы и лишайники - оказывают на горные породы сильнейшее хими­ческое воздействие растворами целого комплекса кислот - угольной, азотной, серной и разнообразных органических. Раз­лагая с их помощью те или иные минералы, организмы избира­тельно извлекают и включают в биотический круговорот важ­нейшие питательные элементы - кальций, калий, натрий, фос­фор, кремний, микроэлементы.

Концентрационная функция

Так называется избирательное накопление в ходе жизнедеятельности определенных видов веществ для построе­ния тела организма или удаляемых из него при метаболизме. В результате концентрационной функции живые организмы из­влекают и накапливают биогенные элементы окружающей сре­ды. В составе живого вещества преобладают атомы легких эле­ментов: водорода, углерода, азота, кислорода, натрия, магния, кремния, серы, хлора, калия, кальция. Концентрация этих эле­ментов в теле живых организмов в сотни и тысячи раз выше, чем во внешней среде. Этим объясняется неоднородность хими­ческого состава биосферы и ее существенное отличие от состава неживого вещества планеты. Наряду с концентрационной функ­цией живого организма вещества выделяется противоположная ей по результатам - рассеивающая . Она проявляется через трофическую и транспортную деятельность организмов. Напри­мер, рассеивание вещества при выделении организмами экскре­ментов, гибели организмов при разного рода перемещениях в пространстве, смене покровов. Железо гемоглобина крови рас­сеивается, например, через кровососущих насекомых.

Средообразующая функция

Преобразование физико-химических параметров среды (литосферы, гидросферы, атмосферы) в результате про­цессов жизнедеятельности в условиях, благоприятных для суще­ствования организмов. Эта функция является совместным ре­зультатом рассмотренных выше функций живого вещества: энергетическая функция обеспечивает энергией все звенья био­логического круговорота; деструктивная и концентрационная способствуют извлечению из природной среды и накоплению рассеянных, но жизненно важных для живых организмов эле­ментов. Очень важно отметить, что в результате средообразующей функции в географической оболочке произошли следующие важнейшие события: был преобразован газовый состав первич­ной атмосферы, изменился химический состав вод первичного океана, образовалась толща осадочных пород в литосфере, на поверхности суши возник плодородный почвенный покров. «Ор­ганизм имеет дело со средой , к которой не только он приспо­соблен , но которая приспособлена к нему» , - так характеризо­вал Вернадский средообразующую функцию живого вещества.

Рассмотренные четыре функции живого вещества являются главными, определяющими функциями. Можно выделить еще некоторые функции живого вещества, например:

- газовая функция обусловливает миграцию газов и их пре­вращения, обеспечивает газовый состав биосферы. Преобладаю­щая масса газов на Земле имеет биогенное происхождение. В про­цессе функционирования живого вещества создаются основные га­зы: азот, кислород, углекислый газ, сероводород, метан и др. Хорошо видно, что газовая функция является совокупностью двух основопо­лагающих функций - деструктивной и средообразующей;

- окислительно - восстановительная функция заключается в химическом превращении главным образом тех веществ, кото­рые содержат атомы с переменной степенью окисления (соеди­нения железа, марганца, азота и др.). При этом на поверхности Земли преобладают биогенные процессы окисления и восста­новления. Обычно окислительная функция живого вещества в биосфере проявляется в превращении бактериями и некоторы­ми грибами относительно бедных кислородом соединений в поч­ве, коре выветривания и гидросфере в более богатые кислоро­дом соединения. Восстановительная функция осуществляется при образовании сульфатов непосредственно или через биоген­ный сероводород, производимый различными бактериями. И здесь мы видим, что данная функция является одним из про­явлений средообразующей функции живого вещества;

- транспортная функция - перенос вещества против си­лы тяжести и в горизонтальном направлении. Еще со времен Ньютона известно, что перемещение потоков вещества на нашей планете определяется силой земного тяготения. Неживое веще­ство само по себе перемещается по наклонной плоскости исклю­чительно сверху вниз. Только в этом направлении движутся ре­ки, ледники, лавины, осыпи.

Живое вещество - единственный фактор, обусловливающий обратное перемещение вещества - снизу вверх, из океана - на континенты.

