От каких величин зависит высота. Выясните, от каких физических величин зависит высота тона и громкость звука с

Физические величины:

λ = vT = v / γ(м) длина волны

v = λ/ Т = λ γ (м/с) скорость волны

Т = t/n(c) период колебаний

n - количество колебаний t - время колебаний

γ = 1/ Т (Гц) частота колебаний А[м] - амплитуда колебаний

I . 1. Приветствие, проверка готовности учащихся к уроку, готовность наглядных пособий, доски, мела и т. д.

2. Раскрытие общей цели урока.

Сегодня нам предстоит возможность прикоснуться с миром красоты и гармонии, которая присутствует в одном из видов неравномерного движения – колебательном. Колебательные движения широко распространены в окружающей нас жизни. Звук – один из видов колебательного движения, средство передачи информации, примерно 8-9% из всего объема получаемой человеком.

Вводное обобщение и систематизация знаний о колебаниях и волнах позволят нам перейти к изучению звуковых явлений с позиции интеграции с другими науками.

Итак, целью нашего урока является обобщение и систематизация знаний о звуковых колебаниях, их характеристик и знакомство с применением звуковых волн в различных областях науки, техники, искусстве, природе. Поэтому представляю тему урока: «Звук в природе, музыке и технике».

II . Актуализация опорных знаний и умений. Формирование познавательных мотивов.

Первым самостоятельным заданием будет работа с опорным конспектом, в котором содержатся наиболее важные сведения о колебаниях и волнах. Акцентируйте свое внимание на основных понятиях

· Самостоятельная работа по повторению и закреплению раздела «Колебания и волны».

· Систематизация основных понятий, физических величин, характеризующих волновой процесс.

Найдите ответы на вопросы в опорных конспектах:

1. Приведите примеры колебательных движений.

2. Что является основным признаком колебательного движения?

3. Что такое период колебаний? Частота колебаний? Амплитуда колебаний?

4. Записать формулы физических величин и указать их единицы измерения .

5. Если график зависимости координаты от времени представляет собой синусоиду (косинусоиду) – какой вид колебаний совершает тело?

6. Возмущения, распространяющиеся в пространстве называются…?

7. В каких средах возможно распространение упругих волн?

8. Записать формулы длины волны, скорости распространения волн

() и указать их единицы измерения.

9. Краткая характеристика звуковых волн: оттолкнувшись от понятий о механических колебаниях и волнах, перейдем к звуковым волнам.

Частоты звуковых волн, воспринимаемых человеческим ухом

Высота звука определяется

Высота звука

Зависит от часто-

ты колебаний

основного тона

Основная частота (основной тон)

Самая низкая частота сложного звука.

Обертоны (высшие гармонические тоны)

Частоты всех обертонов данного звука в целое число раз больше частоты основного тона. Обертоны определяют тембр звука, его качество.

Тембр звука

Определяется совокупностью его обертонов.

Громкость звука определяется

Определяется амплитудой колебаний.

В практических задачах характеризуется уровнем громкости (единица измерения – фоны, белы (децибелы).

Интерференция звука

Явление сложения в пространстве волн, при котором образуется постоянное во времени распределение амплитуд результирующих колебаний.

Физические волны, характеризующие звуковую волну

Длина волны: λ

Скорость звука: V

Скорость звука в воздухе: V = 340 м/с

III . Контроль и самопроверка знаний (рефлексия) межкурсовых понятия.

Повторив теоретический материал, перейдем к практическому заданию по выявлению некоторых свойств звуковых волн.

1. Практическое задание (групповая работа):

а) первая группа выполняет опыт по отражению звука с двумя тарелками и «шарманкой».

Задание № 1. С помощью «шарманки» исследовать свойство отражения звуковых волн. Получить звучание, исходящее из тарелки, прислоненной к уху.

Вывод: звук отражается от предметов.

б) вторая группа проверяет основные характеристики звука: высота тона и громкость.

Задание № 2. Выясните, от каких физических величин зависит высота тона и громкость звука с помощью закрепленной на столе линейки, изменяя длину ее выступающей части и амплитуду колебаний. Когда звук становится слышимым, не слышимым?

Вывод : изменяя длину выступающей части линейки и амплитуду ее колебаний, выясняют, что высота тона издаваемого колеблющейся линейкой, зависит от ее размеров, а громкость определяется амплитудой колебаний.