За счет активного передвижения живые организмы могут пе­ремещать различные вещества или атомы в горизонтальном на­правлении, например за счет различных видов миграций. Пере­мещение, или миграцию, химических веществ живым веществом Вернадский назвал биогенной миграцией атомов или вещества .

Живое вещество - живые организмы, населяющие нашу планету.

Масса живого вещества составляет лишь 0,01% от массы всей биосферы. Тем не менее, живое вещество биосферы - это главнейший ее компонент.

Признаки (свойства) живой материи, отличающие ее от неживой:

Определенный химический состав . Живые организмы со-стоят из тех же химических элементов, что и объекты неживой природы, однако соотношение этих элементов различно. Основными элементами живых существ являются С, О, N и Н.

Клеточное строение. Все живые организмы, кроме вирусов, имеют клеточное строение.

Обмен веществ и энергозависимость. Живые организмы являются открытыми системами, они зависят от поступления в них из внешней среды веществ и энергии.

Саморегуляция (гомеостаз). Живые организмы обладают способностью поддерживать гомеостаз -- постоянство своего химического состава и интенсивность обменных процессов.

Раздражимость. Живые организмы проявляют раздражимость, то есть способность отвечать на определенные внешние воздействия специфическими реакциями.

Наследственность. Живые организмы способны передавать признаки и свойства из поколения в поколение с помощью носителей информации - молекул ДНК и РНК.

  • 7. Изменчивость. Живые организмы способны приобретать новые признаки и свойства.
  • 8. Самовоспроизведение (размножение). Живые организмы способны размножаться - воспроизводить себе подобных.
  • 9. Индивидуальное развитие (онтогенез). Каждой особи свойственен онтогенез - индивидуальное развитие организма от зарождения до конца жизни (смерти или нового деления). Развитие сопровождается ростом.
  • 10. Эволюционное развитие (филогенез). Живой материи в целом свойственен филогенез -- историческое развитиежизни на Земле с момента ее появления до настоящего времени.

Адаптации. Живые организмы способны адаптироваться, то есть приспосабливаться к условиям окружающей среды.

Ритмичность. Живые организмы проявляют ритмичность жизнедеятельности (суточную, сезонную и др.).

Целостность и дискретность . С одной стороны, вся живая материя целостна, определенным образом организована подчиняется общим законам; с другой стороны, любая биологическая система состоит из обособленных, хотя и взаимосвязанных элементов.

Иерархичность. Начиная от биополимеров (белков и нуклеиновых кислот) и кончая биосферой в целом, все живое находится в определенной соподчиненности. Функционирование биологических систем на менее сложном уровне делает возможным существование более сложного уровня.

Окружающий нас мир живых организмов биосферы представляет собой сочетание различных биологических систем разной структурной упорядоченности и разного организационного положения.

Иерархичность организации живой материи позволяет условно подразделить ее на ряд уровней.

Уровень организации живой материи - это функциональное место биологической структуры определенной степени сложности в общей иерар-хии живого.

В настоящее время выделяют 9 уровней организации живой материи:

Молекулярный (на этом уровне происходит функционирование биологически активных крупных молекул, таких как белки, нуклеиновые кислоты и др.);

Субклеточный (надмолекулярный). На этом уровне живая материя организуется в органоиды: хромосомы, клеточную мембрану и др. субклеточные структуры.

Клеточный . На этом уровне живая материя представлена клетками. Клетка является элементарной структурной и функциональной единицей живого.

Органно-тканевый . На этом уровне живая материя орга-низуется в ткани и органы. Ткань - совокупность клеток, сход-ных по строению и функциям, а также связанных с ними меж-клеточных веществ. Орган -- часть многоклеточного организ-ма, выполняющая определенную функцию или функции.

Организменный (онтогенетический). На этом уровнехарактеризующийся всеми ее признаками.

Популяционно-видовой. На этом уровне живая материяже вида. Вид -- совокупность особей (популяций особей), спо-собных к скрещиванию с образованием плодовитого потом-ства и занимающих в природе определенную область (ареал).

Биоценотический. На этом уровне живая материя образуетбиоценозы. Биоценоз - совокупность популяции разных видов, обитающих на определенной территории.

Биогеоценотический . На этом уровне живая материя формирует
биогеоценозы. Биогеоценоз - совокупность биоценоза и абиотических факторов среды обитания (климат, почва).

Биосферный. На этом уровне живая материя формирует биосферу. Биосфера - оболочка Земли, преобразованная деятельностью живых организмов.

Химический состав живых организмов можно выразить в двух видах: атомный и молекулярный. Атомный (элементный) состав характеризует соотношение атомов элементов, входящих в живые организмы. Молекулярный (вещественный) состав отражает соотношение молекул веществ.

По относительному содержанию элементы, входящие в состав живых организмов, принято делить на три группы:

Макроэлементы - О, С, Н, N (в сумме около 98-99%, их
еще называют основные), Са, К, Si, Mg, P, S, Na, Cl, Fe (всумме около 1-2%). Макроэлементы составляют основную мас-су процентного состава живых организмов.

Микроэлементы - Мn, Со, Zn, Cu, В, I, F и др. Их суммарное содержание в живом веществе составляет порядка 0,1 %

Ультрамикроэлементы -- Se, U, Hg, Rа, Au, Ag и др. Их содержание в живом веществе очень незначительно (менее 0,01%), а физиологическая роль для большинства из них не раскрыта.

Химические элементы, которые состав живых организмов и при этом выполняют биологические функции, называются биогенными. Даже те из них, которые содержатся в клетках в ничтожно малых количествах, ничем не могут быть заменены и совершенно необходимы для жизни.

Химические элементы входят в состав клеток в виде ионов и молекул неорганических и органических веществ. Важнейшие неорганические вещества в клетке -- вода и минеральные соли, важнейшие органические вещества -- углеводы, липиды, белки и нуклеиновые кислоты

Углеводы - органические соединения, содержащие в своем составе углерод, водород и кислород. Они подразделяются на простые (моносахариды) и сложные (полисахариды). Углеводы являются основным источником энергии всех форм клеточной деятельности. Они участвуют в построении прочных тканей растений (в частности, целлюлозы) и играют роль запасных питательных веществ в организмах. Углеводы являются первичным продуктом фотосинтеза зеленых растений.

Липиды - это жироподобные вещества, плохо растворимые в воде (состоят из атомов углерода и водорода). Липиды участвуют в построении клеточных перегородок (мембран), плохо проводят тепло, выполняя тем самым защитную функцию. Кроме того, липиды являются запасными питательными веществами.

Белки представляют собой сочетание протеиногенных аминокислот (20 штук) и на 30-50% состоят из АК. Белки имеют большие размеры, являясь по своей сути макромолекулами. Белки выполняют роль естественных катализаторов протекания химических процессов. В состав белков также входят металлы, такие как железо, магний, марганец.

Нуклеиновые кислоты (НК) формируют ядро клетки. Различают 2 основных вида НК: ДНК - дезоксирибонуклеиновая кислота и РНК - рибонуклеиновая кислота. НК регулируют процесс синтеза, осуществляют передачу наследственной информации из поколения в поколение.

Все живые организмы, обитающие на Земле, представляют собой открытые системы, зависящие от поступления вещества и энергии извне. Процесс потребления вещества и энергии называется питанием. Все живые организмы по способу питания подразделяются на автотрофные и гетеротрофные.

Автотрофы (автотрофные организмы) - организмы, использующие в качестве источника углерода углекислый газ (растения и некоторые бактерии). Иначе говоря, это организмы, способные создавать органические соединения из неорганических - углекислого газа, воды, минеральных солей (к ним относятся прежде всего растения, осуществляющие фотосинтез).

Гетеротрофы (гетеротрофные организмы) - организмы, использующие в качестве источника углерода органические соединения (животные, грибы и большинство бактерий). Иначе говоря, это организмы, не способные создавать органические вещества из неорганических, а нуждающиеся в готовых органических веществах (микроорганизмы и животные).

Четкой границы между авто- и гетеротрофами не существует. Например, эвгленовые организмы (жгутиковые) сочетают автотрофный и гетеротрофный способы питания.