в) третья группа экспериментирует с ложкой, проверяя распространение звука в различных средах посредством стетоскопа.

Задание № 3 . Оденьте в уши слуховые трубки зонда стетоскопа. Ударьте молоточком металлическую ложку. Сделайте вывод и добейтесь звучание «колокола». О чем это говорит?

Вывод: Звук распространяется не только в воздухе, но и в жидкости и твердых телах.

г) сделать духовой инструмент;

Задание № 4. Получите простейший духовой инструмент из крышки коробки резонатора и трех пробирок.

д) получить чистый тон с помощью камертона и сделать звук видимым;

Задание № 5 . Получите чистый, музыкальный тон с помощью камертона. Сделайте этот звук видимым.

ж) индивидуальная работа с раздаточным материалом (устные ответы учащихся).

Вопросы:

1. При полете большинство насекомых издают звук. Чем он вызывается?

2. Крупный дождь можно отличить от мелкого по более громкому звуку, возникающему при ударах капель о крышу. На чем основана такая возможность?

3. Одинаковы ли длины звуковых волн в одной и той же среде у громкого и тихого звуков?

4. Какое насекомое – комар или муха – делает большее количество взмахов крыльями за одинаковое время?

5. Почему, если мы хотим, чтобы нас услышали на большом расстоянии, мы кричим и при этом прикладываем сложенные рупором руки ко рту?

6. Струнный музыкальный инструмент имеет от 3 до 7 струн. Каким же образом достигается многообразие звуков, издаваемых инструментом?

Вывод: Звуковые волны образуют круговые волны на поверхности воды.

IV . Обобщение и систематизация знаний о звуковых волнах на основе интеграции наук физики, биологии, экологии, музыки.

Физика – как наука является культурным достижением, дающим нам уникальный по своей мощности способ понимания мира. Только один из видов механических колебаний – звуковые волны – дают целый спектр интересующих фактов прикладного значения. Звуки неосязаемы, невидимы, но давайте на мгновение станем волшебниками и материализуем их.

· Физические свойства звуковых волн.

1. Шкала диапазона звуковых волн.

2. Таблица скорости звука в различных веществах, график скорости звука в воздухе при различной температуре и зависимости скорости звука от высоты над поверхностью Земли.

3. Эффект Доплера в акустике.

Рисунок, демонстрирующий изменение высоты звука. Решение проблемной ситуации (наблюдатель, издающий звуковую волну, + пролетающее мимо тело + какой результат изменения частоты. Какой эффект будет наблюдаться?

4. Эксперимент со звуковыми волнами.

· инженерное применение свойств звука.

1. Акустика залов.

Зал Большого театра сравнивают с большой скрипкой, сейчас идет восстановление ее деревянной оболочки для улучшения акустики.

· Музыкальные инструменты .

1. Фортепиано.

Загрязнения бывают разными: природы, души, информационные. Относятся ли к шумовым загрязнениям музыкальные стили «punk», «металл», «транс», «техно»?

Проблемное задание: Выделите позитивные и негативные стороны музыкальных произведений стиля: «punk», «металл», «транс», «техно».

· Биология. Значение звуков в жизни животных .

1. Рыбы невероятно болтливы.

Вопрос . Леонардо да Винчи предлагал слушать подводные звуки, приложив ухо к веслу, опущенному в воду. Акустический импеданс сырого дерева близок к импедансу воды. Почему?

· Экология и ультразвук .

1. «Сенсация» в тазу с водой.

· Ультразвук в медицине .

· Акустическое загрязнение .

ИТОГ. Информация, которую вы получили, надеюсь, обогатит ваши знания о звуковых волнах.

V . Подведение итогов.

.Новые термины:

* генерация (создание, образование);

* ревебрация (остаточное звучание);

* акустический импеданс (произведение плотности вещества на скорость распространения в ней звуковой волны);

* эхолокация (способность воспринимать эхо);

* сонары (устройства для излучения и приема эхо-сигналов);

* фортепиано (от ит. forte – «громко», piano – «тихо»);

* эссе (разновидность очерка, в котором главную роль играют раздумья).