По отношению к свободному кислороду организмы делятся на три группы: аэробы, анаэробы и факультативные формы.

Аэробы - организмы, способные жить только в кислородной среде (животные, растения, некоторые бактерии и грибы).

Анаэробы - организмы, неспособные жить в кислородной среде (некоторые бактерии).

Факультативные формы - организмы, способные жить как в присутствии кислорода, так и без него (некоторые бактерии и грибы).

В настоящее время весь мир живых существ подразделяется на 3 большие систематические группы:

Наибольшая концентрация жизни в биосфере наблюдается на границах соприкосновения земных оболочек: атмосферы и литосферы (поверхность суши), атмосферы и гидросферы (поверхность океана), и особенно на границах трех оболочек - атмосферы, гидросферы и литосферы (прибрежные зоны). Эти места наибольшей концентрации жизни В.И. Вернадский назвал «пленками жизни». Вверх и вниз от этих поверхностей концентрация живой материи уменьшается.

К основным уникальным особенностям живого вещества, обуславливающим его крайне высокую преобразующую деятельность, можно отнести следующие:

Способность быстро занимать (осваивать) все свободное пространство. Это свойство связано как с интенсивным размножением, так и со способностью организмов интенсивно увеличивать поверхность своего тела или образуемых ими сообществ.

Движение не только пассивное, но и активное, то есть не только под действием силы тяжести, гравитационных сил и т.п., но и против течения воды, силы тяжести, движения воздушных потоков и т.п.

Устойчивость при жизни и быстрое разложение после смерти (включение в круговороты веществ). Благодаря саморегуляции живые организмы способны поддерживать постоянный химический состав и условия внутренней среды, несмотря на значительные изменения условий внешней среды. После смерти эта способность утрачивается, а органические остатки очень быстро разрушаются. Образовавшиеся органические и неорганические вещества включаются в круговороты.

Высокая приспособительная способность (адаптация) к различным условиям и в связи с этим освоение не только всех сред жизни (водной, наземно-воздушной, почвенной, организменной), но и крайне трудных по физико-химическим параметрам условий (микроорганизмы встречаются в термальных источниках с температурой до 140 о С, в водах атомных реакторов, в бескислородной среде).

Феноменально высокая скорость протекания реакций. Она на несколько порядков значительнее, чем в неживом веществе.

Высокая скорость обновления живого вещества. Только небольшая часть живого вещества (доли процента) законсервирована в виде органических остатков, остальная же постоянно включается в процессы круговорота.

Все перечисленные свойства живого вещества обуславливаются концентрацией в нём больших запасов энергии.

Выделяют следующие основные геохимические функции живого вещества:

Энергетическая (биохимическая) - связывание и запасание солнечной энергии в органическим веществе и последующее рассеяние энергии при потреблении и минерализации органического вещества. Эта функция связана с питанием, дыханием, размножением и другими процессами жизнедеятельности организмов.

Газовая - способность живых организмов изменять и поддерживать определенный газовый состав среды обитания и атмосферы в целом. С газовой функцией связывают два переломных периода (точки) в развитии биосферы. Первая из них относится ко времени, когда содержание кислорода в атмосфере достигло примерно 1% от современного уровня. Это обусловило появление первых аэробных организмов (способных жить только в среде, содержащей кислород). Второй переломный период связывают со временем, когда концентрация кислорода достигла примерно 10% от современной. Это создало условия для синтеза озона и образования озонового слоя в верхних слоях атмосферы, что обусловило возможность освоения организмами суши.

Концентрационная - «захват» из окружающей среды живыми организмами и накопление в них атомов биогенных химических элементов. Концентрационная способность живого вещества повышает содержание атомов химических элементов в организмах по сравнению с окружающей средой на несколько порядков. Результат концентрационной деятельности живого вещества - образование залежей горючих ископаемых, известняков, рудных месторождений и т.п.

Окислительно -восстановительная - окисление и восстановление различных веществ с участием живых организмов. Под влиянием живых организмов происходит интенсивная миграция атомов элементов с переменной валентностью (Fe, Mn, S, P, N и др.), создаются их новые соединения, происходит отложение сульфидов и минеральной серы, образование сероводорода

Деструктивная - разрушение организмами и продуктами их жизнедеятельности как остатков органического вещества, так и косных веществ. Наиболее существенную роль в этом отношении выполняют редуценты (деструкторы) - сапрофитные грибы и бактерии.

Транспортная - перенос вещества и энергии в результате активной формы движения организмов.

Средообразующая - преобразование физико-химических параметров среды. Результатом средообразующей функции является и вся биосфера, и почва как одна из сред обитания, и более локальные структуры.

Рассеивающая - функция, противоположная концентрационной - рассеивание веществ в окружающей среде. Например, рассеивание вещества при выделении организмами экскрементов, смене покровов и т.п.

Информационная - накопление живыми организмами определённой информации, закрепление её в наследственных структурах и передача последующим поколениям. Это одно из проявлений адаптационных механизмов.

Биогеохимическая деятельность человека - превращение и перемещение веществ биосферы в результате человеческой деятельности для хозяйственных и бытовых нужд человека. Например, использование концентраторов углерода - нефти, угля, газа.

Таким образом, биосфера представляет собой сложную динамическую систему, осуществляющую улавливание, накопление и перенос энергии путём обмена веществ между живым веществом и окружающей средой.

В основу концепции биосферы положено представление о живом веществе. Более 90 % всего живого вещества приходится на наземную растительность (98 % биомассы суши). Живое вещество- наиболее мощный геохимический и энергетический фактор, ведущая сила планетарного развития. Основной источник биохимической активности организмов — это солнечная энергия, используемая в процессе фотосинтеза зелеными растениями и некоторыми микроорганизмами для создания органического вещества. Органическое вещество обеспечивает пищей и энергией остальные организмы. Фотосинтез привел к накоплению в атмосфере свободного кислорода, образованию озонового слоя, защищающего от ультрафиолетового и жесткого космического излучения, он поддерживает современный газовый состав атмосферы. Жизнь на Земле всегда существовала в форме сложно организованных комплексов разнообразных организмов (биоценозов). Вместе с тем живые организмы и среда их обитания образуют целостные системы — биогеоценозы. Питание, дыхание и размножение организмов и связанные с ними процессы создания, накопления и распада органического вещества обеспечивают постоянный круговорот вещества и энергии. С этим круговоротом связана миграция атомов химических элементов через живое вещество. Так, весь атмосферный кислород оборачивается через живое вещество за 2000 лет, углекислый газ за 300 лет. Большим разнообразием органических и химических соединений характеризуется состав самих организмов. Благодаря живому веществу на планете образовались почвы и органическое минеральное топливо (торф, уголь, возможно даже нефть).

Исследуя процессы миграции атомов в биосфере, В.И. Вернадский подошел к вопросу о генезисе (происхождении) химических элементов в земной коре, а затем и к необходимости объяснить устойчивость соединений, из которых состоят организмы. Анализируя проблему миграции атомов, он пришел к выводу, что нигде не существуют органические соединения, независимые от живого вещества. «Под именем живого вещества, — писал В.И. Вернадский в 1919 г., — я буду подразумевать всю совокупность всех организмов, растительности и животных, в том числе и человека».

Таким образом, живое вещество — совокупность живых организмов биосферы, численно выраженная в элементарном химическом составе, массе и энергии. В 1930-х гг. В.И. Вернадский из общей массы живого вещества выделяет человечество как его особую часть. Такое обособление человека от всего живого стало возможным по трем причинам.

Во-первых, человечество является не производителем, а потребителем биогеохимической энергии. Такой тезис требовал пересмотра геохимических функций живого вещества в биосфере. Во-вторых, масса человечества, исходя из данных демографии, не является постоянным количеством живого вещества. И в-третьих, его геохимические функции характеризуются не массой, а производственной деятельностью.