А сейчас сделаем вывод о значимости и месте акустики (наука о звуковых волнах) в системе колебательных процессов. Какую полезную для себя информацию мы вынесли из урока?

Вывод учащихся :

а) сфера применения звука обширна, звук многогранен

б) мы обобщили и систематизировали знания о звуковых явлениях.

в) познакомились с интеграцией физического явления звуковых колебаний с науками инженерной, биологией, экологией, музыкой.

Вывод учителя :

Я благодарю за сотрудничество, коммуникативность, стремление к самосовершенствованию, познанию нового, умению анализировать, обобщать. Особенно хочу выделить следующих учащихся…

VI . Домашнее задание. Эссе: «Мое представление об акустике и ее использовании в науке и технике».

Предлагаю выполнить задание, в котором будут присутствовать сведения, не прозвучавшие на сегодняшнем уроке.

ОПОРНЫЙ КОНСПЕКТ .

Механические колебания и волны. Звук .

1.Одним из видов неравномерного движения является - колебательное. Колебательные движения широко распространены в окружающей нас жизни. Примерами колебаний могут служить: движение иглы швейной машины , качелей, маятников часов, вагона на рессорах и других тел. На рисунке изображены тела, совершающие колебательное движение, если их вывести из положения равновесия:

2.Через определенный промежуток времени движение любого тела повторяется. Промежуток времени, через который движение повторяется, называется периодом колебания . T=t/n[c] t - время колебаний; n - количество колебаний за этот промежуток времени. З. Число колебаний в единицу времени называется частотой колебаний, обозначающейся буквой V(«ню») измеряющейся в герцах [Гц]. [Гц].

4. Наибольшее (по модулю) отклонение колеблющегося тела от положения равновесия называется амплитудой колебаний.

OA1 и ОВ1- амплитуда колебаний (А); ОА1=ОВ1=А [м]

5. В природе и технике широко распространены колебания, называющиеся гармоническими .

Гармоническими являются колебания, которые происходят под действием силы, пропорциональной смещению колеблющейся точки и направленной противоположно этому смещению.

График зависимости координаты колеблющегося тела от времени представляет собой синусоиду (косинусоиду).

https://pandia.ru/text/78/333/images/image005_14.gif" width="13" height="15"> полуволн поперечных стоячих волн. Мода колебаний, соответствующая , называется первой гармоникой собственных волн колебаний или основной модой.

https://pandia.ru/text/78/333/images/image008_9.jpg" width="645" height="490">

АНАЛИЗ УРОКА.

1. Тип урока : комплексное применение знаний, умений и навыков .

Урок проблемный, интерактивный, основан на комплексном применении знаний и умений, имеет практическую значимость, поскольку использованы экспериментальные факты, способствующие самостоятельной оценке данных научных открытий.

Цель урока : сформировать у учащихся умение применять теоретические знания и экспериментальные научные факты для понимания природы света, роли, места и различных методов определения его скорости.

2.Организацию урока считаю наиболее оптимальной, т. к. она позволила рассмотреть проблему природы света всесторонне и дала возможность реализовать творческий подход при поиске скорости света, использовать комплексные знания, умения и навыки.

3. Для активизации внимания учащихся мною были подобраны приемы внутрипредметных и межпредметных связей с опорой на знания астрономии , истории физических открытий, преемственности физической науки, инженерных открытий.

Усвоение содержания учебного материала, на мой взгляд, было обеспечено через осмысление и закрепление теоретического материала. Задача ставилась не только обеспечить усвоение материала, но главное внимание уделялось репродуктивному применению в ходе практической работы по самостоятельной оценке скорости света и творческому мышлению учащихся.

4. На мой взгляд, в рамках дидактической цели урока были реализованы:

* в познавательном аспекте:

Сделана попытка расширить научное мировоззрение на фоне образовательной задачи;

* в развивающем аспекте:

Обогащен и усложнен словарный запас;

Стимулированы навыки мышления, такие как сравнение, анализ, синтез, умение выделить главное, доказательство и опровержение;

* в воспитательном аспекте:

Акцент сделан на значимости преемственности физической науки, ее важнейших законов и теорий и способов подтверждения их достоверности.

Обеспечен дифференцированный подход с учетом того, что урок проводился в незнакомом классе. Работа строилась как на индивидуальных заданиях, так и на коллективной работе. Учащиеся вовлекались в процесс выявления причинно-следственных связей явлений и фактов. На мой взгляд, оправданы примененные методы взаимоконтроля и самоконтроля со стороны учащихся, имело место нарастание степени самостоятельности в системе заданий.

Думаю, что на уроке был создан положительный психологический климат. Материал воспринимался с интересом, т. к. он является инновационным и не представлен в школьном учебнике (11 класс). Полагаю, что уровень учащихся позволил обеспечить качество усвоенных знаний.

Мы от рождения до смерти пребываем в океане звуков. В городе мы постоянно слышим звуки движущихся машин, разговоры прохожих, фоновые шумы. Дома работают электроприборы, мы включаем телевизоры, радиоприемники, компьютеры. Можно не замечать эти звуки, не обращать на них внимания, но они влияют на наше мировосприятие и на самочувствие. Когда мы находимся, как кажется в тишине, за городом, на природе звуки все равно существуют вокруг нас. листвы, жужжание насекомых, шелест шагов по траве. Абсолютной тишины на Земле в естественных условиях не существует.

С точки зрения физики звук - это упругие волны, распространяющиеся в среде и создающие в ней механические колебания. От чего зависит высота звука и другие наши ощущения?

С точки зрения физиологии звук связан со слухом. И напрямую связан с нашими органами чувств.

Средой для распространения звуковых волн может быть воздух, вода, металл и другие вещества.

Поскольку звук - это он описывается теми же параметрами, что и любая волна. Это частота, длина волны, амплитуда, вектор волны (направление), скорость.

Человек слышит звуки в диапазоне от 15 Гц до 20 000 Гц. Диапазон ниже уровня слышимости называется инфразвуком, выше уровня и до 1 Ггц называется ультразвуком. Выше 1 Ггц - это гиперзвук.

Высота звука

Высота звука - это субъективное ощущение человека. Мы на слух располагаем все звуки по шкале от низких до высоких. От чего зависит высота звука? Преимущественно от частоты звуковой волны. Но на восприятие высоты влияет также его интенсивность. При большой интенсивности звуки кажутся ниже.

Единица измерения высоты звука это мел. Мелы распределяются по шкале через интервалы, которые на слух воспринимаются как равные.

Ученые обнаружили, что, если воспроизводить короткие импульсы с интервалом 5 миллисекунд, то на слух они будут восприниматься непрерывно.

Как любая информация наших органов чувств, звуковая информация обрабатывается мозгом. Рассмотрим, от чего зависит частота звука. Известен так называемый эффект Шепарда. Звукоряд, который создает иллюзию постоянно повышающегося или понижающегося тона, хотя на самом деле ничего не меняется. Это достигается наложением звуковых волн по октавам (кратным по частоте). Этот эффект интуитивно использовали Бах, Равель, Шопен.

Тоны звука

Сложный тон - это звучание нескольких частот сразу. Простой тон можно воспроизвести с помощью генератора звуковых сигналов, или камертоном. Сложный тон создается музыкальными инструментами и человеческим голосом. Спектр сложного тона состоит из основной частоты и множества дополнительных гармоник, так называемых обертонов. От чего зависит высота тона звука и самого звука? Она зависит от основной частоты тона. Но и интенсивность влияет на восприятие высоты звучания. Чем интенсивность больше, тем звук кажется ниже.

Громкость звука

Громкость звука характеризует уровень звукового ощущения. От чего зависит громкость и высота звука? Восприятие громкости звука - ощущение субъективное и зависит как от интенсивности звука, так и от возраста, пола, этнической принадлежности, условий прослушивания. Ощущение громкости описывается психофизическим законом Вебера-Фехнера. В соответствии с этим законом, если интенсивность звука растет в геометрической прогрессии, то ощущение громкости - в арифметической. (Логарифмическая зависимость). От чего зависит громкость и От множества причин. Высота звучания кажется ниже, когда громкость увеличивается. Человеку всегда низкие и высокие частоты кажутся тише, чем средние.

Тембр звука

Тембр определяется Окраску спектру придают обертоны (гармоники основной частоты). Они придают эмоциональную окраску любому звучанию. От чего зависят высота и тембр звука? Они зависят от конструкции и материалов музыкальных инструментов, от особенностей человеческого голоса. Возникающие многочисленные обертоны придают звучанию неповторимость.