Если бы человек не выделился из природного животного мира, то его численность была бы порядка 100 тысяч. Такие протолюди жили бы в ограниченном ареале, и их эволюция определялась бы медленными процессами, происходящими в результате популяционно-генетических изменений, характерных для видообразования. Однако с появлением человека произошел качественный скачок в развитии природы на Земле. Есть все основания полагать, что это новое качество связано с разумом и сознанием homo sapiens. Таким образом, главным видовым отличием человека является его разум, и именно благодаря сознанию человечество развивалось своим путем. Это отразилось и на процессе размножения людей, так как для формирования социально зрелых форм сознания требуется длительное время — не менее 20 лет.

Какие же характерные особенности присущи живому веществу? Прежде всего это огромная свободная энергия. В процессе эволюции видов биогенная миграция атомов, т.е. энергия живого вещества биосферы, увеличилась во много раз и продолжает расти, ибо живое вещество перерабатывает энергию солнечных излучений, атомную энергию радиоактивного распада и космическую энергию рассеянных элементов, приходящих из нашей Галактики. Живому веществу присуща также высокая скорость протекания химических реакций по сравнению с веществом неживым, где похожие процессы идут в тысячи и миллионы раз медленнее. К примеру, некоторые гусеницы в сутки могут переработать пищи в 200 раз больше, чем весят сами, а одна синица за день съедает столько гусениц, сколько весит сама.

Для живого вещества характерно то, что слагающие его химические соединения . главнейшими из которых являются белки, устойчивы только в живых организмах. После завершения процесса жизнедеятельности исходные живые органические вещества разлагаются до химических составных частей.

Живое вещество существует на планете в форме непрерывного чередования поколений , благодаря чему вновь образовавшееся поколение генетически связано с живым веществом прошлых эпох. Это главная структурная единица биосферы, определяющая все другие процессы поверхности земной коры. Для живого вещества характерно наличие эволюционного процесса. Генетическая информация любого организма зашифрована в каждой его клетке. Этим клеткам изначально предначертано быть самими собой, за исключением яйцеклетки, из которой развивается целый организм. Таким образом, живое вещество по сути бессмертно.

В.И. Вернадский отмечал, что живое вещество неотделимо от биосферы, является ее функцией и одновременно «одной из самых могущественных геохимических сил нашей планеты». Круговорот веществ В.И. Вернадский назвал биогеохимическими циклами. Эти циклы и круговорот обеспечивают важнейшие функции живого вещества в целом. Ученый выделил пять таких функций:

Газовая функция - осуществляется зелеными растениями, выделяющими кислород в процессе фотосинтеза, а также всеми растениями и животными, выделяющими углекислый газ в результате дыхания;

Концентрационная функция - проявляется в способности живых организмов накапливать в своих телах многие химические элементы (на первом месте — углерод, среди металлов — кальций);

Окислительно-восстановительная функция - выражается в химических превращениях веществ в процессе жизнедеятельности. В результате образуются соли, окислы, новые вещества. С данной функцией связано формирование железных и марганцевых руд, известняков и т.п.;

Биохимическая функция - определяется как размножение, рост и перемещение в пространстве живого вещества. Все это приводит к круговороту химических элементов в природе, их биогенной миграции;

Функция биогеохимической деятельности человека - связана с биогенной миграцией атомов, многократно усиливающейся под влиянием хозяйственной деятельности человека. Человек разрабатывает и использует для своих нужд большое количество веществ земной коры, в том числе таких, как уголь, газ, нефть, торф, сланцы, многие руды. Одновременно происходит антропогенное поступление в биосферу чужеродных веществ, причем в количествах, превышающих допустимое значение. Это привело к кризисному противостоянию человека и природы. Главной причиной надвигающегося экологического кризиса считается технократическая концепция, рассматривающая биосферу, с одной стороны, как источник физических ресурсов, с другой — как сточную трубу для удаления отходов.

Характеристики живого вещества

В состав живого вещества входят как органические (в химическом смысле), так и неорганические, или минеральные, вещества. Вернадский писал:

Масса живого вещества сравнительно мала и оценивается величиной 2,4-3,6·10 12 т (в сухом весе) и составляет менее 10 −6 массы других оболочек Земли. Но это одна «из самых могущественных геохимических сил нашей планеты».

Живое вещество развивается там, где может существовать жизнь, то есть на пересечении атмосферы , литосферы и гидросферы . В условиях, не благоприятных для существования, живое вещество переходит в состояние анабиоза .

Специфика живого вещества заключается в следующем:

  1. Живое вещество биосферы характеризуется огромной свободной энергией. В неорганическом мире по количеству свободной энергии с живым веществом могут быть сопоставлены только недолговечные незастывшие лавовые потоки.
  2. Резкое отличие между живым и неживым веществом биосферы наблюдается в скорости протекания химических реакций: в живом веществе реакции идут в тысячи и миллионы раз быстрее.
  3. Отличительной особенностью живого вещества является то, что слагающие его индивидуальные химические соединения – белки, ферменты и пр. – устойчивы только в живых организмах (в значительной степени это характерно и для минеральных соединений, входящих в состав живого вещества).
  4. Произвольное движение живого вещества, в значительной степени саморегулируемое. В. И. Вернадский выделял две специфические формы движения живого вещества: а) пассивную, которая создается размножением и присуща как животным, так и растительным организмам; б) активную, которая осуществляется за счет направленного перемещения организмов (она характерна для животных и в меньшей степени для растений). Живому веществу также присуще стремление заполнить собой все возможное пространство.
  5. Живое вещество обнаруживает значительно большее морфологическое и химическое разнообразие, чем неживое. Кроме того, в отличие от неживого абиогенного вещества живое вещество не бывает представлено исключительно жидкой или газовой фазой. Тела организмов построены во всех трех фазовых состояниях.
  6. Живое вещество представлено в биосфере в виде дисперсных тел – индивидуальных организмов. Причем, будучи дисперсным, живое вещество никогда не находится на Земле в морфологически чистой форме – в виде популяций организмов одного вида: оно всегда представлено биоценозами.
  7. Живое вещество существует в форме непрерывного чередования поколений, благодаря чему современное живое вещество генетически связано с живым веществом прошлых эпох. При этом характерным для живого вещества является наличие эволюционного процесса, т. е. воспроизводство живого вещества происходит не по типу абсолютного копирования предыдущих поколений, а путем морфологических и биохимических изменений.

Значение живого вещества

Работа живого вещества в биосфере достаточно многообразна. По Вернадскому, работа живого вещества в биосфере может проявляться в двух основных формах:

а) химической (биохимической) – I род геологической деятельности; б) механической – II род транспортной деятельности.

Биогенная миграция атомов I рода проявляется в постоянном обмене вещества между организмами и окружающей средой в процессе построения тела организмов, переваривания пищи. Биогенная миграция атомов II рода заключается в перемещении вещества организмами в ходе его жизнедеятельности (при строительстве нор, гнезд, при заглублении организмов в грунт), перемещении самого живого вещества, а также пропускание неорганических веществ через желудочный тракт грунтоедов, илоедов, фильтраторов.

Для понимания той работы, которую совершает живое вещество в биосфере очень важными являются три основных положения, которые В. И. Вернадский назвал биогеохимическими принципами:

  1. Биогенная миграция атомов химических элементов в биосфере всегда стремится к максимальному своему проявлению.
  2. Эволюция видов в ходе геологического времени, приводящая к созданию устойчивых в биосфере форм жизни, идет в направлении, усиливающем биогенную миграцию атомов.
  3. Живое вещество находится в непрерывном химическом обмене с космической средой, его окружающей, и создается и поддерживается на нашей планете лучистой энергией Солнца.

Выделяют пять основных функций живого вещества:

  1. Энергетическая . Заключается в поглощении солнечной энергии при фотосинтезе, а химической энергии – путем разложения энергонасыщенных веществ и передаче энергии по пищевой цепи разнородного живого вещества.
  2. Концентрационная . Избирательное накопление в ходе жизнедеятельности определенных видов вещества. Выделяют два типа концентраций химических элементов живым веществом: а) массовое повышение концентраций элементов в среде, насыщенной этими элементами, например, серы и железа много в живом веществе в районах вулканизма; б) специфическую концентрацию того или иного элемента вне зависимости от среды.
  3. Деструктивная . Заключается в минерализации необиогенного органического вещества, разложении неживого неорганического вещества, вовлечении образовавшихся веществ в биологический круговорот.
  4. Средообразующая . Преобразование физико-химических параметров среды (главным образом за счет необиогенного вещества).
  5. Транспортная . Пищевые взаимодействия живого вещества приводят к перемещению огромных масс химических элементов и веществ против сил тяжести и в горизонтальном направле­нии.