Каждая из знаменитых скрипок Страдивари обладала уникальным тембром. Это определялось и формой резонатора, и типом дерева, и даже лаком покрытия.

Некоторые считают, что особенное восприятие звука человеком способствовало в древности его выживанию. Для анализа внешних шумов необходимо было понять, от чего зависит высота звука, вычленить из массы шумов, звуковых частот звуки подкрадывающегося хищника или вовремя услышать приближение какой-либо природной катастрофы.

Сейчас появилась возможность синтезировать любые звуки, обрабатывать существующие аудиозаписи для достижения нужного эффекта. Но еще на заре звукозаписи делались звуковые комбинации. Примером такого эффекта может служить знаменитый крик Тарзана, созданный искусственно в 1932 г.

Архитектурная акустика

От чего зависит высота звука? Конечно, от помещения, в котором он возникает.

Об этом знали еще в древности и строили храмы с учетом акустических элементов, теоретическое обоснование для которых было разработано впоследствии. Это и акустическая форма куполов, и акустические раковины.

Задание №1 С помощью «шарманки» исследовать свойство отражения звуковых волн. Получить звучание, исходящее из тарелки, прислоненной к уху. Задание №2 Выясните, от каких физических величин зависит высота тона и громкость звука с помощью закрепленной на столе линейки, изменяя длину её выступающей части и амплитуду колебаний. Когда звук становится слышимым, не слышимым? Задание №3 Оденьте в уши слуховые трубки зонда стетоскопа. Ударьте молоточком металлическую ложку. Добейтесь звучание «колокола». Сделайте вывод, о чем это говорит? Задание №4 Получите чистый, музыкальный тон с помощью камертона. Сделайте этот звук видимым. Задание №5 Получите простейший духовой инструмент из крышки коробки резонатора и трех пробирок.

Картинка 11 из презентации «Свойства звука» к урокам физики на тему «Звук»

Размеры: 960 х 720 пикселей, формат: jpg. Чтобы бесплатно скачать картинку для урока физики, щёлкните по изображению правой кнопкой мышки и нажмите «Сохранить изображение как...». Для показа картинок на уроке Вы также можете бесплатно скачать презентацию «Свойства звука.ppt» целиком со всеми картинками в zip-архиве. Размер архива - 6616 КБ.

Скачать презентацию

Звук

«Колебания звука» - Распространение и приемники звука. Распространяется в любой упругой среде: твердой; жидкой; газообразной. Эксперимент №3. Инфразвук – колебания, происходящие с частотой менее 20 Гц. Исследование характеристик звуковых волн при помощи PC. Оптика. Эксперимент №1. Громкость - Зависит от амплитуды колебательной среды.

«Звук звуковые колебания» - Акустический звук. Ключевые слова урока. (Верно). Искусственные. Слышимый (акустический). 3. Ультразвук – язык общения животных: дельфина, летучих мышей. Но кошки, излучаемые инфразвук, способны лечить человека мурлыканием. Дельфин. Причины возникновения звука. В воздухе при нормальных условиях скорость звука 330 м/с.

«Свойства звука» - Струнный музыкальный инструмент имеет от 3 до 7 струн. Сенсация в тазу с водой. Решение проблемной ситуации. Мы обобщили и систематизировали знания о звуковых явлениях. Ультразвук в медицине. Наблюдатель, издающий звуковую волну; пролетающее мимо тело. Практическое задание. Задание №3 Оденьте в уши слуховые трубки зонда стетоскопа.

«Отражение звука» - 1. Какова скорость звука в воздухе? Отражение звука». Тест по теме «Звук. 3. Звуковая волна в воздухе является: 6. Действие рупора основано на свойстве звука: 4. Эхо образуется в результате: 2. Как меняется скорость звука при уменьшении плотности среды?

«Скорость звука в различных средах» - О чём говорят справочники? Эксперимент. Наши задачи: Записать формулу, по которой вычисляется скорость звука. Как зависит скорость звука от среды? Опустим в сосуд с водой ручные часы и расположим ухо на некотором расстоянии. Наилучшая слышимость при угле наклона картона в 450. Звук почти не слышен. Почему происходит усиление звука?

«Скорость распространения звука» - В твердых телах – еще быстрее. Назовите единицы громкости и уровня громкости звука. От чего зависит громкость звука? Как отражается на здоровье человека систематическое действие громких звуков? Чем определяется высота звука? Что такое основной тон и обертоны звука? Скорость звука в воздухе » 330 м/с.

Всего в теме 34 презентации

>>Физика: Громкость и высота звука. Эхо

Слуховые ощущения, которые у нас вызывают различные звуки, во многом зависят от амплитуды звуковой волны и ее частоты. Амплитуда и частота являются физическими характеристиками звуковой волны. Этим физическим характеристикам соответствуют определенные физиологические характеристики, связанные с нашим восприятием звука. Такими физиологическими характеристиками являются громкость и высота звука.

Громкость звука определяется его амплитудой: чем больше амплитуда колебаний в звуковой волне, тем громче звук . Так, когда колебания звучащего камертона затухают, вместе с амплитудой уменьшается и громкость звука. И наоборот, ударив по камертону сильнее и тем симым увеличив амплитуду его колебаний, мы вызовем и более громкий звук.

Громкость звука зависит также от того, насколько чувствительно наше ухо к данному звуку. Наибольшей чувствительностью человеческое ухо обладает к звуковым волнам с частотой 1-5 кГц.

Измеряя энергию, переносимую звуковой волной за 1 с через поверхность площадью 1 м 2 , мы найдем величину, называемую интенсивностью звука.

Оказалось, что интенсивность самых громких звуков (при которых возникает ощущение боли) превышает интенсивность самых слабых звуков, доступных восприятию человека. в 10 триллионов раз! В этом смысле человеческое ухо оказывается намного более совершенным устройством, чем любой из обычных измерительных приборов. Ни одним из них столь широкий диапазон значений измерить невозможно (у приборов он редко превосходит 100).

Единицу громкости называют соном (от латинского "сонус" - звук). Громкостью в 1 сон обладает приглушенный разговор. Тиканье часов характеризуется громкостью около 0,1 сон. обычный разговор - 2 сон, стук пишущей машинки - 4 сон, громкий уличный шум - 8 сон. В кузнечном цехе громкость достигает 64 сон, а на расстоянии 4 м от работающего двигателя реактивного самолета - 256 сон. Звуки еще большей громкости начинают вызывать болевые ощущения.
Громкость человеческого голоса можно увеличить с помощью мегафона . Он представляет собой конический рупор, приставляемый ко рту говорящего человека (рис. 54). Усиление звука при этом происходит благодаря концентрации излучаемой звуковой энергии в направлении оси рупора. Еще большего увеличения громкости можно достичь при помощи электрического мегафона, рупор которого соединен с микрофоном и специальным транзисторным усилителем.

Рупор можно применять и для усиления принимаемого звука. Для этого его следует приставить к уху. В старые времена (когда еще не было специальных слуховых аппаратов) этим часто пользовались плохо слышащие люди.

Рупоры использовались и в первых аппаратах, предназначенных для записи и воспроизведения звука.

Механическая запись звука была изобретена в 1877 г. Т. Эдисоном (США). Сконструированный им аппарат назывался фонографом . Один из своих фонографов (рис. 55) он прислал Л. Н. Толстому .

Основными частями фонографа являются валик 1, покрытый оловянной фольгой, и мембрана 2, соединенная с иглой из сапфира. Звуковая волна, действуя через рупор на мембрану, заставляла иглу колебаться и то сильнее, то слабее вдавливаться в фольгу. При вращении ручки валик (ось которого имела резьбу) не только вращался, но и перемещался в горизонтальном направлении. На фольге при этом возникала винтовая канавка переменной глубины. Чтобы услышать записанный звук, иглу устанавливали в начало канавки и валик вращали еще раз.

Впоследствии вращающийся валик в фонографе был заменен плоской круглой пластиной и борозду на ней стали наносить в виде сворачивающейся спирали. Так появились граммофонные пластинки.

Помимо громкости, звук характеризуется высотой. Высота звука определяется его частотой: чем больше частота колебаний в звуковой волне, тем выше звук . Колебаниям небольшой частоты соответствуют низкие звуки, колебаниям большой частоты - высокие звуки.