Живое вещество охватывает и перестраивает все химические процессы биосферы. Живое вещество есть самая мощная геологическая сила, растущая с ходом времени. Воздавая должное памяти великого основоположника учения о биосфере, следующее обобщение А. И. Перельман предложил назвать «законом Вернадского»:

«Миграция химических элементов на земной поверхности и в биосфере в целом осуществляется или при непосредственном участии живого вещества (биогенная миграция) или же она протекает в среде, геохимические особенности которой (О 2 , СО 2 , H 2 S и т. д.) преимущественно обусловлены живым веществом как тем, которое в настоящее время населяет данную систему, так и тем, которое действовало на Земле в течение всей геологической истории».

Примечания

См. также

Литература

  • О функциях живого вещества в биосфере // Вестник РАН. 2003. Т. 73. № 3. С.232-238

Wikimedia Foundation . 2010 .

Смотреть что такое "Живое вещество" в других словарях:

    Совокупность в биосфере живых организмов, их биомассы. Характеризуется специфическим химическим составом (преобладают Н, С, N, 02, Na, Mg, Al, Si, P, S, Cl, Ca), огромной биомассой (80 100 · 109 т сухого органические вещества) и энергией.… … Экологический словарь

    Совокупность живых организмов биосферы, численно выраженная в элементарном химическом составе, массе и энергии. Понятие введено В. И. Вернадским в его учении о биосфере и роли живых организмов в круговороте веществ и энергии в природе … Большой Энциклопедический словарь

    Совокупность живых организмов биосферы, численно выраженная в элементарном химическом составе, массе и энергии. Понятие введено В. И. Вернадским в его учении о биосфере и роли живых организмов в круговороте веществ и энергии в природе. * * *… … Энциклопедический словарь

    1) совокупность живых организмов биосферы, численно выраженная в элементарном химическом составе, массе и энергии. Термин введён В. И. Вернадским (См. Вернадский). Ж. в. связано с биосферой материально и энергетически посредством… … Большая советская энциклопедия

    Совокупность живых организмов биосферы, численно выраженная в элементарном хим. составе, массе и энергии. Понятие введено В. И. Вернадским в его учении о биосфере и роли живых организмов в круговороте в в и энергии в природе … Естествознание. Энциклопедический словарь

    Живое вещество - в концепции В. И. Вернадского совокупность живых организмов биосферы (растений, животных, насекомых и др., включая человечество), численно выраженная в элементарном химическом составе, массе и энергии … Начала современного естествознания

    живое вещество - 1. Совокупность живых организмов биосферы, обладающих упорядоченным обменом веществ. 2. Сложный молекулярный агрегат с управляющей системой, содержащей механизм передачи наследственной информации. E. Living substance D. Lebendiger Stoff,… … Толковый уфологический словарь с эквивалентами на английском и немецком языках

    По В. И. Вернадскому (1940), совокупность организмов одного и того же вида (видовое однородное живое вещество) или расы (расовое однородное живое вещество). Экологический энциклопедический словарь. Кишинев: Главная редакция Молдавской советской… … Экологический словарь

Услуга организация инженерно экологических изысканий по ссылке https://umeko.ru/.

Последние материалы раздела:

Изменение вида звездного неба в течение суток
Изменение вида звездного неба в течение суток

Тема урока «Изменение вида звездного неба в течение года». Цель урока: Изучить видимое годичное движение Солнца. Звёздное небо – великая книга...

Развитие критического мышления: технологии и методики
Развитие критического мышления: технологии и методики

Критическое мышление – это система суждений, способствующая анализу информации, ее собственной интерпретации, а также обоснованности...

Онлайн обучение профессии Программист 1С
Онлайн обучение профессии Программист 1С

В современном мире цифровых технологий профессия программиста остается одной из самых востребованных и перспективных. Особенно высок спрос на...