Так, например, шмель машет в полете своими крылышками с меньшей частотой, чем комар: у шмеля она составляет 220 взмахов в секунду, а у комара - 500-600. Поэтому полет шмеля сопровождается низким звуком (жужжанием), а полет комара - высоким (писком).

Звуковую волну определенной частоты иначе называют музыкальным тоном. Поэтому о высоте звука часто говорят как о высоте тона.
Основной тон с "примесью" нескольких колебаний других частот образует музыкальный звук . Например, звуки скрипки и пианино могут включать в себя до 15-20 различных колебаний. От состава каждого сложного звука зависит его тембр .

Частота свободных колебаний струны зависит от ее размеров и натяжения. Поэтому, натягивая струны гитары с помощью колышков и прижимая их к грифу гитары в разных местах, мы изменим их собственную частоту, а следовательно, и высоту издаваемых ими звуков.

В таблице 5 приведены частоты колебаний в звуках различных музыкальных инструментов.

Диапазоны частот, соответствующие голосам певцов и певиц, можно найти в таблице 6.


При обычной речи в мужском голосе встречаются колебания с частотой от 100 до 7000 Гц, а в женском - от 200 до 9000 Гц. Наиболее высокочастотные колебания входят в состав звука согласной "с".

Характер восприятия звука во многом зависит от планировки помещения, в котором слушается речь или музыка. Объясняется это тем, что в закрытых помещениях слушатель воспринимает, кроме прямого звука, еще и слитный ряд быстро следующих друг за другом его повторений, вызванных многократными отражениями звука от находящихся в помещении предметов, стен, потолка и пола.

Увеличение длительности звука, вызванное его отражениями от различных препятствий, называется реверберацией . Реверберация велика в пустых помещениях, где она приводит к гулкости. И наоборот, помещения с мягкой обивкой стен, драпировками, шторами, мягкой мебелью, коврами, а также наполненные людьми хорошо поглощают звук, и потому реверберация в них незначительна.

Отражением звука объясняется и эхо. Эхо - это звуковые волны, отраженные от какого-либо препятствия (зданий, холмов, леса и т. п.) и возвратившиеся к своему источнику. Если до нас доходят звуковые волны, последовательно отразившиеся от нескольких препятствий и разделенные интервалом времени t>50 - 60 мс, то возникает многократное эхо. Некоторые из таких эхо приобрели всемирную известность. Так, например, скалы, раскинутые в форме круга возле Адерсбаха в Чехии, в определенном месте троекратно повторяют 7 слогов, а в замке Вудсток в Англии эхо отчетливо повторяет 17 слогов!

Название "эхо" связано с именем горной нимфы Эхо, которая, согласно древнегреческой мифологии, была безответно влюблена в Нарцисса. От тоски по возлюбленному Эхо высохла и окаменела, так что от нее остался лишь голос, способный повторять окончания произнесенных в ее присутствии слов.

??? 1. Чем определяется громкость звука? 2. Как называется единица громкости? 3. Почему после удара молоточком по камертону его звук постепенно становится все тише и тише? 4. Чем определяется высота звука? 5. Из чего "состоит" музыкальный звук? 6. Что такое эхо? 7. Расскажите о принципе действия фонографа Эдисона.

С.В. Громов, Н.А. Родина, Физика 8 класс

Отослано читателями из интернет-сайтов

Уроки физики, программы по физике, физика рефераты, физика тесты, курс физики , учебники по физике, физика в школе , разработка уроков физика, календарно тематическое планирование по физике

Содержание урока конспект урока опорный каркас презентация урока акселеративные методы интерактивные технологии Практика задачи и упражнения самопроверка практикумы, тренинги, кейсы, квесты домашние задания дискуссионные вопросы риторические вопросы от учеников Иллюстрации аудио-, видеоклипы и мультимедиа фотографии, картинки графики, таблицы, схемы юмор, анекдоты, приколы, комиксы притчи, поговорки, кроссворды, цитаты Дополнения рефераты статьи фишки для любознательных шпаргалки учебники основные и дополнительные словарь терминов прочие Совершенствование учебников и уроков исправление ошибок в учебнике обновление фрагмента в учебнике элементы новаторства на уроке замена устаревших знаний новыми Только для учителей идеальные уроки календарный план на год методические рекомендации программы обсуждения Интегрированные уроки

Говоря о строении слухового аппарата, мы переходим постепенно к принципу анализа мозгом полученного сигнала от слуховой улитки. В чем он заключается? И как мозг расшифровывает его? Как он определяет высоту тона звука? Сегодня мы как раз поговорим о последнем, так как в нем автоматически раскрываются ответы и на первые два вопроса.

Надо отметить, что мозг определяет только периодические синусоидальные компоненты звука. Восприятие высоты тона человеком так же зависит от громкости и длительности. В прошлой статье мы говорили о базилярной мембране и ее строении. Как известно, она обладает неоднородностью по жесткости строения. Это позволяет ей механически разбивать звук на компоненты, у которых есть особое место размещение на ее поверхности. Откуда волосковые клетки позже подают сигнал в мозг. Из-за этой особенности строения мембраны, «звуковая» волна, пробегающая по ее поверхности, имеет разные максимумы: низкие частоты – вблизи вершины мембраны, высокие – у овального окна. Мозг автоматически пытается определить высоту по этой «топографической карте», находя на ней локализацию фундаментальной частоты. Этот метод можно ассоциировать с многополосным фильтром. Отсюда взята теория «критических полос», которую мы обсуждали ранее:

Но это не единственный подход! Второй способ – это определение высоты тона по гармоникам: если найти минимальную частотную разницу между ними, то она всегда равна фундаментальной частоте – [( n +1) f 0 — (nf 0)]= f 0, где n – номера гармоник. А также вместе с ним используется и третий метод: нахождение общего сомножителя от деления всех гармоник на последовательные числа и, толкаясь от него, определяется высота звука. Эксперименты полностью подтвердили обоснованность этих способов: слуховая система, находя максимумы гармоник, проводит над ними вычислительные операции и если даже вырезать основной тон или расставить гармоники в нечетной последовательнос ти, при котором метод 1 и 2 не помогут, то человек определяет высоту звука 3 методом.

Но как оказалось – это не все возможности мозга! Были проведены хитрые эксперименты, которые удивили ученых. Дело заключается в том, что три метода работаю только с первыми 6-7 гармониками. Когда в каждую «критическую полосу» попадает по одной гармонике звукового спектра мозг спокойно «определяет» их. Но стоит, каким либо гармониками находиться настолько близко друг к другу, что в одну область слухового фильтра попадает их несколько, то мозг их распознает хуже или вообще не определяет: это относиться к звукам с гармониками выше седьмой. Вот здесь вступает четвертый метод – метод «времени»: мозг начинает анализировать время поступления сигналов с органа Корти с фазой колебания всей базилярной мембраны. Этот эффект получил название «запирание фазы». Дело заключается в том, что при колебании мембраны, когда она движется в сторону волосковых клеток, те соприкасаются с ней, образуя нервный импульс.
При движении обратно, ни какого электрического потенциала не появляется. Появляется взаимосвязь – время между импульсами в любом отдельном волокне будет равно целому числу 1, 2, 3 и так далее, умноженному на период в основной звуковой волне f = nT . Как это помогает в работе в купе вместе с критическими полосами? Очень просто: мы знаем, что когда две гармоники находятся настолько близко, что попадают в одну «частотную область», то между ними возникает эффект «биения» (которую музыканты слышат при настройке инструмента) – это просто одно колебание со средней частотой, равной разности частот. При этом период у них будет T =1/ f 0. Таким образом, все периоды выше шестой гармоники одинаковы или имеют разряд в цело число, то есть значение n / f 0. Далее мозг просто высчитывает частоту основного тона.



Последние материалы раздела:

Изменение вида звездного неба в течение суток
Изменение вида звездного неба в течение суток

Тема урока «Изменение вида звездного неба в течение года». Цель урока: Изучить видимое годичное движение Солнца. Звёздное небо – великая книга...

Развитие критического мышления: технологии и методики
Развитие критического мышления: технологии и методики

Критическое мышление – это система суждений, способствующая анализу информации, ее собственной интерпретации, а также обоснованности...

Онлайн обучение профессии Программист 1С
Онлайн обучение профессии Программист 1С

В современном мире цифровых технологий профессия программиста остается одной из самых востребованных и перспективных. Особенно высок спрос на...